ON THE SPECTRAL MULTIPLICITY OF
 A DIRECT SUM OF OPERATORS

BY
M. T. KARAEV (Isparta)

Abstract

We calculate the spectral multiplicity of the direct sum $T \oplus A$ of a weighted shift operator T on a Banach space Y which is continuously embedded in l^{p} and a suitable bounded linear operator A on a Banach space X.

1. Introduction. Let $L(X)$ be the Banach algebra of all bounded linear operators on a Banach space X. A subspace $E \subset X$ is called a cyclic subspace of an operator $A \in L(X)$ if $\operatorname{span}\left\{A^{n} E: n \geq 0\right\}=X$, where span denotes closed linear hull. A vector $x \in X$ is called cyclic $(x \in \operatorname{Cyc}(A))$ if $\operatorname{span}\left\{A^{n} x\right.$: $n \geq 0\}=X$. The spectral multiplicity $\mu(A)$ of $A \in L(X)$ is

$$
\mu(A):=\inf \left\{\operatorname{dim} E: \operatorname{span}\left\{A^{n} E: n \geq 0\right\}=X\right\}
$$

a nonnegative integer or ∞. Clearly, A is cyclic if and only if $\mu(A)=1$.
The spectral multiplicity is an important invariant of operators, and it plays a key role in operator theory and its applications. Clearly, the notion of cyclic subspace is important in connection with the general problem of existence of a nontrivial invariant subspace, because an operator $A \in L(X)$ has no nontrivial invariant subspace if and only if $x \in \operatorname{Cyc}(A)$ for every $x \in$ $X \backslash\{0\}$. Cyclic vectors are important in weighted polynomial approximation theory. (More details can be found in [6].)

In this article we calculate the spectral multiplicity of the direct sum $T \oplus A$, where T is a weighted shift operator on a Banach space Y continuously embedded in l^{p}, and A a suitable bounded operator on a Banach space X (Section 2). Note that the main result of Section 2, Theorem 1, generalizes and strengthens some results of the author in [3, Theorem], [4, Theorem 3] and [5, Theorem 3].

First we introduce some notations and definitions. If $\left\{e_{i}\right\}_{i \geq 0}$ is a sequence of vectors in a Banach space X, we say that $\left\{e_{i}\right\}_{i \geq 0}$ is uniformly minimal if there exists a constant $\delta>0$ such that

$$
d:=\inf _{i \geq 0} \operatorname{dist}\left\{e_{i} /\left\|e_{i}\right\|, \operatorname{span}\left\{e_{j}: j \neq i\right\}\right\}>0
$$

It is clear that if $\left\{e_{i}\right\}_{i \geq 0}$ is a basis in X, then $\left\{e_{i}\right\}_{i \geq 0}$ is uniformly minimal, and therefore for any $x=\sum_{n=0}^{\infty} x(n) e_{n} \in X$,

$$
\begin{equation*}
\left\|x(n) e_{n}\right\|_{X} \leq c\|x\|_{X} \tag{1}
\end{equation*}
$$

for all $n \geq 0$ and some $c>0$ (actually, one can take $c=1 / d$).
A weighted shift operator T in a Banach space X with basis $\left\{e_{n}\right\}_{n \geq 0}$ is defined by

$$
T e_{n}=\lambda_{n} e_{n+1}, \quad n \geq 0
$$

where $\left\{\lambda_{n}\right\}_{n \geq 0}$ is a bounded sequence of complex numbers. Obviously, $\mu(T)$ $=1$.
2. The spectral multiplicity of $T \oplus A$. Let $A \oplus B$ denote the direct sum of bounded linear operators A and B acting in Banach spaces X and Y, respectively,

$$
(A \oplus B)(x \oplus y)=A x \oplus B y, \quad x \oplus y \in X \oplus Y
$$

It is well known that

$$
\begin{equation*}
\max \{\mu(A), \mu(B)\} \leq \mu(A \oplus B) \leq \mu(A)+\mu(B) \tag{2}
\end{equation*}
$$

One might try to characterize the extremes, that is: When $\mu(A \oplus B)=$ $\max \{\mu(A), \mu(B)\}$? When $\mu(A \oplus B)=\mu(A)+\mu(B)$? It is well known that $\mu(A \oplus B)=\max \{\mu(A), \mu(B)\}$ if the spectra $\sigma(A)$ and $\sigma(B)$ are well separated, i.e., their polynomially convex hulls are disjoint (see, e.g., [7]).

