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ON THE SPECTRAL MULTIPLICITY OF

A DIRECT SUM OF OPERATORS

BY

M. T. KARAEV (Isparta)

Abstract. We calculate the spectral multiplicity of the direct sum T⊕A of a weighted
shift operator T on a Banach space Y which is continuously embedded in l

p and a suitable
bounded linear operator A on a Banach space X.

1. Introduction. Let L(X) be the Banach algebra of all bounded linear
operators on a Banach space X. A subspace E ⊂ X is called a cyclic subspace

of an operator A ∈ L(X) if span{AnE : n ≥ 0} = X, where span denotes
closed linear hull. A vector x ∈ X is called cyclic (x ∈ Cyc(A)) if span{Anx :
n ≥ 0} = X. The spectral multiplicity µ(A) of A ∈ L(X) is

µ(A) := inf{dim E : span{AnE : n ≥ 0} = X},

a nonnegative integer or ∞. Clearly, A is cyclic if and only if µ(A) = 1.
The spectral multiplicity is an important invariant of operators, and it

plays a key role in operator theory and its applications. Clearly, the notion
of cyclic subspace is important in connection with the general problem of
existence of a nontrivial invariant subspace, because an operator A ∈ L(X)
has no nontrivial invariant subspace if and only if x ∈ Cyc(A) for every x ∈
X\{0}. Cyclic vectors are important in weighted polynomial approximation
theory. (More details can be found in [6].)

In this article we calculate the spectral multiplicity of the direct sum
T ⊕ A, where T is a weighted shift operator on a Banach space Y contin-
uously embedded in lp, and A a suitable bounded operator on a Banach
space X (Section 2). Note that the main result of Section 2, Theorem 1,
generalizes and strengthens some results of the author in [3, Theorem], [4,
Theorem 3] and [5, Theorem 3].

First we introduce some notations and definitions. If {ei}i≥0 is a sequence
of vectors in a Banach space X, we say that {ei}i≥0 is uniformly minimal if
there exists a constant δ > 0 such that

d := inf
i≥0

dist{ei/‖ei‖, span{ej : j 6= i}} > 0.
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It is clear that if {ei}i≥0 is a basis in X, then {ei}i≥0 is uniformly minimal,
and therefore for any x =

∑∞
n=0 x(n)en ∈ X,

(1) ‖x(n)en‖X ≤ c‖x‖X

for all n ≥ 0 and some c > 0 (actually, one can take c = 1/d).

A weighted shift operator T in a Banach space X with basis {en}n≥0 is
defined by

Ten = λnen+1, n ≥ 0,

where {λn}n≥0 is a bounded sequence of complex numbers. Obviously, µ(T )
= 1.

2. The spectral multiplicity of T ⊕ A. Let A ⊕ B denote the direct
sum of bounded linear operators A and B acting in Banach spaces X and Y ,
respectively,

(A ⊕ B)(x ⊕ y) = Ax ⊕ By, x ⊕ y ∈ X ⊕ Y.

It is well known that

(2) max{µ(A), µ(B)} ≤ µ(A ⊕ B) ≤ µ(A) + µ(B).

One might try to characterize the extremes, that is: When µ(A ⊕ B) =
max{µ(A), µ(B)}? When µ(A ⊕ B) = µ(A) + µ(B)? It is well known that
µ(A ⊕ B) = max{µ(A), µ(B)} if the spectra σ(A) and σ(B) are well sepa-
rated, i.e., their polynomially convex hulls are disjoint (see, e.g., [7]).

In this section we shall be interested in the equality µ(A⊕B) = µ(A) +
µ(B). In this connection we shall prove the following theorem which gen-
eralizes and strengthens some results in [3–5]. (More general results related
to the equality µ(A ⊕ B) = µ(A) + µ(B) can be found, for instance, in [2,
7–10]).

Theorem 1. Let Y be a Banach space with a basis {en}n≥0 of unit

vectors, which is continuously embedded in lp for some p, 1 ≤ p ≤ ∞. Let

{λn}n≥0 denote a bounded sequence of nonzero complex numbers λn ∈ C, and

let T be the corresponding weighted shift operator acting in Y , Ten = λnen+1,
n ≥ 0. Let X be a separable Banach space and A ∈ L(X). Suppose that:

(i)
∑

n,m≥N |wn+m/wnwm| =: ΩN < ∞ for some N ≥ 0, where wn :=
λ0λ1 · · ·λn−1, w0 := 1.

