VOL. 104

2006

NO. 1

A BASIS OF \mathbb{Z}_m

ΒY

MIN TANG (Nanjing and Wuhu) and YONG-GAO CHEN (Nanjing)

Abstract. Let $\sigma_A(n) = |\{(a, a') \in A^2 : a + a' = n\}|$, where $n \in \mathbb{N}$ and A is a subset of \mathbb{N} . Erdős and Turán conjectured that for any basis A of order 2 of \mathbb{N} , $\sigma_A(n)$ is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of \mathbb{N} for which $\sigma_A(n)$ is bounded in the square mean. In this paper, we show that there exists a positive integer m_0 such that, for any integer $m \ge m_0$, we have a set $A \subset \mathbb{Z}_m$ such that $A + A = \mathbb{Z}_m$ and $\sigma_A(\overline{n}) \le 768$ for all $\overline{n} \in \mathbb{Z}_m$.

1. Introduction. A subset A of \mathbb{N} is called a *basis of order* 2 if every sufficiently large natural number can be written as a sum of two numbers of A. For $n \in \mathbb{N}$ write $\sigma(n) = \sigma_A(n) = |\{(a, a') \in A^2 : a + a' = n\}|$. In 1941, using complex function theory, Erdős and Turán [3] proved that $\sigma(n)$ cannot become constant for large enough natural number n (Dirac [1] proved it more easily by elementary methods), and they conjectured that for any basis A of $\mathbb{N}, \sigma_A(n)$ is unbounded, which is called the *Erdős–Turán conjecture*. In 1954, by use of probabilistic methods, Erdős [2] proved the existence of a basis of \mathbb{N} for which $\sigma(n)$ satisfies

(1)
$$c_1 \log n < \sigma(n) < c_2 \log n$$

for all n with certain positive constants c_1, c_2 . It is still a challenging problem to give a constructive proof of (1). In 1990, Ruzsa constructed a basis of \mathbb{N} for which $\sigma(n)$ is bounded in the square mean.

In this paper, replacing \mathbb{N} by \mathbb{Z}_m , for $A \subseteq \mathbb{Z}_m$ and $\overline{n} \in \mathbb{Z}_m$, we define $\sigma_A(\overline{n}) = |\{(\overline{a}_1, \overline{a}_2) \in A^2 : \overline{a}_1 + \overline{a}_2 = \overline{n}\}|$, and obtain the following result:

THEOREM. There exists a positive integer m_0 such that, for any integer $m \ge m_0$, there is a set $A \subseteq \mathbb{Z}_m$ such that $A + A = \mathbb{Z}_m$ and $\sigma_A(\overline{n}) \le 768$ for all $\overline{n} \in \mathbb{Z}_m$.

Throughout this paper, let p be an odd prime, \mathbb{Z}_p be the set of residue classes mod p and $G = \mathbb{Z}_p^2$. Define $Q_k = \{(u, ku^2) : u \in \mathbb{Z}_p\} \subset G$ and let φ

²⁰⁰⁰ Mathematics Subject Classification: 11B13, 11B34.

Key words and phrases: Erdős-Turán conjecture, basis, congruence.

Research supported by NNSF of China, Grant No 10471064 and the SF of AnHui Province, Grant No 01046103.

be the mapping

 $\varphi: G \to \mathbb{Z}, \quad \varphi(a, b) = a + 2pb,$

where we identify the residues mod p with the integers $0 \le j \le p-1$.

2. Proofs

LEMMA 1 [4, Lemma 2.1]. For $g = (a, b) \in G$, and fixed $k, l \in \mathbb{Z}_p \setminus \{0\}$, consider the equation

$$g = x + y, \quad x \in Q_k, \ y \in Q_l.$$

If $k + l \neq 0$, this equation is solvable unless

$$\left(\frac{(k+l)b - kla^2}{p}\right) = -1,$$

and it has at most two solutions. If k + l = 0, it has at most one solution except for g = 0, when it has p solutions.

REMARK 1. For fixed $k, l \in \mathbb{Z}_p \setminus \{0\}$, if $k + l \neq 0$, then x + y = 0 with $x \in Q_k, y \in Q_l$ if and only if x = y = (0, 0).

LEMMA 2. Let p be prime for which p > 5 and $\left(\frac{2}{p}\right) = -1$, and put $B = Q_3 \cup Q_4 \cup Q_6$. Then B + B = G and $\sigma_B(g) \le 16$ for all $g \in G$.

Proof. Lemma 2.2 of [4] shows that $G = (Q_4 + Q_4) \cup (Q_3 + Q_6)$, which is stronger than the required B + B = G.