In this section we shall be interested in the equality $\mu(A \oplus B)=\mu(A)+$ $\mu(B)$. In this connection we shall prove the following theorem which generalizes and strengthens some results in [3-5]. (More general results related to the equality $\mu(A \oplus B)=\mu(A)+\mu(B)$ can be found, for instance, in [2, 7-10]).

Theorem 1. Let Y be a Banach space with a basis $\left\{e_{n}\right\}_{n \geq 0}$ of unit vectors, which is continuously embedded in l^{p} for some $p, 1 \leq p \leq \infty$. Let $\left\{\lambda_{n}\right\}_{n \geq 0}$ denote a bounded sequence of nonzero complex numbers $\lambda_{n} \in \mathbb{C}$, and let T be the corresponding weighted shift operator acting in $Y, T e_{n}=\lambda_{n} e_{n+1}$, $n \geq 0$. Let X be a separable Banach space and $A \in L(X)$. Suppose that:
(i) $\sum_{n, m \geq N}\left|w_{n+m} / w_{n} w_{m}\right|=: \Omega_{N}<\infty$ for some $N \geq 0$, where $w_{n}:=$ $\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}, w_{0}:=1$.
(ii) $\sum_{n=0}^{\infty}\left(\left\|A^{n} x\right\|_{X} /\left\|T^{n} e_{0}\right\|_{Y}\right)^{q}=: C_{x}<\infty$ for all $x \in X$, where $1 / p+$ $1 / q=1$.
(iii) $\left\|e_{n+m}\right\|_{Y} \leq c\left\|e_{n}\right\|_{Y}\left\|e_{m}\right\|_{Y}$ for all $n, m \geq 0$ and for some $c \geq 0$. Then $\mu(T \oplus A)=\mu(T)+\mu(A)=1+\mu(A)$.

The proof of the theorem uses the following product:

$$
\begin{equation*}
f \widetilde{\circledast} g:=\sum_{n, m \geq 0} \frac{w_{n+m}}{w_{n} w_{m}} f(n) g(m) e_{n+m} \tag{3}
\end{equation*}
$$

where $f=\sum_{n=0}^{\infty} f(n) e_{n}, g=\sum_{n=0}^{\infty} g(n) e_{n} \in Y$.
LEmmA 2. $(Y, \widetilde{\circledast})$ is a Banach algebra with the unit $f=e_{0}$ and $\mathcal{M}(Y, \widetilde{*})$ $=\{0\}$, i.e., its maximal ideal space $\mathcal{M}(Y, \widetilde{\circledast})$ consists of one homomorphism $f \mapsto f(0)$.

Proof. First we prove that

$$
\begin{equation*}
\|f \widetilde{\circledast} g\| \leq C\|f\|\|g\| \tag{4}
\end{equation*}
$$

for all $f, g \in Y$ and for some number $C>0$, not depending on f, g.
Note that if $N=0$, then (4) is immediate from (3), and so assume that $N \geq 1$. By setting $R_{n}(f):=\sum_{k \geq n} f(k) e_{k}$, and using (i) and the inequalities

$$
\begin{aligned}
\left\|R_{n}\left(T^{k} f\right)\right\| & \leq\left\|T^{k} f\right\|, \quad k=0,1, \ldots, N-1 \\
\left\|T^{k}\right\| & \leq \sup \left\{\left|\lambda_{n} \lambda_{n+1} \cdots \lambda_{n+k-1}\right|\right\}_{n=1}^{\infty}=: \Lambda_{k}
\end{aligned}
$$