(ii)
∑∞

n=0(‖A
nx‖X/‖Tne0‖Y )q =: Cx < ∞ for all x ∈ X, where 1/p +

1/q = 1.
(iii) ‖en+m‖Y ≤ c‖en‖Y ‖em‖Y for all n, m ≥ 0 and for some c ≥ 0.

Then µ(T ⊕ A) = µ(T ) + µ(A) = 1 + µ(A).
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The proof of the theorem uses the following product:

(3) f ⊛̃ g :=
∑

n,m≥0

wn+m

wnwm
f(n)g(m)en+m,

where f =
∑∞

n=0 f(n)en, g =
∑∞

n=0 g(n)en ∈ Y .

Lemma 2. (Y, ⊛̃) is a Banach algebra with the unit f = e0 and M(Y, ⊛̃)
= {0}, i.e., its maximal ideal space M(Y, ⊛̃) consists of one homomorphism

f 7→ f(0).

Proof. First we prove that

(4) ‖f ⊛̃ g‖ ≤ C‖f‖‖g‖

for all f, g ∈ Y and for some number C > 0, not depending on f, g.

Note that if N = 0, then (4) is immediate from (3), and so assume that
N ≥ 1. By setting Rn(f) :=

∑
k≥n f(k)ek, and using (i) and the inequalities

‖Rn(T kf)‖ ≤ ‖T kf‖, k = 0, 1, . . . , N − 1,

‖T k‖ ≤ sup{|λnλn+1 · · ·λn+k−1|}
∞
n=1 =: Λk,

we have

f ⊛̃ g =
∑

n,m≥0

wn+m

wnwm
f(n)g(m)en+m

= f(0)

∞∑

m=0

g(m)em +
f(1)

w1

∞∑

m=0

g(m)
wm+1

wm
em+1

+
f(2)

w2

∞∑

m=0

g(m)
wm+2

wm
em+2 + · · ·

+
f(N − 1)

wN−1

∞∑

m=0

g(m)
wm+N−1

wm
em+N−1

+ g(0)

∞∑

n=N

f(n)en +
g(1)

w1

∞∑

n=N

f(n)
wn+1

wn
en+1

+
g(2)

w2

∞∑

n=N

f(n)
wn+2

wn
en+2 + · · ·

+
g(N − 1)

wN−1

∞∑

n=N

f(n)
wn+N−1

wn
en+N−1

+
∞∑

n=N

∞∑

m=N

wn+m

wn wm
f(n)g(m)en+m
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= f(0)g +
f(1)

w1
Tg +

f(2)

w2
T 2 g + . . . +

f(N − 1)

wN−1
TN−1g

+ g(0)RN(f) +
g(1)

w1
RN (Tf) +

g(2)

w2
RN (T 2f) + · · ·

+
g(N − 1)

wN−1
RN (TN−1f) +

∞∑

n=N

∞∑

m=N

wn+m

wnwm
f(n)g(m)en+m.

From this, by using (iii), the equality |f(i)| = ‖f(i)ei‖Y and inequality (1)
we obtain

‖f ⊛̃ g‖ ≤ |f(0)| ‖g‖ +
|f(1)|

|w1|
‖Tg‖ + · · ·

+
|f(N − 1)|

|wN−1|
‖TN−1g‖ + |g(0)| ‖RN(f)‖

+
|g(1)|

|w1|
‖RN (Tf)‖ + · · · +

|g(N − 1)|

|wN−1|
‖RN (TN−1f)‖

+
∞∑

n=N

∞∑

m=N

∣∣∣∣
wn+m

wnwm

∣∣∣∣‖f(n)en‖‖g(m)em‖

≤ c

[(
1 +

‖T‖

|w1|
+ · · · +

‖TN−1‖

|wN−1|

)
+

(
1 +

‖T‖

|w1|
+ . . . +

‖TN−1‖

|wN−1|

)

+
∞∑

n=N

∞∑

m=N

∣∣∣∣
wn+m

wnwm

∣∣∣∣
]
‖f‖‖g‖

≤ c

[
2

N−1∑

i=0

Λi

|wi|
+ ΩN

]
‖f‖‖g‖ =: C‖f‖‖g‖.

