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A BASIS OF Zm

BY

MIN TANG (Nanjing and Wuhu) and YONG-GAO CHEN (Nanjing)

Abstract. Let σA(n) = |{(a, a
′) ∈ A2 : a + a′ = n}|, where n ∈ N and A is a

subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, σA(n) is
unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which σA(n)
is bounded in the square mean. In this paper, we show that there exists a positive integer
m0 such that, for any integer m ≥ m0, we have a set A ⊂ Zm such that A+A = Zm and
σA(n) ≤ 768 for all n ∈ Zm.

1. Introduction. A subset A of N is called a basis of order 2 if every
sufficiently large natural number can be written as a sum of two numbers
of A. For n ∈ N write σ(n) = σA(n) = |{(a, a′) ∈ A2 : a + a′ = n}|.
In 1941, using complex function theory, Erdős and Turán [3] proved that
σ(n) cannot become constant for large enough natural number n (Dirac [1]
proved it more easily by elementary methods), and they conjectured that
for any basis A of N, σA(n) is unbounded, which is called the Erdős–Turán
conjecture. In 1954, by use of probabilistic methods, Erdős [2] proved the
existence of a basis of N for which σ(n) satisfies

(1) c1 logn < σ(n) < c2 logn

for all n with certain positive constants c1, c2. It is still a challenging problem
to give a constructive proof of (1). In 1990, Ruzsa constructed a basis of N
for which σ(n) is bounded in the square mean.

In this paper, replacing N by Zm, for A ⊆ Zm and n ∈ Zm, we define
σA(n) = |{(a1, a2) ∈ A2 : a1 + a2 = n}|, and obtain the following result:
Theorem. There exists a positive integer m0 such that , for any integer

m ≥ m0, there is a set A ⊆ Zm such that A+A = Zm and σA(n) ≤ 768 for
all n ∈ Zm.

Throughout this paper, let p be an odd prime, Zp be the set of residue
classes mod p and G = Z

2
p. Define Qk = {(u, ku2) : u ∈ Zp} ⊂ G and let ϕ
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be the mapping
ϕ : G→ Z, ϕ(a, b) = a+ 2pb,

where we identify the residues mod p with the integers 0 ≤ j ≤ p− 1.

2. Proofs

Lemma 1 [4, Lemma 2.1]. For g = (a, b) ∈ G, and fixed k, l ∈ Zp \ {0},
consider the equation

g = x+ y, x ∈ Qk, y ∈ Ql.
If k + l 6= 0, this equation is solvable unless

(

(k + l)b− kla2
p

)

= −1,

and it has at most two solutions. If k + l = 0, it has at most one solution
except for g = 0, when it has p solutions.

Remark 1. For fixed k, l ∈ Zp \ {0}, if k + l 6= 0, then x + y = 0 with
x ∈ Qk, y ∈ Ql if and only if x = y = (0, 0).
Lemma 2. Let p be prime for which p > 5 and

(

2

p

)

= −1, and put
B = Q3 ∪Q4 ∪Q6. Then B +B = G and σB(g) ≤ 16 for all g ∈ G.
Proof. Lemma 2.2 of [4] shows that G = (Q4 +Q4) ∪ (Q3 +Q6), which

is stronger than the required B +B = G.
Now, we prove that σB(g) ≤ 16 for all g ∈ G. For any g = (a, b) ∈ G, we

have:

(a) If b 6= 2a2, then g 6∈ (Q4 +Q4) ∩ (Q3 +Q6).
Indeed, if g ∈ Q4 +Q4 and g ∈ Q3 +Q6, then by Lemma 1, we have

(

8b− 16a2
p

)

= 1,

(

9b− 18a2
p

)

= 1,

thus

1 =

(

(8b− 16a2)(9b− 18a2)
p

)

=

(

2

p

)

= −1.

Hence, there are at most eight sub-equations for g = x+ y, x, y ∈ B, each
of which has at most two solutions by Lemma 1; therefore σB(g) ≤ 16.
(b) If b = 2a2 and a 6= 0, then g 6∈ Q3 +Q4 and g 6∈ Q4 +Q3.
Since

(

7b− 12a2
p

)

=

(

2a2

p

)

=

(

2

p

)

= −1,

by Lemma 1, it is easy to conclude that g 6∈ Q3 +Q4 and g 6∈ Q4 +Q3.
Hence, there are at most seven sub-equations for g = x + y, x, y ∈ B;

therefore σB(g) ≤ 14.
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(c) If b = 2a2 and a = 0, that is, g = (0, 0) ∈ G. By Remark 1,
σB(g) = 1.

Therefore, we have σB(g) ≤ 16 for all g ∈ G.
This completes the proof of Lemma 2.

The following Lemma 3 belongs to Ruzsa [4, Lemma 3.1] (several printing
mistakes have been corrected here).

Lemma 3. Let p be prime for which p > 5 and
(

2

p

)

= −1, B = Q3 ∪
Q4 ∪ Q6 and B′ = ϕ(B). Then σB′(n) ≤ 16 for all n. Moreover , for every
integer 0 ≤ n < 2p2, at least one of the six numbers

n− p, n, n+ p, n+ 2p2 − p, n+ 2p2, n+ 2p2 + p
is in B′ +B′.