we have

$$
\begin{aligned}
f \widetilde{\circledast} g= & \sum_{n, m \geq 0} \frac{w_{n+m}}{w_{n} w_{m}} f(n) g(m) e_{n+m} \\
= & f(0) \sum_{m=0}^{\infty} g(m) e_{m}+\frac{f(1)}{w_{1}} \sum_{m=0}^{\infty} g(m) \frac{w_{m+1}}{w_{m}} e_{m+1} \\
& +\frac{f(2)}{w_{2}} \sum_{m=0}^{\infty} g(m) \frac{w_{m+2}}{w_{m}} e_{m+2}+\cdots \\
& +\frac{f(N-1)}{w_{N-1}} \sum_{m=0}^{\infty} g(m) \frac{w_{m+N-1}}{w_{m}} e_{m+N-1} \\
& +g(0) \sum_{n=N}^{\infty} f(n) e_{n}+\frac{g(1)}{w_{1}} \sum_{n=N}^{\infty} f(n) \frac{w_{n+1}}{w_{n}} e_{n+1} \\
& +\frac{g(2)}{w_{2}} \sum_{n=N}^{\infty} f(n) \frac{w_{n+2}}{w_{n}} e_{n+2}+\cdots \\
& +\frac{g(N-1)}{w_{N-1}} \sum_{n=N}^{\infty} f(n) \frac{w_{n+N-1}}{w_{n}} e_{n+N-1} \\
& +\sum_{n=N}^{\infty} \sum_{m=N}^{\infty} \frac{w_{n+m}}{w_{n} w_{m}} f(n) g(m) e_{n+m}
\end{aligned}
$$

$$
\begin{aligned}
= & f(0) g+\frac{f(1)}{w_{1}} T g+\frac{f(2)}{w_{2}} T^{2} g+\ldots+\frac{f(N-1)}{w_{N-1}} T^{N-1} g \\
& +g(0) R_{N}(f)+\frac{g(1)}{w_{1}} R_{N}(T f)+\frac{g(2)}{w_{2}} R_{N}\left(T^{2} f\right)+\cdots \\
& +\frac{g(N-1)}{w_{N-1}} R_{N}\left(T^{N-1} f\right)+\sum_{n=N}^{\infty} \sum_{m=N}^{\infty} \frac{w_{n+m}}{w_{n} w_{m}} f(n) g(m) e_{n+m}
\end{aligned}
$$

From this, by using (iii), the equality $|f(i)|=\left\|f(i) e_{i}\right\|_{Y}$ and inequality (1) we obtain

$$
\begin{aligned}
\|f \widetilde{\circledast} g\| \leq & |f(0)|\|g\|+\frac{|f(1)|}{\left|w_{1}\right|}\|T g\|+\cdots \\
& +\frac{|f(N-1)|}{\left|w_{N-1}\right|}\left\|T^{N-1} g\right\|+|g(0)|\left\|R_{N}(f)\right\| \\
& +\frac{|g(1)|}{\left|w_{1}\right|}\left\|R_{N}(T f)\right\|+\cdots+\frac{|g(N-1)|}{\left|w_{N-1}\right|}\left\|R_{N}\left(T^{N-1} f\right)\right\| \\
& +\sum_{n=N}^{\infty} \sum_{m=N}^{\infty}\left|\frac{w_{n+m}}{w_{n} w_{m}}\right|\left\|f(n) e_{n}\right\|\left\|g(m) e_{m}\right\| \\
\leq & c\left[\left(1+\frac{\|T\|}{\left|w_{1}\right|}+\cdots+\frac{\left\|T^{N-1}\right\|}{\left|w_{N-1}\right|}\right)+\left(1+\frac{\|T\|}{\left|w_{1}\right|}+\ldots+\frac{\left\|T^{N-1}\right\|}{\left|w_{N-1}\right|}\right)\right. \\
& \left.+\sum_{n=N}^{\infty} \sum_{m=N}^{\infty}\left|\frac{w_{n+m}}{w_{n} w_{m}}\right|\right]\|f\|\|g\| \\
\leq & c\left[2 \sum_{i=0}^{N-1} \frac{\Lambda_{i}}{\left|w_{i}\right|}+\Omega_{N}\right]\|f\|\|g\|=: C\|f\|\|g\| .
\end{aligned}
$$

By standard arguments (i.e., by passing to the equivalent norm in Y) we deduce from the last inequality that $(Y, \widetilde{\circledast})$ is a Banach algebra. Clearly, $f \circledast e_{0}=f$ for each $f \in Y$.

