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A BASIS OF Zn,

BY

MIN TANG (Nanjing and Wuhu) and YONG-GAO CHEN (Nanjing)

Abstract. Let o4(n) = |{(a,a’) € A% : a +d’ = n}|, where n € N and A is a
subset of N. Erdés and Turdn conjectured that for any basis A of order 2 of N, g 4(n) is
unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which o 4(n)
is bounded in the square mean. In this paper, we show that there exists a positive integer
myg such that, for any integer m > mg, we have a set A C Zy, such that A+ A = Z,, and
o4(m) <768 for all @ € Z,.

1. Introduction. A subset A of N is called a basis of order 2 if every
sufficiently large natural number can be written as a sum of two numbers
of A. For n € N write o(n) = oa(n) = [{(a,d’) € A% : a+d = n}|
In 1941, using complex function theory, Erdés and Turdn [3] proved that
o(n) cannot become constant for large enough natural number n (Dirac [1]
proved it more easily by elementary methods), and they conjectured that
for any basis A of N,o4(n) is unbounded, which is called the Erdds—Turdn
conjecture. In 1954, by use of probabilistic methods, Erdds [2] proved the
existence of a basis of N for which o(n) satisfies

(1) c1logn < o(n) < calogn

for all n with certain positive constants c1, co. It is still a challenging problem
to give a constructive proof of (1). In 1990, Ruzsa constructed a basis of N
for which o(n) is bounded in the square mean.

In this paper, replacing N by Z,,, for A C Z,, and € Z,,, we define
oa(m) = |{(a@1,a) € A% : @ + @z = n}|, and obtain the following result:

THEOREM. There exists a positive integer mqg such that, for any integer
m > my, there is a set A C Zy, such that A+ A = Zy, and o4(7) < 768 for
allm € Ly,

Throughout this paper, let p be an odd prime, Z, be the set of residue
classes mod p and G = Zg. Define Qy, = {(u, ku?) : u € Z,} C G and let ¢
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be the mapping
p:G—Z, pla,b)=a+2pb,

where we identify the residues mod p with the integers 0 < 57 < p — 1.

2. Proofs

LEMMA 1 [4, Lemma 2.1]. For g = (a,b) € G, and fized k,l € Z, \ {0},
consider the equation

g=z+y, TE€Qryec
If k+1+#0, this equation is solvable unless

<(k+ )b — k:la2> .

p
and it has at most two solutions. If k +1 = 0, it has at most one solution
except for g = 0, when it has p solutions.
REMARK 1. For fixed k,l € Z, \ {0}, if K + 1 # 0, then  + y = 0 with
x € Qr, y € Q if and only if z =y = (0,0).
LEMMA 2. Let p be prime for which p > 5 and (%) = —1, and put
B=Q3UQ4UQs. Then B+ B =G and og(g) < 16 for all g € G.

Proof. Lemma 2.2 of [4] shows that G = (Q4 + Q4) U (Q3 + Q¢), which
is stronger than the required B+ B = G.

Now, we prove that op(g) < 16 for all g € G. For any g = (a,b) € G, we
have:

(a) If b+# 2a®, then g & (Qa + Q) N (Q3 + Qo).
Indeed, if g € Q4 + Q4 and g € Q3 + Qg, then by Lemma 1, we have

— 1642 — 18a?
<8b 6a > 1, (Qb Sa ) 1,
p p

- <(8b— 16a2);9b— 18a2)> _ (z) _

Hence, there are at most eight sub-equations for ¢ = x + vy, x,y € B, each
of which has at most two solutions by Lemma 1; therefore op(g) < 16.

(b) If b=2a® and a # 0, then g & Qs + Q4 and g € Q4 + Q3.

Since
(222) - (%) 2) -
P P P ’

by Lemma 1, it is easy to conclude that ¢ € Q3 + Q4 and g € Q4 + Q3.
Hence, there are at most seven sub-equations for ¢ = ¢z +y, x,y € B;
therefore op(g) < 14.

thus
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(c) If b = 2a% and a = 0, that is, g = (0,0) € G. By Remark 1,
op(g) = 1.

Therefore, we have op(g) < 16 for all g € G.

This completes the proof of Lemma 2.

The following Lemma 3 belongs to Ruzsa [4, Lemma 3.1] (several printing
mistakes have been corrected here).