Now, we prove that $\sigma_B(g) \leq 16$ for all $g \in G$. For any $g = (a, b) \in G$, we have:

(a) If $b \neq 2a^2$, then $g \notin (Q_4 + Q_4) \cap (Q_3 + Q_6)$.

Indeed, if $g \in Q_4 + Q_4$ and $g \in Q_3 + Q_6$, then by Lemma 1, we have

$$\left(\frac{8b-16a^2}{p}\right) = 1, \quad \left(\frac{9b-18a^2}{p}\right) = 1,$$

thus

$$1 = \left(\frac{(8b - 16a^2)(9b - 18a^2)}{p}\right) = \left(\frac{2}{p}\right) = -1$$

Hence, there are at most eight sub-equations for g = x + y, $x, y \in B$, each of which has at most two solutions by Lemma 1; therefore $\sigma_B(g) \leq 16$.

(b) If $b = 2a^2$ and $a \neq 0$, then $g \notin Q_3 + Q_4$ and $g \notin Q_4 + Q_3$.

Since

$$\left(\frac{7b-12a^2}{p}\right) = \left(\frac{2a^2}{p}\right) = \left(\frac{2}{p}\right) = -1,$$

by Lemma 1, it is easy to conclude that $g \notin Q_3 + Q_4$ and $g \notin Q_4 + Q_3$.

Hence, there are at most seven sub-equations for g = x + y, $x, y \in B$; therefore $\sigma_B(g) \leq 14$.

- (c) If $b = 2a^2$ and a = 0, that is, $g = (0,0) \in G$. By Remark 1, $\sigma_B(g) = 1$.
- Therefore, we have $\sigma_B(g) \leq 16$ for all $g \in G$. This completes the proof of Lemma 2.

The following Lemma 3 belongs to Ruzsa [4, Lemma 3.1] (several printing mistakes have been corrected here).

LEMMA 3. Let p be prime for which p > 5 and $\left(\frac{2}{p}\right) = -1$, $B = Q_3 \cup Q_4 \cup Q_6$ and $B' = \varphi(B)$. Then $\sigma_{B'}(n) \leq 16$ for all n. Moreover, for every integer $0 \leq n < 2p^2$, at least one of the six numbers

$$n-p, n, n+p, n+2p^2-p, n+2p^2, n+2p^2+p$$

is in B' + B'.

LEMMA 4. Let p be prime for which p > 5 and $\left(\frac{2}{p}\right) = -1$. There exists a set $V \subset [0, 4p^2)$ of integers with $|V| \leq 12p$ such that $[4p^2, 6p^2) \subseteq V + V$ and $\sigma_V(n) \leq 256$ for all n.

Proof. Let B' be the set of Lemma 3, and put $V = B' + \{0, 2p^2 - p, 2p^2, 2p^2 + p\}$. Since $B' \subset [0, 2p^2 - p)$, we know $V \subset [0, 4p^2)$. And $|V| \leq 4|B'| = 4|B| \leq 12p$.

Since $V+V = B'+B'+\{0, 2p^2-p, 2p^2, 2p^2+p, 4p^2-2p, 4p^2-p, 4p^2, 4p^2+p, 4p^2+2p\}$, by Lemma 3, we have $[4p^2, 6p^2) \subseteq V+V$.

Now, V is the union of four translated copies of B'. Hence the equation n = u + v, $u, v \in V$, is composed of 16 equations for elements of B'. Thus

 $\max \sigma_V(n) \le 16 \max \sigma_{B'}(n) \le 16 \cdot 16 = 256.$

This completes the proof of Lemma 4.

Proof of Theorem. By the Prime Number Theorem in arithmetic progression, there exists a positive integer m_0 such that, for any integer $m \ge m_0$, we can choose a prime p with $\left(\frac{2}{p}\right) = -1$ such that

$$\sqrt{\frac{9}{16}m} \le p < \sqrt{\frac{5}{8}m}.$$

Let V be the set in the proof of Lemma 4 corresponding to the selected p. For a given integer $m (\geq m_0)$, consider the canonical map

$$\psi: \mathbb{Z} \to \mathbb{Z}_m, \quad n \mapsto \overline{n}.$$

Let $A = \psi(V)$. By the definition, we have $A \subseteq \mathbb{Z}_m$. Thus $A + A \subseteq \mathbb{Z}_m$. By Lemma 4, we have $[4p^2, 6p^2) \subseteq V + V$. Thus $\mathbb{Z}_m \subseteq A + A$. Hence, $A + A = \mathbb{Z}_m$.

