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THE COMPLETELY SEPARATING INCIDENCE ALGEBRAS
OF TAME REPRESENTATION TYPE

BY

ZBIGNIEW LESZCZYŃSKI (Toruń)

Abstract. We prove that a completely separating incidence algebra of a partially or-
dered set is of tame representation type if and only if the associated Tits integral quadratic
form is weakly non-negative.

1. Introduction. Let K be an algebraically closed field and Q =
(Q0, Q1) a finite connected quiver without oriented cycles and arrows hav-
ing the same starting and ending vertex with another path (hence, without
multiple arrows). By the incidence algebra A(Q) of Q we mean the bound
quiver algebra KQ/I, where I is the ideal in the path algebra KQ generated
by the commutativity relations, that is, by all elements ω1−ω2 given by the
pairs {ω1, ω2} of paths in Q having the same starting and ending vertices.
Clearly, A(Q) is the incidence algebra of a finite poset (partially ordered
set) whose Hasse quiver is Q. Assume that the incidence algebra A(Q) is
completely separating (for the definition see [D] or below). We are concerned
with the problem of deciding when A(Q) is of tame representation type.

By a remark due to J. Tits there is a connection between the represen-
tation type of an algebra A and the definiteness of the associated quadratic
form q, called the Tits form of A. For A = A(Q), let R be a minimal set of
relations which generate I. Then the Tits form of A is the integral quadratic
form q : Zn → Z defined by the formula

q(x) =
∑

i∈Q0

x2
i −

∑

α∈Q1

xs(α)xt(α) +
∑

i,j∈Q0

rijxixj ,

where Q0 (respectively, Q1) is the set of vertices (respectively, arrows) of Q,
n = |Q0|, s(α) and t(α) denote the source and target of an arrow α ∈ Q1,
and rij is the cardinality of R∩KQ(i, j), where KQ(i, j) is the vector space
spanned by the paths from i to j (see [Bo1]). It is well known (see [P1]) that
if A(Q) is of tame representation type, then qA(Q) is weakly non-negative,
that is, qA(Q)(x) ≥ 0 for any x ∈ Zn with non-negative coordinates.
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Our main result is the following theorem:

Theorem. Suppose that Q is a poset and A(Q) is the incidence algebra
of Q. If A(Q) is completely separating , then the following conditions are
equivalent :

(i) A(Q) is of tame representation type.
(ii) The associated Tits form q : Z|Q0| → Z is weakly non-negative.
(iii) A(Q) does not contain a hypercritical algebra as a convex subcate-

gory.

The above result allows us to study the tameness of our class of algebras
by means of Computer Algebra Programs (see [DN]).

Among tame algebras we distinguish the class of polynomial growth alge-
bras [Sk1], for which there exists a positive integer m such that the number
of one-parameter families of indecomposable modules is bounded, in each
dimension d, by dm. Note that criteria for polynomial growth of completely
separating incidence algebras follow from [Sk3]. Therefore, our aim in this
paper is to describe the completely separating incidence algebras A(Q) of
tame representation type such that A(Q) admits a convex pg-critical subal-
gebra in the sense of [NS].

2. Preliminaries. Let P be a finite partially ordered set (briefly, poset).
The vertices x, y in P are called neighbours if either x ≤ y or y ≤ x, and if
x ≤ c ≤ y or y ≤ c ≤ x then c ∈ {x, y}. To any finite poset P we associate
the bound quiver Q(P ) = (Q(P )0, Q(P )1, I(P )), where Q(P )0 = P and
α : x→ y is an arrow in Q(P )1 if x ≤ y and x, y are neighbours, and I(P )
is the ideal of the path K-algebra of (Q(P0), Q(P1)) generated by the set of
all commutativity relations.

Let (Q, I) be a bound quiver without oriented cycles and arrows having
the same starting and ending vertex with another path. Assume that the
admissible ideal I in the path algebra KQ is generated by all elements
ω1 − ω2 given by the pairs {ω1, ω2} of paths in Q having the same starting
and ending vertices. We say that for two vertices x, y of Q we have x ≤ y if
there is a path in Q from x to y.

From now on, we denote a poset and its associated bound quiver by the
same letter.

For a poset Q we denote by ω(Q) the width of Q, that is, the greatest
number of pairwise incomparable points.

For a poset Q we denote by repK(Q) the category of K-linear repre-
sentations of Q. The objects of repK(Q) are systems (Vx, fα), where Vx is
a finite-dimensional vector space for any x ∈ Q0 and fα : Vx → Vy is a
linear homomorphism for any arrow α : x → y in Q1, and for two paths
ω1, ω2 in Q starting at the same point x and ending at the same point
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y, the compositions fω1 , fω2 of the k-linear homomorphisms fα for the ar-
rows α lying on the path ω1 (resp. ω2) are equal as homomorphisms from
Vx to Vy. A family (hx) of K-linear homomorphisms hx : Vx → Wx, for
x ∈ Q0, is a morphism from (Vx, fα) to (Wx, gα) in repK(Q) if for any
arrow α : x → y in Q1 we have hy ◦ fα = gα ◦ hx. As usual, we identify
repK(Q) with the category of modules over the incidence algebra A(Q) (be-
cause A(Q) is the bound quiver algebra of the poset Q; see [GR] and [S2,
Chapter 14]).

