COLLOQUIUM MATHEMATICUM

A BASIS OF \mathbb{Z}_{m}

BY
MIN TANG (Nanjing and Wuhu) and YONG-GAO CHEN (Nanjing)

Abstract

Let $\sigma_{A}(n)=\left|\left\{\left(a, a^{\prime}\right) \in A^{2}: a+a^{\prime}=n\right\}\right|$, where $n \in \mathbb{N}$ and A is a subset of \mathbb{N}. Erdős and Turán conjectured that for any basis A of order 2 of $\mathbb{N}, \sigma_{A}(n)$ is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of \mathbb{N} for which $\sigma_{A}(n)$ is bounded in the square mean. In this paper, we show that there exists a positive integer m_{0} such that, for any integer $m \geq m_{0}$, we have a set $A \subset \mathbb{Z}_{m}$ such that $A+A=\mathbb{Z}_{m}$ and $\sigma_{A}(\bar{n}) \leq 768$ for all $\bar{n} \in \mathbb{Z}_{m}$.

1. Introduction. A subset A of \mathbb{N} is called a basis of order 2 if every sufficiently large natural number can be written as a sum of two numbers of A. For $n \in \mathbb{N}$ write $\sigma(n)=\sigma_{A}(n)=\left|\left\{\left(a, a^{\prime}\right) \in A^{2}: a+a^{\prime}=n\right\}\right|$. In 1941, using complex function theory, Erdős and Turán [3] proved that $\sigma(n)$ cannot become constant for large enough natural number n (Dirac [1] proved it more easily by elementary methods), and they conjectured that for any basis A of $\mathbb{N}, \sigma_{A}(n)$ is unbounded, which is called the Erdős-Turán conjecture. In 1954, by use of probabilistic methods, Erdős [2] proved the existence of a basis of \mathbb{N} for which $\sigma(n)$ satisfies

$$
\begin{equation*}
c_{1} \log n<\sigma(n)<c_{2} \log n \tag{1}
\end{equation*}
$$

for all n with certain positive constants c_{1}, c_{2}. It is still a challenging problem to give a constructive proof of (1). In 1990, Ruzsa constructed a basis of \mathbb{N} for which $\sigma(n)$ is bounded in the square mean.

In this paper, replacing \mathbb{N} by \mathbb{Z}_{m}, for $A \subseteq \mathbb{Z}_{m}$ and $\bar{n} \in \mathbb{Z}_{m}$, we define $\sigma_{A}(\bar{n})=\left|\left\{\left(\bar{a}_{1}, \bar{a}_{2}\right) \in A^{2}: \bar{a}_{1}+\bar{a}_{2}=\bar{n}\right\}\right|$, and obtain the following result:

TheOrem. There exists a positive integer m_{0} such that, for any integer $m \geq m_{0}$, there is a set $A \subseteq \mathbb{Z}_{m}$ such that $A+A=\mathbb{Z}_{m}$ and $\sigma_{A}(\bar{n}) \leq 768$ for all $\bar{n} \in \mathbb{Z}_{m}$.

Throughout this paper, let p be an odd prime, \mathbb{Z}_{p} be the set of residue classes $\bmod p$ and $G=\mathbb{Z}_{p}^{2}$. Define $Q_{k}=\left\{\left(u, k u^{2}\right): u \in \mathbb{Z}_{p}\right\} \subset G$ and let φ

[^0]be the mapping
$$
\varphi: G \rightarrow \mathbb{Z}, \quad \varphi(a, b)=a+2 p b
$$
where we identify the residues $\bmod p$ with the integers $0 \leq j \leq p-1$.

2. Proofs

Lemma 1 [4, Lemma 2.1]. For $g=(a, b) \in G$, and fixed $k, l \in \mathbb{Z}_{p} \backslash\{0\}$, consider the equation

$$
g=x+y, \quad x \in Q_{k}, y \in Q_{l}
$$

If $k+l \neq 0$, this equation is solvable unless

$$
\left(\frac{(k+l) b-k l a^{2}}{p}\right)=-1
$$

and it has at most two solutions. If $k+l=0$, it has at most one solution except for $g=0$, when it has p solutions.