By standard arguments (i.e., by passing to the equivalent norm in Y ) we
deduce from the last inequality that (Y, ⊛̃) is a Banach algebra. Clearly,
f ⊛̃ e0 = f for each f ∈ Y .

To prove that M(Y, ⊛̃) = {0}, it suffices to show that an element f ∈ Y
is ⊛̃-invertible if and only if f(0) 6= 0. In fact, let f(0) 6= 0. Let us prove that
then Df , where Df g := f ⊛̃ g, is an invertible operator in Y (boundedness
of Df is a consequence of (4)). Rewrite Df in the form Df = f(0)I +Df−f(0)

and set

h := f − f(0) and F := h ⊛̃ · · · ⊛̃ h︸ ︷︷ ︸
N+1

.

It is easy to verify that F (0) = F (1) = · · · = F (N) = 0. Therefore for every
g ∈ Y and M > N we obtain
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DN+1
h g = F ⊛̃ g

= g(0)RN+1(f) +
g(1)

w1
RN+1(TF ) +

g(2)

w2
RN+1(T

2F )

+ · · · +
g(N)

wN
RN+1(T

NF )+
∑

n≥N+1

∑

m≥N+1

wn+m

wnwm
F (n)g(m)en+m

=
N∑

i=0

g(i)

wi
RN+1(T

iF ) +
∑

n≥N+1

∑

m≥N+1

wn+m

wnwm
F (n)g(m)en+m

=
N∑

i=0

g(i)

wi
RN+1(T

iF ) +
M∑

n=N+1

M∑

m=N+1

wn+m

wnwm
F (n)g(m)en+m

+
M∑

n=N+1

∞∑

m=N+1

wn+m

wnwm
F (n)g(m)en+m

+
∞∑

n=M+1

∞∑

m=N+1

wn+m

wnwm
F (n)g(m)en+m.

It is clear that the operator KM defined by

KMg :=
N∑

i=0

g(i)

wi
RN+1(T

iF ) +
M∑

n=N+1

M∑

m=N+1

wn+m

wnwm
F (n)g(m)en+m,

is a finite-rank (hence compact) operator. By considering (iii) and estimate
(4) we obtain

‖DN+1
h −KM‖L(Y ) = sup

‖g‖≤1
‖DN+1

h g −KMg‖

= sup
‖g‖≤1

∥∥∥∥
M∑

n=N+1

∞∑

m=M+1

wn+m

wnwm
F (n)g(m)en+m

+
∞∑

n=M+1

∞∑

m=N+1

wn+m

wnwm
F (n)g(m)en+m

∥∥∥∥

≤ C‖F‖

[ M∑

n=N+1

∞∑

m=M+1

∣∣∣∣
wn+m

wnwm

∣∣∣∣ +

∞∑

n=M+1

∞∑

m=N+1

∣∣∣∣
wn+m

wnwm

∣∣∣∣
]
→ 0

as M → ∞. Hence KM ⇉ DN+1
h as M → ∞, which means that DN+1

h is
compact.

On the other hand, if g ∈ Y and Dfg = 0, then it follows from (3) that

(Dfg)(n) =
n∑

k=0

f(k)g(n − k)
wn

wkwn−k
= 0, n = 0, 1, 2, . . .
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Since f(0) 6= 0, simple calculations show that 0 = g(0) = g(1) = · · · , that
is, g = 0, which implies that ker(f(0)I+Dh) = kerDf = {0}. Then by a well
known theorem of S. M. Nikol’skĭı (see [1]) we deduce that Df is invertible
in Y , that is, f is ⊛̃-invertible in Y .

Conversely, if f is ⊛̃-invertible then it follows from (3) that f(0) 6= 0,
i.e., f(0) 6= 0. The lemma is proved.

Lemma 3. f ∈ Cyc(T ) if and only if f(0) 6= 0.