Following [Lo], for given arrow α : a→ b in Q1 we associate to the poset
Q a poset Q′ obtained from Q by contracting the arrow α to the vertex
a = b. That is, we take the poset Q′ = Q\{a, b}∪{{a, b}} together with the
inequalities: x ≤ y (in Q′) if {x, y} ⊆ Q \ {a, b} and x ≤ y in Q; x ≤ {a, b}
in Q′ if either x ≤ a or x ≤ b in Q; and {a, b} ≤ y if either a ≤ y or b ≤ y
in Q. We call the poset Q′ a contraction of Q at α.

The following example illustrates well what it is changed after the con-
traction at α:

Q =

5−−−−→ 2−−−−→ 8x α

x
↗

7
↗

x
3→ 4→ 1−−−−→ 6

Q′ =

5 7
↗ ↘ ↗ ↘

3 0 8
↘ ↗ ↘ ↗

4 6

(0 = {1, 2})

Lemma 2.1. (a) If the incidence algebra A(Q) of a poset Q is of tame
representation type and Q′ is a subposet of Q, then the algebra A(Q′) is of
tame representation type.

(b) If Q′ is a convex subposet of Q and the Tits form of A(Q) is weakly
non-negative then so is the Tits form of A(Q′).

Proof. The statement (a) is known since Q′ is a full subcategory of Q
(see [DS1, Lemma 6]). We have (b) since for a convex subposet Q′ the Tits
quadratic form qA(Q′) is a restriction of qA(Q).

Lemma 2.2. (a) If the incidence algebra A(Q) of a poset Q is of tame
representation type and Q′ is an iterated contraction of Q, then A(Q′) is of
tame representation type.

(b) If Q′ is an iterated contraction of Q and the Tits form of A(Q) is
weakly non-negative then so is the Tits form of A(Q′).

Proof. It is enough to prove the assertion for a contraction of one arrow.
The statement (a) is obvious since the category repK(Q′) is equivalent to
the subcategory of repK(Q) consisting of the representations V = (Vx, fα)
in which fα is an isomorphism.
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(b) Suppose q′ (resp. q) denotes the quadratic form associated to A(Q′)
(resp. A(Q)) and let y ∈ Zn−1 be such that q′(y) < 0. We may assume that
for the arrow α (which is contracted in Q′) we have s(α) = 1, t(α) = 2,
where 1, 2 ∈ Q0 = {1, 2, . . . , n}. Denote the vertex {1, 2} of Q′ by 0 and
take x ∈ Zn with coordinates x1 = y0, x2 = y0, and xi = yi for i ≥ 3. We
are going to prove that q(x) < 0.

Since xk = yk for k = 3, . . . , n, and rij = r′ij for {i, j} ∩ {1, 2} = ∅, we
have

q(x)− q′(y) = x2
1 + x2

2 − x1x2

− y2
0 −

∑
(xsx1 + x2xt) +

∑
(εsysy0 + ηty0yt)

+
∑

(rs1xsx1 + r2tx2xt)−
∑

(r′s1ysy0 + r′2ty0yt)

where s is a predecessor of 1 in Q (t is a successor of 2 in Q), and εs = 0
(resp. ηt = 0) if there exist at least two paths from s to 2 (resp. from 1 to t),
whereas εs = 1 (resp. ηt = 1) otherwise. In the above formula εs, ηs appear
because if we contract an arrow from the path ω of length 2 such that there
exists another path ν in Q with s(ν) = s(ω), t(ν) = t(ω), then (see the above
example) in Q′ there is one path (with source s(ω) and target t(ω)) less (in
Q′ the path ω is omitted). One can prove the inequalities r′ij ≤ rij ≤ r′ij + 1
for any pair {i, j} (where r′ij is the cardinality of the corresponding set
for Q′). Suppose rij = r′ij for any pair {i, j}. Since y0 = x1 = x2, we have
q(x) = q′(y), and q(x) < 0. One can see that rij = r′ij + 1 if and only if
either (a) j = 2, i is a predecessor of 1 and there is a path from i to 2
different from i → 1 → 2, or (b) i = 1, j is a successor of 2 and there is a
path from 1 to j different from 1→ 2→ j. Suppose rij = r′ij + 1 and Q has
property (a). One can see that εi = 0. Similarly for (b) we have ηj = 0 for
the successor of 2. Hence q(x) = q′(y).