To prove that $\mathcal{M}(Y, \widetilde{\circledast})=\{0\}$, it suffices to show that an element $f \in Y$ is $\widetilde{\circledast}$-invertible if and only if $f(0) \neq 0$. In fact, let $f(0) \neq 0$. Let us prove that then \mathcal{D}_{f}, where $\mathcal{D}_{f} g:=f \widetilde{\circledast} g$, is an invertible operator in Y (boundedness of \mathcal{D}_{f} is a consequence of (4)). Rewrite \mathcal{D}_{f} in the form $\mathcal{D}_{f}=f(0) I+\mathcal{D}_{f-f(0)}$ and set

$$
h:=f-f(0) \quad \text { and } \quad F:=\underbrace{h \widetilde{\circledast} \cdots \widetilde{\circledast} h}_{N+1} .
$$

It is easy to verify that $F(0)=F(1)=\cdots=F(N)=0$. Therefore for every $g \in Y$ and $M>N$ we obtain

$$
\begin{aligned}
\mathcal{D}_{h}^{N+1} g= & F \widetilde{\circledast} g \\
= & g(0) R_{N+1}(f)+\frac{g(1)}{w_{1}} R_{N+1}(T F)+\frac{g(2)}{w_{2}} R_{N+1}\left(T^{2} F\right) \\
& +\cdots+\frac{g(N)}{w_{N}} R_{N+1}\left(T^{N} F\right)+\sum_{n \geq N+1} \sum_{m \geq N+1} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} \\
= & \sum_{i=0}^{N} \frac{g(i)}{w_{i}} R_{N+1}\left(T^{i} F\right)+\sum_{n \geq N+1} \sum_{m \geq N+1} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} \\
= & \sum_{i=0}^{N} \frac{g(i)}{w_{i}} R_{N+1}\left(T^{i} F\right)+\sum_{n=N+1}^{M} \sum_{m=N+1}^{M} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} \\
& +\sum_{n=N+1}^{M} \sum_{m=N+1}^{\infty} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} \\
& +\sum_{n=M+1}^{\infty} \sum_{m=N+1}^{\infty} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} .
\end{aligned}
$$

It is clear that the operator \mathcal{K}_{M} defined by

$$
\mathcal{K}_{M} g:=\sum_{i=0}^{N} \frac{g(i)}{w_{i}} R_{N+1}\left(T^{i} F\right)+\sum_{n=N+1}^{M} \sum_{m=N+1}^{M} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m}
$$

is a finite-rank (hence compact) operator. By considering (iii) and estimate (4) we obtain

$$
\begin{aligned}
\left\|\mathcal{D}_{h}^{N+1}-\mathcal{K}_{M}\right\|_{L(Y)}= & \sup _{\|g\| \leq 1}\left\|\mathcal{D}_{h}^{N+1} g-\mathcal{K}_{M} g\right\| \\
= & \sup _{\|g\| \leq 1} \| \sum_{n=N+1}^{M} \sum_{m=M+1}^{\infty} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} \\
& +\sum_{n=M+1}^{\infty} \sum_{m=N+1}^{\infty} \frac{w_{n+m}}{w_{n} w_{m}} F(n) g(m) e_{n+m} \| \\
\leq & C\|F\|\left[\sum_{n=N+1}^{M} \sum_{m=M+1}^{\infty}\left|\frac{w_{n+m}}{w_{n} w_{m}}\right|+\sum_{n=M+1}^{\infty} \sum_{m=N+1}^{\infty}\left|\frac{w_{n+m}}{w_{n} w_{m}}\right|\right] \rightarrow 0
\end{aligned}
$$

as $M \rightarrow \infty$. Hence $\mathcal{K}_{M} \rightrightarrows \mathcal{D}_{h}^{N+1}$ as $M \rightarrow \infty$, which means that \mathcal{D}_{h}^{N+1} is compact.