Remark 1. For fixed $k, l \in \mathbb{Z}_{p} \backslash\{0\}$, if $k+l \neq 0$, then $x+y=0$ with $x \in Q_{k}, y \in Q_{l}$ if and only if $x=y=(0,0)$.

Lemma 2. Let p be prime for which $p>5$ and $\left(\frac{2}{p}\right)=-1$, and put $B=Q_{3} \cup Q_{4} \cup Q_{6}$. Then $B+B=G$ and $\sigma_{B}(g) \leq 16$ for all $g \in G$.

Proof. Lemma 2.2 of [4] shows that $G=\left(Q_{4}+Q_{4}\right) \cup\left(Q_{3}+Q_{6}\right)$, which is stronger than the required $B+B=G$.

Now, we prove that $\sigma_{B}(g) \leq 16$ for all $g \in G$. For any $g=(a, b) \in G$, we have:
(a) If $b \neq 2 a^{2}$, then $g \notin\left(Q_{4}+Q_{4}\right) \cap\left(Q_{3}+Q_{6}\right)$.

Indeed, if $g \in Q_{4}+Q_{4}$ and $g \in Q_{3}+Q_{6}$, then by Lemma 1 , we have

$$
\left(\frac{8 b-16 a^{2}}{p}\right)=1, \quad\left(\frac{9 b-18 a^{2}}{p}\right)=1
$$

thus

$$
1=\left(\frac{\left(8 b-16 a^{2}\right)\left(9 b-18 a^{2}\right)}{p}\right)=\left(\frac{2}{p}\right)=-1
$$

Hence, there are at most eight sub-equations for $g=x+y, x, y \in B$, each of which has at most two solutions by Lemma 1 ; therefore $\sigma_{B}(g) \leq 16$.
(b) If $b=2 a^{2}$ and $a \neq 0$, then $g \notin Q_{3}+Q_{4}$ and $g \notin Q_{4}+Q_{3}$.

Since

$$
\left(\frac{7 b-12 a^{2}}{p}\right)=\left(\frac{2 a^{2}}{p}\right)=\left(\frac{2}{p}\right)=-1
$$

by Lemma 1 , it is easy to conclude that $g \notin Q_{3}+Q_{4}$ and $g \notin Q_{4}+Q_{3}$.
Hence, there are at most seven sub-equations for $g=x+y, x, y \in B$; therefore $\sigma_{B}(g) \leq 14$.
(c) If $b=2 a^{2}$ and $a=0$, that is, $g=(0,0) \in G$. By Remark 1, $\sigma_{B}(g)=1$.
Therefore, we have $\sigma_{B}(g) \leq 16$ for all $g \in G$.
This completes the proof of Lemma 2.
The following Lemma 3 belongs to Ruzsa [4, Lemma 3.1] (several printing mistakes have been corrected here).

Lemma 3. Let p be prime for which $p>5$ and $\left(\frac{2}{p}\right)=-1, B=Q_{3} \cup$ $Q_{4} \cup Q_{6}$ and $B^{\prime}=\varphi(B)$. Then $\sigma_{B^{\prime}}(n) \leq 16$ for all n. Moreover, for every integer $0 \leq n<2 p^{2}$, at least one of the six numbers

$$
n-p, n, n+p, n+2 p^{2}-p, n+2 p^{2}, n+2 p^{2}+p
$$

is in $B^{\prime}+B^{\prime}$.
Lemma 4. Let p be prime for which $p>5$ and $\left(\frac{2}{p}\right)=-1$. There exists a set $V \subset\left[0,4 p^{2}\right)$ of integers with $|V| \leq 12 p$ such that $\left[4 p^{2}, 6 p^{2}\right) \subseteq V+V$ and $\sigma_{V}(n) \leq 256$ for all n.