We know that a hereditary algebra is simply connected (see [Sk2] for the
definition) if and only if it is the path algebra of a tree. Let ∆ be a finite
connected quiver whose underlying graph ∆ is a tree, and H = K∆. Then
it is well known that H is representation-infinite and tame if and only if ∆
is one of the Euclidean graphs

D̃n :

• •
� �• • · · · • •
� �• •

Ẽ6 :

•

•

• • • • •

Ẽ7 :
•

• • • • • • •
Ẽ8 :

•

• • • • • • • •

where D̃n has n+ 1 vertices, n ≥ 4.
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Hence, H = K∆ is wild if and only if ∆ contains one of the following
graphs:

T5 :

• •
� �• •
� �• •

˜̃Dn :

• •
� �• • · · · • •
� �• • •

˜̃E6 :

•

•

• • • • • •

˜̃E7 :
•

• • • • • • • •

˜̃E8 :
•

• • • • • • • • •

where ˜̃Dn has n+ 2 vertices, 4 ≤ n ≤ 8.
Assume that H = K∆ is representation-infinite (∆ is not a Dynkin

graph) and T is a preprojective tilting H-module, that is, Ext1
H(T, T ) = 0

and T is a direct sum of n = |∆0| pairwise non-isomorphic indecomposable
H-modules lying in the τH -orbits of projective modules. Then C = EndH(T )
is called a concealed algebra of type ∆. It is known that gl.dimC ≤ 2 and
C has the same representation type as H (see [HR]). A concealed algebra

of type ∆ = D̃n, Ẽ6, Ẽ7, Ẽ8 (resp. ∆ = T5, ˜̃Dn, ˜̃E6, ˜̃E7, ˜̃E8) is said to be
critical (resp. hypercritical). The critical (resp. hypercritical) algebras have
been completely classified in [Bo2], [HV] (resp. [U], see also [L] and [Wi]). It
is known [Bo2] that a simply connected algebra A is representation-finite if
and only if A does not contain a critical convex subcategory. It is expected
(see [P1]) that a simply connected algebra A is tame if and only if A does
not contain a hypercritical convex subcategory.

From [HV] we know that there are only four families of critical algebras
of type D̃n, given by the following quivers:

(1)

• •
� �• • · · · • •
� �• •

(2)

• •
� � ↘
• • · · · • •

� � ↙• •

...

(3)
...

• •↙ � � ↘
• • · · · • •

↘ � � ↙• •

... (4)

•−→ · · · −→•↗ ↘
•−−−−−−→ •−−−−−−→•

•
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where • • means •→• or •←•, the algebras of types (2) and (3) are bound
by the commutativity relations, and those of type (4) by the vanishing of
the sum of paths from the unique source to the unique sink (those of type
(4) are not incidence algebras).

Following [NS], by a pg-critical algebra we mean an algebra A satisfying
the following conditions:

(i) A is one of the matrix algebras

B[M ] =
[
K M
0 B

]
, B[N, t] =




K K . . . K K K N
K . . . K K K 0

. . .
...

...
...

...
K K K 0

K 0 0
0 K 0

B




where B is a representation-infinite tilted algebra of Euclidean type D̃n,
n ≥ 4, with a complete slice in the preinjective component of the Auslan-
der–Reiten quiver ΓB, M (resp. N) is an indecomposable regular B-module
of regular length 2 (resp. length 1) lying in a tube with n− 2 rays, and t+ 1
(t ≥ 2) is the number of isoclasses of simple B[N, t]-modules which are not
B-modules.

(ii) Every proper convex subcategory of A is of polynomial growth.

It is known that every pg-critical algebra is tame but it is not of poly-
nomial growth [NS].

Let A = KQ/I be a bound quiver algebra. Following [D] we call a module
V thin if dimKVx ≤ 1 for any vertex x. We have the following trivial fact:

Remark 2.3. Suppose B is an incidence algebra of a poset and A = B[V ]
(A = [V ]B) denotes a one-point (co-) extension of the algebra B by the
module V . If A is an incidence algebra (for the large poset), then the module
V is thin.

We know that among the four families of concealed algebras of type
D̃n there are three families of incidence algebras of posets. Since for con-
cealed incidence algebras from our three families the simple regular thin
modules and the indecomposable regular thin modules of regular length 2
are known [NS], one can give a classification of pg-critical incidence algebras.
In [Sk2] a bound quiver algebra KQ/I is called strongly simply connected
if for each convex full subquiver Q′ of Q the associated algebra KQ′/I ′

is simply connected. All strongly simply connected tame algebras minimal
of non-polynomial growth are listed in [NS]. In particular, the following is
proved in [NS, Theorem 3.2]:
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Lemma 2.4. Let A = A(Q) be a pg-critical incidence algebra of a poset
Q. Then Q or Qop is of one of the forms

(2.4a)
...

• • •
� ↗ ↘ �
x1 x2 · · · xq y1 y2 · · · y2

� ↘ ↗ �• • •

...

(2.4b)

xq←− · · · x2←−x1 •
↙ ↘ ↘ �• • z1 z2 · · · z zp
↘ ↙ ↙ �

yr←− · · · y2 ←− y1 •

...

