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A NOTE ON L-SETS

BY

GERO FENDLER (Laudenbach)

Abstract. Answering a question of Pisier, posed in [10], we construct an L-set which
is not a finite union of translates of free sets.

Let G be a discrete group and A(G) = l2(G) ∗ l2(G) its Fourier algebra.
In [2] Bożejko defines a set E ⊂ G to be a Leinert set if any bounded
function with support in E is a bounded multiplier of the function algebra
A(G) (with respect to pointwise multiplication).

In a natural way A(G) is the pre-dual of the regular von Neumann alge-
bra. Hence it is defined when an operator on A(G) acts completely bound-
edly. Accordingly, a set E ⊂ G is called a strong 2-Leinert set if, in addition
to the above, pointwise multiplication by a bounded function with support
in E is completely bounded on A(G). (Originally Bożejko uses Herz–Schur
multipliers, but see [3].) For the reader’s convenience, among the various
possible characterisations of strong 2-Leinert sets we take as definition:

Definition. A set E ⊂ G is a strong 2-Leinert set if there exists C > 0
such that for all finitely supported functions a : E → B(H), where H is any
Hilbert space,
∑

s∈E
‖a(s)⊗ λ(s)‖B(l2(G,H))

≤ C max
{∥∥∥
(∑

s∈E
a(s)a(s)∗

)1/2∥∥∥
B(H)

,
∥∥∥
(∑

s∈E
a(s)∗a(s)

)1/2∥∥∥
B(H)

}
.

Here B(H) denotes the algebra of bounded operators on a Hilbert space H
and λ : G → B(l2(G)) denotes the left regular representation: λ(s)f(t) =
f(s−1t), f ∈ l2(G).

Taking, in the above, a : E → C to be scalar-valued, we see that on
the linear span of {λ(s) : s ∈E}, the norm operator and the Hilbert space
norm ‖·‖l2(G) are equivalent (see [9]). Those sets hence provide interesting
operator spaces.

On the other hand these sets are closely connected to the question of
unitarizability of uniformly bounded Hilbert space representations. It follows
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from [4] that any bounded function with support in a strong 2-Leinert set
E is a coefficient of a uniformly bounded Hilbert space representation of
the group. If E is infinite then in general this representation will not be
unitarizable (i.e. not equivalent to a unitary representation). An example of
this kind is given in [5]. Here sets satisfying Leinert’s condition

(∗) x−1
1 x2 . . . x

−1
2n−1x2n 6= e

∀n ∈ N and ∀x1, . . . , x2n ∈ E with xi 6= xi+1 for i = 1, . . . , 2n− 1

were used for this purpose. Those sets were the first examples of strong
2-Leinert sets, as discovered by Leinert [8], [9].

These sets were described by Akemann and Ostrand [1] to be left trans-
lates of sets which are algebraically free or unions of a free set and the group
identity.

Pisier, in [10], considers lacunary sets in non-commutative groups. An
L-set, in his language, is just a strong 2-Leinert set. Since elements in those
sets satisfy only few relations he conjectures that any L-set is a finite union
of left translates of free sets. We prepare to give a counterexample.

Theorem. Let (W,S) be a Coxeter system of large type, i.e. S generates
the group W with the presentation

s2 = e, (ss′)m(s,s′) = e, s 6= s′, s, s′ ∈ S,
and m(s, s′) > 2 for all s 6= s′ s, s′ ∈ S. Then S is an L-set.

Proof. In fact, it is proved by Szwarc [11] that for each w ∈ W the
set C(w) = {s ∈ S : l(ws) < l(w)} contains at most two elements. Here l
denotes the usual length with respect to the generating set S.

If one defines
Γ1 = {(u, v) ∈W ×W : vu ∈ S, l(u) = l(v)− 1},
Γ2 = {(u, v) ∈W ×W : vu ∈ S, l(u) = l(v) + 1}

then for any v ∈ W one has card{u ∈ W : (u, v) ∈ Γ1} ≤ 2 and for any
u ∈ W , similarly, card{v ∈ W : (u, v) ∈ Γ2} ≤ 2. Because for all elements
v in a Coxeter group one has l(vs) ∈ {l(v) + 1, l(v) − 1} for all s ∈ S, one
obtains R := {(u, v) : vu ∈ S} = Γ1 ∪ Γ2. Now, let a : S → B(H) be finitely
supported. Then
∑

s∈E
‖a(s)⊗ λ(s)‖B(l2(W,H))

= sup
{ ∑

s,t∈W×W
〈a(s)h(s−1t), g(t)〉H : ‖h‖l2(W,H) = ‖g‖l2(W,H) = 1

}

= sup
{ ∑

(s,t)∈R
〈a(ts)h(s), g(t)〉H : ‖h‖l2(W,H) = ‖g‖l2(W,H) = 1

}
.
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Hence we take h, g ∈ l2(W,H) of norm one and estimate
∣∣∣
∑

(s,t)∈Γ1

〈a(ts)h(s), g(t)〉H
∣∣∣

≤
( ∑

(s,t)∈Γ1

‖a(ts)h(s)‖2H
)1/2( ∑

(s,t)∈Γ1

‖g(t)‖2H
)1/2

≤
( ∑

(s,t)∈W×W
〈a(ts)∗a(ts)h(s), h(s)〉H

)1/2(
2
∑

t∈W
‖g(t)‖2H

)1/2

≤
√

2
(∑

s∈W

〈∑

t∈W
a(ts)∗a(ts)h(s), h(s)

〉
H

)1/2

≤
√

2
(∑

s∈W

∥∥∥
(∑

t∈W
a(ts)∗a(ts)

)1/2
h(s)

∥∥∥
2

H

)1/2

≤
√

2
∥∥∥
(∑

t∈W
a(t)∗a(t)

)1/2∥∥∥
B(H)

(∑

s∈W
‖h(s)‖2H

)1/2
.

The summation over Γ2 can be dealt with similarly, yielding
∑

s∈E
‖a(s)⊗ λ(s)‖B(l2(W,H))

≤
√

2
∥∥∥
(∑

s∈W
a(s)a(s)∗

)1/2∥∥∥
B(H)

+
√

2
∥∥∥
(∑

t∈W
a(t)∗a(t)

)1/2∥∥∥
B(H)

.

From this we obtain the requirement of the definition with the constant
C = 2

√
2.

Corollary. There exist L-sets which are not finite unions of left trans-
lates of free sets.

We just take a countable set of generators S of a Coxeter system of large
type, with m(s, s′) = 3 for all s 6= s′, s, s′ ∈ S. Then S cannot be a finite
union of translates of free sets, since none of its two-element subsets satisfies
Leinert’s condition (∗). This would be a contradiction to the relations of the
presentation.
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