Proof. Let B^{\prime} be the set of Lemma 3, and put $V=B^{\prime}+\left\{0,2 p^{2}-p\right.$, $\left.2 p^{2}, 2 p^{2}+p\right\}$. Since $B^{\prime} \subset\left[0,2 p^{2}-p\right)$, we know $V \subset\left[0,4 p^{2}\right)$. And $|V| \leq$ $4\left|B^{\prime}\right|=4|B| \leq 12 p$.

Since $V+V=B^{\prime}+B^{\prime}+\left\{0,2 p^{2}-p, 2 p^{2}, 2 p^{2}+p, 4 p^{2}-2 p, 4 p^{2}-p, 4 p^{2}, 4 p^{2}+p\right.$, $\left.4 p^{2}+2 p\right\}$, by Lemma 3 , we have $\left[4 p^{2}, 6 p^{2}\right) \subseteq V+V$.

Now, V is the union of four translated copies of B^{\prime}. Hence the equation $n=u+v, u, v \in V$, is composed of 16 equations for elements of B^{\prime}. Thus

$$
\max \sigma_{V}(n) \leq 16 \max \sigma_{B^{\prime}}(n) \leq 16 \cdot 16=256
$$

This completes the proof of Lemma 4.
Proof of Theorem. By the Prime Number Theorem in arithmetic progression, there exists a positive integer m_{0} such that, for any integer $m \geq m_{0}$, we can choose a prime p with $\left(\frac{2}{p}\right)=-1$ such that

$$
\sqrt{\frac{9}{16} m} \leq p<\sqrt{\frac{5}{8} m}
$$

Let V be the set in the proof of Lemma 4 corresponding to the selected p. For a given integer $m\left(\geq m_{0}\right)$, consider the canonical map

$$
\psi: \mathbb{Z} \rightarrow \mathbb{Z}_{m}, \quad n \mapsto \bar{n}
$$

Let $A=\psi(V)$. By the definition, we have $A \subseteq \mathbb{Z}_{m}$. Thus $A+A \subseteq \mathbb{Z}_{m}$. By Lemma 4, we have $\left[4 p^{2}, 6 p^{2}\right) \subseteq V+V$. Thus $\mathbb{Z}_{m} \subseteq A+A$. Hence, $A+A=\mathbb{Z}_{m}$.

For any $n \in[0, m-1]$, consider the equation

$$
\begin{equation*}
\bar{u}+\bar{v}=\bar{n}, \quad \bar{u}, \bar{v} \in A \tag{2}
\end{equation*}
$$

Let $\bar{u}=\psi(u)$ and $\bar{v}=\psi(v)$ with $u, v \in V$. Then

$$
\begin{equation*}
u+v \equiv n(\bmod m), \quad u, v \in V \tag{3}
\end{equation*}
$$

Clearly, the number of solutions of (2) does not exceed that of (3). Since $0 \leq u+v<8 p^{2}<5 m$, we have
$\{u+v \mid u, v \in V$ and $u+v \equiv n(\bmod m)\} \subseteq\{n, n+m, n+2 m, n+3 m, n+4 m\}$.
CASE 1: $u+v=n$. Since $0 \leq n \leq m-1 \leq 16 p^{2} / 9-1$ and $B^{\prime}+B^{\prime} \subset$ $\left[0,4 p^{2}-2 p\right)$, there is only one case, that is, $u, v \in B^{\prime}$. By Lemma 3, we have