(2.4c)

•−−−−→• •↘ �
x1 x2 · · · xq
↗ �

•−−−−→• •

...

(2.4d)

•−−−−→•−−−−→•

•−−−−→•−−−−→•
where p, q, r ≥ 1 and

•
�
x
�•

...

denotes either a tree • x • with any orientation of edges or a poset
•↙ ↘

x↘ ↙•

...

with one commutativity relation.

Let A = KQ/I be the incidence algebra of a finite poset Q. For every
x ∈ Q we denote by Px the indecomposable projective A-module associated
with x. The module Px is said to have a separated radical if the supports of
any two non-isomorphic indecomposable direct summands of radPx are con-
tained in different connected components of the subposet Qx of Q obtained
by deleting all those points y such that there is a path with source y and
target x. If all the indecomposable projective A-modules have separated rad-
ical, then A is said to satisfy the separating condition [BLS]. The incidence
algebra A is called completely separating if for any convex subposetQ′ the as-
sociated incidence algebra KQ′/I ′ also satisfies the separating condition [D].
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Consider a poset of the form

(2.5)
• • •

• • •

Q1 Q2 Q3 · · · Qs

Qs+1

(where s ≥ 3) such that the poset Qi has one minimal and one maximal
point for any 1 ≤ i ≤ s+ 1, and the points x ∈ Qi, y ∈ Qj are incomparable
for i 6= j except the case {x, y} ∩Qi ∩Qj 6= ∅.

Lemma 2.6. The incidence algebra A = A(Q) of a poset Q is completely
separating if and only if Q contains no convex subposet of the form (2.5).

This fact is proved in [D, Theorem 4.3], where (2.5) is called a crown.
We denote by Ãm,n the poset of the form

Ãm,n =

• • · · · • •∣∣∣∣∣

∣∣∣∣∣
• • · · · • •

(without commutativity relations), where • • means either •→• or •←•
and Ãm,n has m+ n vertices and m+ n arrows; m of them have clockwise
orientation and n counterclockwise orientation.

Hence, if Ãm,n has at least two minimal (or equivalently, at least two
maximal) vertices, then it is a crown.

Observe that the pg-critical algebras (2.4c,d) are not completely sepa-
rating.

We have the obvious

Lemma 2.7. The incidence algebra A(Q) of a poset Q is strongly simply
connected if and only if it is completely separating.

For any natural number n we consider the poset

(2.8) Gn :

•−−−−→•−−−−→•−−−−→• · · · •−−−−→•−−−−→•−−−−→•

•−−−−→•−−−−→•−−−−→• · · · •−−−−→•−−−−→•−−−−→•
having 2(n+ 1) points, and the poset
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(2.9) Fn :

• • • • • •↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘
• • • • · · · • • • •↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗
• • • • • •

having n commutative squares.
We have the following obvious fact:

Lemma 2.10. (a) Every Gn is a subposet of some Fm, and every Fn is
a subposet of some Gm.

(b) A poset Q is a subposet of Gn or Fn for some n if and only if Q is of
width at most 2 and does not contain as a full subposet the (disconnected) poset

(2.11) •−−−−→ • •
We consider subposets of (2.9) which are completely separating, that is,

are of width 2 and contain neither (2.11) nor G2 as a convex subposet.
By a viper we mean a convex, connected subposet of

(2.12)

• •

• •

Q1 Q2 Q3 · · ·

• •

• •

Qn−2 Qn−1 Qn

where each Qi is a subposet of some Fn. Note that a viper is completely
separating if and only if all the Qi are completely separating.

If a poset is a viper and T is either Q1 or Qn (in the notation of (2.12)),
then T can have two minimal (or two maximal) points. One can see that a
viper is a proper convex subposet of a crown.

3. Families of non-polynomial growth posets. For algebras of poly-
nomial growth, our Theorem is already proved [Sk3, Theorem 4.1 together
with Corollary 4.2]. In the case of algebras of non-polynomial growth we
have to consider only the iterated one-point extensions or coextensions (see
[R2]) of pg-critical completely separating algebras (see Lemma 2.3) whose
Gabriel quivers are posets of the form (2.4a) or (2.4b).

We consider the incidence algebras of posets from the following families:

(3.1a) •

•

•T1

•
Q1

Q2

•

· · ·

• •

•

•

Qm

T2
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(3.1b)

•

•

•
•

•
•T (3.1c)

•

•

•

•
T

•

•

(3.1d)

•

•

•T •

•

•

(3.1e)

•

•

•T

•

•
in which T1, T2,Qi, 1 ≤ i ≤ m, and T are subposets of (2.9), where ω(T ) = 2;
possibly m = 1, Q1 or Qm is a point, or both are points, or m = 1 and Q1

is a point.
We also consider the incidence algebras of posets from the families

(3.2a)

•

•

•

•
P2

P1

α β
γ (3.2b) •

•

•
•

•

•

R1

R2

where each Pi and Rj is a subposet of (2.9) and ω(Pi) = ω(Rj) = 2.
Note that the incidence algebra A(Q) of a poset Q of one of the forms

(3.1), (3.2) is completely separating if and only if T1, T2, T , Qi for 1 ≤ i ≤ m,
P1, P2, R1, R2, are all completely separating subposets of (2.9).