Proof. It follows from (3) that

w1z ⊛̃ g = w1z ⊛̃

∞∑

n=0

g(n)en =
∞∑

n=0

g(n)w1(e1 ⊛ en)

=
∞∑

n=0

g(n)w1
wn+1

w1wn
en+1 =

∞∑

n=0

g(n)
wn+1

wn
en+1

=
∞∑

n=0

g(n)λnen+1 =
∞∑

n=0

g(n)Ten = T
( ∞∑

n=0

g(n)en

)
= Tg

for all g ∈ Y , and in general,

(5) Tng = wnen ⊛̃ g

for any g ∈ Y and n ≥ 0. Hence

Ef := span{Tnf : n ≥ 0} = span{wnen ⊛̃ f : n ≥ 0}(6)

= span{Df (wnen) : n ≥ 0} = closDfY.

Therefore, if f ∈ Cyc(T ) then closDfY = Y, which implies the existence of a

sequence {fn}n≥0 ∈ Y such that f ⊛̃fn → e0 in Y as n → ∞. Consequently,
(f ⊛̃ fn)(0) → 1 as n → ∞, or f(0)fn(0) → 1 as n → ∞, and therefore,
f(0) 6= 0.

Conversely, if f(0) 6= 0, then according to the equality (6) and Lemma 2,
we have Ef = Y , that is, f ∈ Cyc(T ).

Proof of Theorem 1. If µ(A) = ∞, then by inequalities (2) the assertion
of the theorem is obvious, and therefore we will assume that µ(A) = n < ∞.

Suppose that µ(T ⊕ A) = µ(A) = n. Let {fi ⊕ xi}
n
i=1 be a cyclic set

for T ⊕ A. Then {fi}
n
i=1 is a cyclic set for T . Suppose that fk(0) 6= 0 for

k = 1, . . . , l and fk(0) = 0 for k = l + 1, . . . , n. We set gk = fk, yk = xk

for k = 1, . . . , l, and gk = fk − f1, yk = xk − x1 for k = l + 1, . . . , n. Then
{gi ⊕ yi}

n
i=1 is a cyclic set, and since gk(0) 6= 0 for k = 1, . . . , n, by Lemmas

2 and 3 there exist Fk ∈ Y such that Fk ⊛̃ gk = e0, k = 1, . . . , n. Set

x̃k =
∑

m≥0

Fk(m)

wm
Amyk.
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Then

gk ⊕ yk =
∑

m≥0

gk(m)

wm
(T ⊕ A)m(e0 ⊕ x̃k).

Therefore

gk ⊕ yk ∈ span{(T ⊕ A)m(e0 ⊕ x̃i) : m ≥ 0, i = 1, . . . , n}

for k = 1, . . . , n and the set {e0 ⊕ x̃i}
n
i=1 is cyclic for T ⊕ A. We now set

x1 = x̃1, xk = x̃1 − x̃k, k = 2, . . . , n; this yields a new cyclic set {e0 ⊕ x1,
0⊕x2, . . . ,0⊕xn} for T ⊕A. Therefore, for any x ∈ X, there exists a family
{Pm,i : 1 ≤ i ≤ n, m ≥ 1} of polynomials such that

lim
m→∞

Pm,1(T )e0 = 0 in Y,

lim
m→∞

n∑

i=1

Pm,i(A)xi = x in X.

By using (5) we deduce that limm→∞ qm,1 = 0 in Y , where

qm,1 :=
∑

k≥0

wkPm,1(k)ek.

Then by using condition (ii) of the theorem, the equality ‖T ke0‖ = |wk| and
the Hölder inequality we deduce that

‖Pm,1(A)x1‖ =
∥∥∥

∑

k≥0

Pm,1(k)Akx1

∥∥∥ ≤
∑

k≥0

|Pm,1(k)| ‖Akx1‖

=
∑

k≥0

|wk| |Pm,1(k)|
‖Akx1‖

|wk|

≤
( ∑

k≥0

|wk| |Pm,1(k)|p
)1/p

(∑

k≥0

(
‖Akx1‖

‖T ke0‖

)q)1/q

= C
1/q
x1

(∑

k≥0

|qm,1(k)|p
)1/p

= C
1/q
x1

‖qm,1‖lp ≤ C
1/q
x1

C̃‖qm,1‖Y ,

so that limm→∞ Pm,1(A)x1 = 0. Hence limm→∞
∑n

i=2 Pm,i(A)xi = x. Since
the vector x is arbitrary, the last relation means that {xi}

n
i=2 is a cyclic

set for A, and hence µ(A) ≤ n − 1. But this contradicts the assumption
µ(A) = n.

I am grateful to the referee for his numerous suggestions.
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