$$
\max \sigma_{V}(n) \leq \max \sigma_{B^{\prime}}(n) \leq 16
$$

CASE 2: $u+v=n+m$. Since $n+m \leq 32 p^{2} / 9-1$ and $B^{\prime}+B^{\prime} \subset$ $\left[0,4 p^{2}-2 p\right)$, there are the following seven cases: (1) $u, v \in B^{\prime} ;(2) u \in B^{\prime}, v \in$ $B^{\prime}+2 p^{2}-p ;(3) u \in B^{\prime}, v \in B^{\prime}+2 p^{2}$; (4) $u \in B^{\prime}, v \in B^{\prime}+2 p^{2}+p ;$ (5) $u \in$ $B^{\prime}+2 p^{2}-p, v \in B^{\prime} ;(6) u \in B^{\prime}+2 p^{2}, v \in B^{\prime} ;(7) u \in B^{\prime}+2 p^{2}+p, v \in B^{\prime}$. Thus

$$
\max \sigma_{V}(n+m) \leq 7 \cdot 16=112
$$

Case 3: $u+v=n+2 m$. Then

$$
\max \sigma_{V}(n+2 m) \leq 16 \cdot 16=256
$$

CASE 4: $u+v=n+3 m$. Since $n+3 m \geq 24 p^{2} / 5>4 p^{2}$ and $B^{\prime}+B^{\prime} \subset$ [$0,4 p^{2}-2 p$), the case $u, v \in B^{\prime}$ cannot hold. Thus

$$
\max \sigma_{V}(n+3 m) \leq 15 \cdot 16=240
$$

CASE 5: $u+v=n+4 m$. Since $n+4 m \geq 32 p^{2} / 5>6 p^{2}$ and $B^{\prime}+B^{\prime} \subset$ $\left[0,4 p^{2}-2 p\right)$, the following seven cases cannot hold: (1) $u, v \in B^{\prime}$; (2) $u \in B^{\prime}$, $v \in B^{\prime}+2 p^{2}-p ;(3) u \in B^{\prime}, v \in B^{\prime}+2 p^{2} ;(4) u \in B^{\prime}, v \in B^{\prime}+2 p^{2}+p ;$ (5) $u \in B^{\prime}+2 p^{2}-p, v \in B^{\prime}$; (6) $u \in B^{\prime}+2 p^{2}, v \in B^{\prime}$; (7) $u \in B^{\prime}+2 p^{2}+p$, $v \in B^{\prime}$. Thus

$$
\max \sigma_{V}(n+4 m) \leq 9 \cdot 16=144
$$

Hence, we have

$$
\sigma_{A}(\bar{n}) \leq \sum_{i=0}^{4} \max \sigma_{V}(n+i m) \leq 16+112+256+240+144=768
$$

for all $\bar{n} \in \mathbb{Z}_{m}\left(m \geq m_{0}\right)$.
This completes the proof of the Theorem.
Remark 2. Let $[x]$ denote the integer part of the real number x. Comparing with the result of the Theorem, we have the following example. Put

$$
V=\{0,1,2, \ldots,[\sqrt{m}]\} \cup\{2[\sqrt{m}], 3[\sqrt{m}], \ldots,([\sqrt{m}]+1)[\sqrt{m}]\}
$$

Let ψ be the canonical map as defined in the proof of the Theorem. Let $A=\psi(V)$. Then A is a basis of $\mathbb{Z}_{m},|A| \leq 2[\sqrt{m}]+1$ and

$$
\sup _{n \in \mathbb{Z}_{m}} \sigma_{A}(n) \geq \sigma_{A}([\sqrt{m}]+1) \geq[\sqrt{m}]
$$

Acknowledgements. The authors would like to thank the referee for his/her detailed comments and helpful suggestions.

REFERENCES

[1] G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312-313.
[2] P. Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math. (Szeged) 15 (1954), 255-259.
[3] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[4] I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145-151.
Department of Mathematics
Anhui Normal University
Wuhu 241000, China

Department of Mathematics
Nanjing Normal University
Nanjing 210097, China
E-mail: ygchen@njnu.edu.cn

[^0]: 2000 Mathematics Subject Classification: 11B13, 11B34.
 Key words and phrases: Erdős-Turán conjecture, basis, congruence.
 Research supported by NNSF of China, Grant No 10471064 and the SF of AnHui Province, Grant No 01046103.