By an admissible extension (resp. coextension) of the incidence algebra of
a poset Q we mean a one-point extension (resp. coextension) which contains
neither a convex hypercritical algebra nor a convex crown, and such that the
resulting algebra is an incidence algebra (for the larger poset). By a simple
case by case investigation one can prove

Lemma 3.3. Let A(Q) be the incidence algebra of a poset Q from the
families (3.1), (3.2). If Q contains a convex subposet of a pg-critical algebra,
then A(Q) has no admissible extension (or coextension).

The main aim of this section is to prove the following fact.

Proposition 3.4. Let A(Q) be the completely separating incidence alge-
bra of a poset Q. Suppose that A(Q) has no convex hypercritical subalgebra.
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If A(Q) contains a convex pg-critical algebra, then either Q or Qop is a
subposet of one of the posets from the families (3.1), (3.2).

Proof. Consider extensions of the poset (2.4b). After a short inspection
of all possible extensions one can see that the extension of any poset of the
form (2.4b) by adding exactly one new arrow is not admissible. One can
show that if our poset has the form

(3.5)

•←−• · · · •←−• •↙ ↘ ↘ ↙ ↘
• • •←−• · · · •←−•↘ ↙ ↙ ↘ ↙•−→• · · · •−→• •

...

then there is no admissible extension. For example, the extension

(3.6)

•←−• · · · •←−•←−−−−−−−x−−−−−−−→•↙ ↘ ↘ ↙ ↘
• • •←−• · · · •←−•↘ ↙ ↙ ↘ ↙•−→• · · · •−→• •

...

contains a convex subposet

(3.7)

•←−• · · · •←−•←−−−−−−−x−−−−−−−→•↙ ↘ ↘ ↙ ↘• • •←−• · · · •←−• •↘ ↙•
which is hypercritical of type ˜̃Dn. One can see that another extension with
two new arrows contains (more than one) hypercritical poset. Similarly, if
we add at least three new arrows (and one vertex), then we obtain a poset
containing a hypercritical poset.

An inspection of all possible extensions shows that a poset of the form
(2.4b) has an admissible extension, provided this extension is by one vertex
and two or three new arrows, and the right part of (2.4b) is of the form

(3.8)

a↙· · · • •↖
b

One can show that if after the admissible extension we add two arrows then
the extensions are of the form

(3.9)

a↙ ↖· · · • • x↖ ↙
b

Assume now that after the extension we add three new arrows. We have the
following admissible extensions:
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(3.10a)

•←−• · · · •←−• x−→b−→• · · · •↙ ↘ ↘ y↘ ↗ ↘
• • a1←−a2 · · · •←−ar a •
↘ ↙ ↙ y ↗
•←−• · · · •←−• •−→•−→• · · · •

(3.10b)

•←−• · · · •←−•←−−−−−−−−−−−−−−−− •↙ ↘ ↘ ↙ ↘
• • • a b↘ ↙ ↙ ↖ ↘ ↙
•−→• · · · •−→• •←−• · · · •←−•

One can prove that another extension with three new arrows is not admis-
sible. Observe that a poset (3.10a) is of the form (3.1a), and (3.10b) is of
the form (3.2a). Hence they have no admissible extension or coextension
(Lemma 3.3).

Consider now extensions of the poset of the form (3.9). For the poset

(3.11)

•←−• · · · •←−• b↙ ↘ ↘ ↙ ↘• • • • · · · • • x1 x2 · · · • xs↘ ↙ ↙ ↘ ↙•−→• · · · •−→• a

(it is possible that s = 1) we may investigate (as above) its admissible (co-)
extensions. In this way one can show that any admissible iterated (co-)
extension of (3.11) produces a subposet of a poset from the families (3.1),
(3.2) or it contains a convex subposet of the form (2.4a) (which is a viper).

Assume now that a poset (2.4a) is not a viper, that is, it ends on at least
one side with a subposet of one of the forms

•↙ ↘
•↘ ↙

•

...

•↙•↘
•

Then one can see that our poset has an admissible extension, if this extension
is by one vertex and two or three new arrows and one side part of a poset
(2.4a) is of the form (3.8). Then, as above, we may prove that any admissible
iterated extension or coextension of our poset produces a poset which is a
subposet of a poset from the families (3.1), (3.2) or a poset containing a
convex subposet of the form (2.4a) (which is a viper). Hence the proof is
reduced to the investigation of an iterated extension (or coextension) of a
viper of non-polynomial growth.

Denote by ri the number of incomparable pairs in the poset Qi (in the
notation of (2.12)). Observe that a viper is of non-polynomial growth if
r1 + . . .+ rn ≥ 3.