LEMMA 3. Let p be prime for which p > 5 and (%) =—-1, B=Q3U
Q41U Qs and B' = ¢(B). Then op/(n) < 16 for all n. Moreover, for every
integer 0 < n < 2p?, at least one of the siz numbers

n—p, n, n+p, n+2p° —p, n+2p°, n+2p*+p
is in B'+ B’.

LEMMA 4. Let p be prime for which p > 5 and (%) = —1. There exists
a set V C [0,4p?) of integers with |V| < 12p such that [4p?,6p?) CV +V
and oy (n) < 256 for all n.

Proof. Let B’ be the set of Lemma 3, and put V = B’ + {0,2p? — p,
2p?, 2p® + p}. Since B’ C [0,2p* — p), we know V C [0,4p?). And |V| <
4|B'| = 4|B| < 12p.

Since V+V = B'+B'+{0,2p?—p, 2p?, 2p*+p, 4p> —2p, 4p>—p, 4p%, 4p*+p,
4p? + 2p}, by Lemma 3, we have [4p?,6p?) CV + V.

Now, V is the union of four translated copies of B’. Hence the equation
n=u+wv, u,v €V, is composed of 16 equations for elements of B’. Thus

max oy (n) < 16maxop/(n) < 16-16 = 256.
This completes the proof of Lemma 4.

Proof of Theorem. By the Prime Number Theorem in arithmetic pro-
gression, there exists a positive integer mg such that, for any integer m > my,

we can choose a prime p with (%) = —1 such that

9 <p< 5
Vie™ =P~ Vg™
Let V be the set in the proof of Lemma 4 corresponding to the selected p.
For a given integer m (> my), consider the canonical map
V7l — Ly, NN
Let A = (V). By the definition, we have A C Z,,. Thus A+ A C Z,.
By Lemma 4, we have [4p? 6p?>) C V + V. Thus Z,, C A + A. Hence,
A+ A=7,.
For any n € [0,m — 1], consider the equation

(2) U+T=m T,0E A
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Let w = ¢(u) and ¥ = ¢ (v) with u,v € V. Then
(3) u+v=n(modm), wu,veV.

Clearly, the number of solutions of (2) does not exceed that of (3). Since
0 <u+wv < 8p? < 5m, we have

{u4v | u,v € V and u+v = n (modm)} C {n, n+m, n+2m,n+3m, n+4m}.

CASE l: u+v=mn. Since0<n<m-1<16p*/9—1and B’ + B’ C
[0, 4p? — 2p), there is only one case, that is, u,v € B’. By Lemma 3, we have

max oy (n) < maxop(n) < 16.

CASE 2: u+v = n+m. Since n+m < 32p?/9 — 1 and B’ + B’ C
[0, 4p% —2p), there are the following seven cases: (1) u,v € B'; (2)u € B, v €
B +2p*—p; 3)ue B,ve B +2p* (Ahue B, veB +2p>+p; (5lue
B +2p*—p,veB; (6)uec B +2p*,ve B (T)ue B +2p*>+p,veB.
Thus
maxoy(n+m) <7-16 = 112.

CASE 3: u+v=n+2m. Then
max oy (n+2m) < 16 - 16 = 256.

CASE 4: u+v =n + 3m. Since n + 3m > 24p?/5 > 4p? and B' + B’ C
[0, 4p? — 2p), the case u,v € B’ cannot hold. Thus

max oy (n 4 3m) < 15 - 16 = 240.

CASE 5: u+v = n + 4m. Since n + 4m > 32p%/5 > 6p? and B' + B’ C
[0, 4p? — 2p), the following seven cases cannot hold: (1) u,v € B'; (2)u € B,
veEB +2p2—p;, 3)ue B,ve B +2p% (4u € B,ve B +2p+p;
(5)u € B' +2p* —p,veE B (6)uc B +2p?, ve B (Tue B +2p?+p,
v € B’. Thus
maxoy(n+4m) <9-16 = 144.

Hence, we have
4
oA(m) <Y maxoy(n+im) < 16+ 112 + 256 + 240 + 144 = 768
i=0
for all m € Zy, (m > my).
This completes the proof of the Theorem.

REMARK 2. Let [z] denote the integer part of the real number x. Com-
paring with the result of the Theorem, we have the following example. Put

V={0,1,2,....[vVm]} U{2[v/m], 3[vm],.... ([vim] + 1)[vm]}.
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Let 1 be the canonical map as defined in the proof of the Theorem. Let
A =1(V). Then A is a basis of Z,,, |A| < 2[y/m]+ 1 and
sup oa(n) = oa([ym] +1) > [V
TLGZm
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