For any $n \in [0, m-1]$, consider the equation

(2)
$$\overline{u} + \overline{v} = \overline{n}, \quad \overline{u}, \overline{v} \in A.$$

Let $\overline{u} = \psi(u)$ and $\overline{v} = \psi(v)$ with $u, v \in V$. Then

(3)
$$u+v \equiv n \pmod{m}, \quad u,v \in V.$$

Clearly, the number of solutions of (2) does not exceed that of (3). Since $0 \le u + v < 8p^2 < 5m$, we have

$$\{u+v \mid u, v \in V \text{ and } u+v \equiv n \pmod{m}\} \subseteq \{n, n+m, n+2m, n+3m, n+4m\}.$$

CASE 1: u + v = n. Since $0 \le n \le m - 1 \le 16p^2/9 - 1$ and $B' + B' \subset [0, 4p^2 - 2p)$, there is only one case, that is, $u, v \in B'$. By Lemma 3, we have

 $\max \sigma_V(n) \le \max \sigma_{B'}(n) \le 16.$

CASE 2: u + v = n + m. Since $n + m \leq 32p^2/9 - 1$ and $B' + B' \subset [0, 4p^2 - 2p)$, there are the following seven cases: (1) $u, v \in B'$; (2) $u \in B', v \in B' + 2p^2 - p$; (3) $u \in B', v \in B' + 2p^2$; (4) $u \in B', v \in B' + 2p^2 + p$; (5) $u \in B' + 2p^2 - p, v \in B'$; (6) $u \in B' + 2p^2, v \in B'$; (7) $u \in B' + 2p^2 + p, v \in B'$. Thus

$$\max \sigma_V(n+m) \le 7 \cdot 16 = 112.$$

CASE 3: u + v = n + 2m. Then

$$\max \sigma_V(n+2m) \le 16 \cdot 16 = 256.$$

CASE 4: u + v = n + 3m. Since $n + 3m \ge 24p^2/5 > 4p^2$ and $B' + B' \subset [0, 4p^2 - 2p)$, the case $u, v \in B'$ cannot hold. Thus

$$\max \sigma_V(n+3m) \le 15 \cdot 16 = 240.$$

CASE 5: u + v = n + 4m. Since $n + 4m \ge 32p^2/5 > 6p^2$ and $B' + B' \subset [0, 4p^2 - 2p)$, the following seven cases cannot hold: (1) $u, v \in B'$; (2) $u \in B'$, $v \in B' + 2p^2 - p$; (3) $u \in B', v \in B' + 2p^2$; (4) $u \in B', v \in B' + 2p^2 + p$; (5) $u \in B' + 2p^2 - p, v \in B'$; (6) $u \in B' + 2p^2, v \in B'$; (7) $u \in B' + 2p^2 + p$, $v \in B'$. Thus

$$\max \sigma_V(n+4m) \le 9 \cdot 16 = 144.$$

Hence, we have

$$\sigma_A(\overline{n}) \le \sum_{i=0}^4 \max \sigma_V(n+im) \le 16 + 112 + 256 + 240 + 144 = 768$$

for all $\overline{n} \in \mathbb{Z}_m$ $(m \ge m_0)$.

This completes the proof of the Theorem.

REMARK 2. Let [x] denote the integer part of the real number x. Comparing with the result of the Theorem, we have the following example. Put

$$V = \{0, 1, 2, \dots, \lfloor \sqrt{m} \rfloor\} \cup \{2\lfloor \sqrt{m} \rfloor, 3\lfloor \sqrt{m} \rfloor, \dots, (\lfloor \sqrt{m} \rfloor + 1)\lfloor \sqrt{m} \rfloor\}$$

Let ψ be the canonical map as defined in the proof of the Theorem. Let $A = \psi(V)$. Then A is a basis of \mathbb{Z}_m , $|A| \leq 2[\sqrt{m}] + 1$ and

 $\sup_{n \in \mathbb{Z}_m} \sigma_A(n) \ge \sigma_A([\sqrt{m}] + 1) \ge [\sqrt{m}].$

Acknowledgements. The authors would like to thank the referee for his/her detailed comments and helpful suggestions.

REFERENCES

- G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312–313.
- P. Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math. (Szeged) 15 (1954), 255–259.
- [3] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212–215.
- [4] I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145–151.

Department of Mathematics Anhui Normal University Wuhu 241000, China Department of Mathematics Nanjing Normal University Nanjing 210097, China E-mail: ygchen@njnu.edu.cn

Received 2 September 2004; revised 15 June 2005

(4494)