Suppose that Q is a viper with n = 1 and r1 ≥ 3. Then one can show
that an admissible (co-) extension is a viper or a poset of the form
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(3.12)

α

• •

•

•

(which is a coextension of some viper with n = 2). The next admissible
extension (or coextension) is a proper subposet of (3.1e) (without a vertex
with one neighbour) or a poset of the form

(3.13)

α

• •

•

•

•
One can prove that any admissible extension (or coextension) of the first
poset is of the form (3.1e). The poset (3.13) is a coextension of a viper with
n = 2 or n = 3, depending on the orientation of the new arrow.

Consider a poset of the form

(3.14)

•

•

•T1

•
Q1

Q

•

· · ·

•

•
Qm

By a left (resp. right) rolled viper we mean a viper with the left (resp. right)
part equal to (3.14) or its dual.

The posets from (3.1a) are double-rolled vipers, i.e. rolled on both ends.
By a left (resp. right) armed viper we mean a poset obtained from a viper

by replacing the first (resp. last) Qi not equal to the point by a poset equal
to (3.12) (or by its opposite) with a gluing point α ∈ (3.12).

The posets (3.12) and (3.13) are armed vipers.
Observe that if a poset Q is of one of the forms: (i) a viper, (ii) a rolled

or an armed viper, (iii) a double-rolled or double-armed viper, then Q is a
subposet of (3.1a) (an armed viper is not a convex subposet of (3.1a)).

If in the notation of (3.14) we have m = 1, then the poset is an extension
of a viper with n = 2 and r1 6= 0 6= r2 (also for Q1 of width 2).

Observe that if there is an orientation in (3.1b) such that the vertex with
one neighbour is a source, then (3.1b) is an extension of a viper with n = 2.
Also (3.2b) is an extension of such a viper if r1 6= 0 6= r2. Suppose Q′ is
a poset of the shape (3.2b) for which only one of Ri is of width 2 (Q′ is
also an extension of some viper). One can see that after several admissible
extensions and coextensions of the poset Q′ we obtain a poset from the
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families (3.1), (3.2) which is either a rolled (or an armed) viper or a double-
rolled or double-armed one.

Suppose Q is a viper with n = 2, 3, or 4 (here we mean that exactly 2,
3 or 4 subposets Qi in the notation of (2.12) are not equal to the point).
Then case by case inspection shows that iterated admissible extensions and
coextensions lead to one of the following posets: a viper, a rolled (or an
armed) viper, a double-armed or double-rolled viper, or a subposet of some
poset from the families (3.1), (3.2).

For a viper Q with n ≥ 5, one gets the same conclusion as above. We
present more details of this proof for a viper Q with n = 5 of the form

(3.15)

•

•x1

Q1 Q2

•x2

•x3

Q3

•

•x4

Q4

•
Q5

(Let us repeat that it is possible that Q1 has two minimal points, or Q5

has two maximal points.) Let Q′ denote an extension of Q. Observe that if
two new arrows end in Q2 ∪ Q3 or in Q4 ∪ Q5, then Q′ contains a convex
subposet Ã2,2. Similarly, if for an admissible extension of Q two new arrows
end in Q1, then they end at two minimal vertices of Q1. The width of Qi’s
(≤ 2) excludes three arrows going to one of Qi.

Assume that in Q′ there are three new arrows, say α, β, γ, and α ends
in Q1, β in Q2∪Q3, and γ in Q4∪Q5. Then none of x1, x2 is the target of a
new arrow. If Q2, Q3 is not equal to an arrow, then Q′\{x1, x2} contains the
poset of a hypercritical algebra (remember that a viper is of non-polynomial
growth, that is, at least one of Qi’s is of width 2). Assume that Q2, Q3 are
each an arrow and suppose Q5 is of width 2. Then Q′ contains a convex
subquiver of the form

(3.16)

•
x3

Q4

•
x4

•

Q5

•

•

•

•
α

β

γ

and (3.16) contains a convex subposet of the form

(3.17)

1←−−−−2 · · · •←−−−−r • · · · • • •x

x
γ

∣∣∣∣
•←−−−−

α
•←−−−−−−−−−−−−−−• •β

which is the poset of a hypercritical algebra of type ˜̃Dn.
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Similarly, if Q1 is of width 2, then Q′ \ {x1} contains a hypercritical
poset. Hence, if the extension of Q is admissible and has three new arrows,
then two of them end at minimal points of Q1 and the extension is of the
form (3.14) (with m = 3 or m = 4).

Any extension (of any poset) with 5 new arrows contains a hypercritical

poset ˜̃D4. If we have an extension with four new arrows, then from the above
remarks we know that the targets of two of them are minimal points of Q1,
one target is in Q2 ∪ Q3, and one in Q4 ∪ Q5. Then none of x1, x2 is the
target of a new arrow, and it is easy to show that Q′ \ {x1} contains the

poset of a hypercritical algebra (of type ˜̃An).
Similarly one can show that if an admissible extension Q′ has two new

arrows, then either the arrows end at two minimal points of Q1 (and we
obtain a viper with a longer Q1), or Q1 has only one minimal point, and
one of the arrows ends at this point, the other in Q2, and the extension is
of the form (3.14).