Lemma 4. Let p be prime for which p > 5 and
(

2

p

)

= −1. There exists
a set V ⊂ [0, 4p2) of integers with |V | ≤ 12p such that [4p2, 6p2) ⊆ V + V
and σV (n) ≤ 256 for all n.
Proof. Let B′ be the set of Lemma 3, and put V = B′ + {0, 2p2 − p,

2p2, 2p2 + p}. Since B′ ⊂ [0, 2p2 − p), we know V ⊂ [0, 4p2). And |V | ≤
4|B′| = 4|B| ≤ 12p.
Since V+V = B′+B′+{0, 2p2−p, 2p2, 2p2+p, 4p2−2p, 4p2−p, 4p2, 4p2+p,

4p2 + 2p}, by Lemma 3, we have [4p2, 6p2) ⊆ V + V .
Now, V is the union of four translated copies of B′. Hence the equation

n = u+ v, u, v ∈ V , is composed of 16 equations for elements of B′. Thus
maxσV (n) ≤ 16maxσB′(n) ≤ 16 · 16 = 256.

This completes the proof of Lemma 4.

Proof of Theorem. By the Prime Number Theorem in arithmetic pro-
gression, there exists a positive integerm0 such that, for any integerm ≥ m0,
we can choose a prime p with

(

2

p

)

= −1 such that
√

9

16
m ≤ p <

√

5

8
m.

Let V be the set in the proof of Lemma 4 corresponding to the selected p.
For a given integer m (≥ m0), consider the canonical map

ψ : Z→ Zm, n 7→ n.

Let A = ψ(V ). By the definition, we have A ⊆ Zm. Thus A + A ⊆ Zm.
By Lemma 4, we have [4p2, 6p2) ⊆ V + V . Thus Zm ⊆ A + A. Hence,
A+A = Zm.
For any n ∈ [0,m− 1], consider the equation

(2) u+ v = n, u, v ∈ A.
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Let u = ψ(u) and v = ψ(v) with u, v ∈ V . Then
(3) u+ v ≡ n (modm), u, v ∈ V.
Clearly, the number of solutions of (2) does not exceed that of (3). Since
0 ≤ u+ v < 8p2 < 5m, we have
{u+v | u, v ∈ V and u+v ≡ n (modm)} ⊆ {n, n+m,n+2m,n+3m,n+4m}.

Case 1: u + v = n. Since 0 ≤ n ≤ m − 1 ≤ 16p2/9 − 1 and B′ + B′ ⊂
[0, 4p2−2p), there is only one case, that is, u, v ∈ B′. By Lemma 3, we have

maxσV (n) ≤ maxσB′(n) ≤ 16.

Case 2: u + v = n + m. Since n + m ≤ 32p2/9 − 1 and B′ + B′ ⊂
[0, 4p2−2p), there are the following seven cases: (1)u, v ∈ B′; (2)u ∈ B′, v ∈
B′ + 2p2 − p; (3)u ∈ B′, v ∈ B′ + 2p2; (4)u ∈ B′, v ∈ B′ + 2p2 + p; (5)u ∈
B′ + 2p2 − p, v ∈ B′; (6)u ∈ B′ + 2p2, v ∈ B′; (7)u ∈ B′ + 2p2 + p, v ∈ B′.
Thus

maxσV (n+m) ≤ 7 · 16 = 112.

Case 3: u+ v = n+ 2m. Then

maxσV (n+ 2m) ≤ 16 · 16 = 256.

Case 4: u+ v = n+ 3m. Since n+ 3m ≥ 24p2/5 > 4p2 and B′ + B′ ⊂
[0, 4p2 − 2p), the case u, v ∈ B′ cannot hold. Thus

maxσV (n+ 3m) ≤ 15 · 16 = 240.

Case 5: u+ v = n+ 4m. Since n+ 4m ≥ 32p2/5 > 6p2 and B′ + B′ ⊂
[0, 4p2− 2p), the following seven cases cannot hold: (1)u, v ∈ B′; (2)u ∈ B′,
v ∈ B′ + 2p2 − p; (3)u ∈ B′, v ∈ B′ + 2p2; (4)u ∈ B′, v ∈ B′ + 2p2 + p;
(5)u ∈ B′ + 2p2 − p, v ∈ B′; (6)u ∈ B′ + 2p2, v ∈ B′; (7)u ∈ B′ + 2p2 + p,
v ∈ B′. Thus

maxσV (n+ 4m) ≤ 9 · 16 = 144.
Hence, we have

σA(n) ≤
4
∑

i=0

maxσV (n+ im) ≤ 16 + 112 + 256 + 240 + 144 = 768

for all n ∈ Zm (m ≥ m0).
This completes the proof of the Theorem.

Remark 2. Let [x] denote the integer part of the real number x. Com-
paring with the result of the Theorem, we have the following example. Put

V = {0, 1, 2, . . . , [
√
m]} ∪ {2[

√
m], 3[

√
m], . . . , ([

√
m] + 1)[

√
m]}.
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Let ψ be the canonical map as defined in the proof of the Theorem. Let
A = ψ(V ). Then A is a basis of Zm, |A| ≤ 2[

√
m] + 1 and

sup
n∈Zm

σA(n) ≥ σA([
√
m] + 1) ≥ [

√
m].
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