If Q′ is an admissible extension of Q with one new arrow, then Q′ is
either:

(a) a viper with
(i) a longer Q1, and the target of the new arrow is the minimal

point of Q1,
(ii) n = 6, and the target of the new arrow is the (unique) maximal

point of Q5,
(iii) a wider Q1, and the target of the new arrow is the successor of

the minimal point of Q1,
or

(b) an armed viper, and the target of the new arrow is a (unique) pre-
decessor of a (unique) maximal point of Q5.

Hence, after an admissible extension we obtain either a new viper, an
armed viper or a rolled viper. The same holds for admissible coextensions.
Therefore, the iterated (co-) extended poset of our poset has no admissible
(co-) extension if each side of the poset is rolled or armed, and it is a subposet
of some poset of the form (3.1a) (if it is double-rolled, then it is one of (3.1a)).

In the above combinatorics, the first operation which we employed for
the vipers was an admissible one-point extension. Dually, we can obtain
the same conclusions for any n if we start with an admissible one-point
coextension.

4. Proof of the tameness. The aim of this section is to prove

Proposition 4.1. Suppose A = A(Q) is the incidence algebra of a poset
Q from the families (3.1) and (3.2). Then A is of tame representation type.
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In order to do this we need some lemmas.
Consider the bound quiver S of the form

(4.2)

1 a−−−−→ 2

c

y

yb

3−−−−→
d

4

with the ideal IS = (ba− dc), and the quiver T of the form

(4.3)

β

f
α−−−−→ g

γ−−−−→ h

with the ideal IT = (β2 − β, γα).
Assume that S is a full convex subquiver of some quiver Q in which

vertex 2 (resp. 3) is the target of only one arrow a (resp. c) and the source
of only one arrow b (resp. d). Assume that the quiver Q is bounded by the
ideal J in KQ such that if

∑
r kσωr is a relation in J such that for some r we

have ωr = ω′raω
′′
r (resp. ωr = ω′rbω

′′
r ), then ω′r = ω′′′r b (resp. ω′′r = aω′′′r ), and

assume a similar property for the arrows c, d (if one of them appears in a
relation, then it appears in the composition dc in this relation). We consider
the quiver Q′ which is obtained from Q by replacing S by the subquiver T
(of type (4.3), with vertices 1, 4 glued to A, C, respectively). Now we define
the ideal J ′ in KQ′. If w is a relation in I other than dc−ba, then we obtain
the relation w′ by replacing any composition dc, ba (if it appears in some
path in w) by the composition γβα. The generators of J ′ are the relations
w′ together with β2 − β, γα.

Then we have the following

Lemma 4.4. (a) The algebras KS/IS and KT/IT are isomorphic.
(b) There is a degeneration (see [G]) of the algebra KT/IT isomorphic

to the special biserial algebra KT/I, where I = (β2, γα).
(c) The algebras KQ/J and KQ′/J ′ are isomorphic.

Proof. (a) Let F : KS → KT be a K-algebra homomorphism mapping
the generators e1, e2, e3, e4, a, b, c, d of KS to ef , eg, eg−β, βα,−γβ, α−βα,
γ − γβ (in this order). Observe that F is a surjection. Hence the induced
homomorphism F : KS → KT/IT is a surjection and

F (dc− ba) = (γ − γβ)(α− βα) + γβ2α = γα− 2γβα+ 2γβ2α = 0

in KT/IT , since β2 = β and γα = 0. Therefore the induced homomorphism
F : KS/IS → KT/IT is an isomorphism.
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(b) If we set A = KT/(γα) and (following [G] and [CB]) %λ = β2 − λβ,
Aλ = A/(%λ), then one can check that A1 = Aλ for λ 6= 0 (by taking
β 7→ λβ), A0 = KS/IS (hence A0 is a degeneration of A1 = KT/IT ) and
one can see that A0 is special biserial (see [CB] for the definition).

Statement (c) is a consequence of (a) and of the constructions of the
quiver Q′ and the ideal J ′.

Lemma 4.5. The incidence algebras of the posets of the forms (3.1a),
(3.2a), (3.2b) are of tame representation type.

Proof. Without loss of generality, invoking Lemmas 2.1 and 2.2, we as-
sume that each of the posets Ti, Qi, Pi, Ri is of the form

(4.6)

• • •↗ ↘ ↗ ↘ ↗ ↘•−→• •−→ • −→• •−→ · · · −→• •−→•↘ ↗ ↘ ↗ ↘ ↗• • •
We denote the unique longest path in such a subquiver simply by Ti, Qi,
Pi, Ri. Now, for the quiver of the shape (3.1a) (resp. for the quiver (3.2a))
bounded by all commutativity relations of the squares of Ti, Qi, Pi, Ri,
we denote by B the corresponding bound quiver algebra. Hence, we have
A(Q) ∼= B/(βα − T1, δγ − T2) for the quiver Q of the shape (3.1a) (resp.
A(Q) ∼= B/(γβ − P1, βα− P2) for the quiver Q of the shape (3.2a)).

We define the functions f1, f2 : K → B by f1(λ) = βα − λT1, f2(λ) =
δγ − λT2 (resp. f1(λ) = γβ − λP1, f2(λ) = βα− λP2) in the notations from
Theorem B in [CB]. By [CB, Theorem B], the tameness of our incidence
algebras A(Q) ∼= A1 reduces to the tameness of the bound quiver algebras A0

with the quivers (3.1a), (3.2a) bounded by the relations: all commutativity
relations in squares from Ti, Qi, Pi, Ri and βα = 0, δγ = 0 for (3.1a)
(βα = 0, γβ = 0 for (3.2a)).

Now, in our quiver Q, we replace each square in Ti, Qi, Pi, Ri by the
subquiver T of the form (4.3) and obtain a new isomorphic algebra (Lemma
4.4(c)) having a special biserial degeneration (by iterating the modification
from Lemma 4.4(b)). Special biserial algebras are of tame representation
type [WW] (see also [DS2]). By [CB] our incidence algebras are of tame
representation type.

Lemma 4.7. The incidence algebras of posets of the forms (3.1b), (3.1c),
(3.1d), (3.1e) are of tame representation type.

Proof. Suppose A(Q) is the incidence algebra of a poset Q of the form
(3.1b). Without loss of a generality (Lemma 2.1), we may assume that the
subposet T (3.1b) is of the form



260 Z. LESZCZYŃSKI

(4.8)

• • •↗ ↘ ↗ ↘ ↗ ↘
α−→ β •−→ • −→• •−→ · · · −→• •−→ω

↘ ↗ ↘ ↗ ↘ ↗• • •
We choose the orientation of the arrow not lying on the path from the large
commutativity relation and we denote the vertices of Q′ = Q\{ω} as follows:

(4.9)
• β α b c e

d

The algebra A(Q) is a one-point coextension of A(Q′) by a thin module V
with SuppV = Q′ \ {e}. By computing the Auslander–Reiten transforma-
tion τ = DTr (see [ARS]) one can check that Supp(τV ) = b → c → e,
Supp(τ2V ) = c → d and τ 3V = Pe (a simple projective module), and the
corresponding part of the Auslander–Reiten quiver of A(Q′) is

(4.10)

Pe • • V↘ ↗ ↘ ↗ ↘ ↗
Pd→ Pc→ •→ •→ •→ •↘ ↗ ↘ ↗

Pb •
↘ ↗
Pα↗

Pβ
The corresponding vector space category (see [GR], [R1], [S2]) has the form

(4.11)

• •↗ ↘ ↗•→• •→ •→ •↘ ↗ ↘ ↗• •↘ ↗•↗•Ω

where Ω is the category Hom(A(Q′)-mod, Pβ) (see [S1], [S2] or [R1]). Ob-
serve that if, for an A(Q′)-module X, we have Hom(X,Pβ) 6= 0, then
SuppX ⊆ T \ {α, ω}. Denote the poset T \ {α, ω} by R. The tameness
of the poset C of type (3.2b)

(3.2b) x

•

•
y

•

•

P1

P2
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(with R1 = R2 = T ) implies the tameness of C \ {x}, which is a one-point
coextension of R1 ∪ R2 by a thin decomposable module V (with SuppV =
R1 ∪ R2). Denote the direct summands of V by V1, V2. The correspond-
ing vector space category is a disjoint union of two vector space categories
Hom(A(R1)-mod, V1), Hom(A(R2)-mod, V2), for which Hom(X1,X2) = 0
and Hom(X2,X1) = 0 for Xi ∈ ob Hom(A(Ri)-mod, Vi), i = 1, 2. Each of
these categories is equal to Ω, and their union is of tame representation
type. Hence Ω is a poset such that any of its finite subposets is a subposet
of (2.9) and hence the vector space category (4.11) is of tame representation
type. Therefore the poset (3.1b) is representation-tame. Similarly one can
prove the tameness of each of the posets in (3.1c)–(3.1e).

5. The proof of the main result. For algebras of polynomial growth
the Theorem is proved in [Sk3]. Thus it remains to prove it for incidence
algebras of non-polynomial growth.

The implication (i)⇒(ii) is known [P1] and (ii)⇒(iii) is a direct conse-
quence of the fact that the Tits form of any concealed algebra of wild type
is not weakly non-negative [K].

Assume condition (iii) and that A(Q) is of non-polynomial growth. Then,
by Proposition 3.4, either Q or Qop is of one of the forms (3.1), (3.2) and it
follows from Proposition 4.1 that A(Q) is of tame representation type.

The author is grateful to O. Kerner and C. M. Ringel for helpful remarks
and to T. Brüstle and W. Crawley-Boevey for a discussion concerning the
proof of Lemma 4.4.
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