On the other hand, if $g \in Y$ and $\mathcal{D}_{f} g=0$, then it follows from (3) that

$$
\left(\mathcal{D}_{f} g\right)(n)=\sum_{k=0}^{n} f(k) g(n-k) \frac{w_{n}}{w_{k} w_{n-k}}=0, \quad n=0,1,2, \ldots
$$

Since $f(0) \neq 0$, simple calculations show that $0=g(0)=g(1)=\cdots$, that is, $g=0$, which implies that $\operatorname{ker}\left(f(0) I+\mathcal{D}_{h}\right)=\operatorname{ker} \mathcal{D}_{f}=\{0\}$. Then by a well known theorem of S . M. Nikol'skiĭ (see [1]) we deduce that \mathcal{D}_{f} is invertible in Y, that is, f is \circledast-invertible in Y.

Conversely, if f is $\widetilde{\circledast}$-invertible then it follows from (3) that $f(0) \neq 0$, i.e., $f(0) \neq 0$. The lemma is proved.

Lemma 3. $f \in \operatorname{Cyc}(T)$ if and only if $f(0) \neq 0$.
Proof. It follows from (3) that

$$
\begin{aligned}
w_{1} z \widetilde{\circledast} g & =w_{1} z \widetilde{\circledast} \sum_{n=0}^{\infty} g(n) e_{n}=\sum_{n=0}^{\infty} g(n) w_{1}\left(e_{1} \circledast e_{n}\right) \\
& =\sum_{n=0}^{\infty} g(n) w_{1} \frac{w_{n+1}}{w_{1} w_{n}} e_{n+1}=\sum_{n=0}^{\infty} g(n) \frac{w_{n+1}}{w_{n}} e_{n+1} \\
& =\sum_{n=0}^{\infty} g(n) \lambda_{n} e_{n+1}=\sum_{n=0}^{\infty} g(n) T e_{n}=T\left(\sum_{n=0}^{\infty} g(n) e_{n}\right)=T g
\end{aligned}
$$

for all $g \in Y$, and in general,

$$
\begin{equation*}
T^{n} g=w_{n} e_{n} \widetilde{\circledast} g \tag{5}
\end{equation*}
$$

for any $g \in Y$ and $n \geq 0$. Hence

$$
\begin{align*}
E_{f}:=\operatorname{span}\left\{T^{n} f: n \geq 0\right\} & =\operatorname{span}\left\{w_{n} e_{n} \widetilde{\circledast} f: n \geq 0\right\} \tag{6}\\
& =\operatorname{span}\left\{\mathcal{D}_{f}\left(w_{n} e_{n}\right): n \geq 0\right\}=\cos \mathcal{D}_{f} Y
\end{align*}
$$

Therefore, if $f \in \operatorname{Cyc}(T)$ then $\operatorname{clos} \mathcal{D}_{f} Y=Y$, which implies the existence of a sequence $\left\{f_{n}\right\}_{n \geq 0} \in Y$ such that $f \widetilde{\circledast} f_{n} \rightarrow e_{0}$ in Y as $n \rightarrow \infty$. Consequently, $\left(f \circledast f_{n}\right)(0) \rightarrow 1$ as $n \rightarrow \infty$, or $f(0) f_{n}(0) \rightarrow 1$ as $n \rightarrow \infty$, and therefore, $f(0) \neq 0$.

Conversely, if $f(0) \neq 0$, then according to the equality (6) and Lemma 2, we have $E_{f}=Y$, that is, $f \in \operatorname{Cyc}(T)$.

Proof of Theorem 1. If $\mu(A)=\infty$, then by inequalities (2) the assertion of the theorem is obvious, and therefore we will assume that $\mu(A)=n<\infty$.

Suppose that $\mu(T \oplus A)=\mu(A)=n$. Let $\left\{f_{i} \oplus x_{i}\right\}_{i=1}^{n}$ be a cyclic set for $T \oplus A$. Then $\left\{f_{i}\right\}_{i=1}^{n}$ is a cyclic set for T. Suppose that $f_{k}(0) \neq 0$ for $k=1, \ldots, l$ and $f_{k}(0)=0$ for $k=l+1, \ldots, n$. We set $g_{k}=f_{k}, y_{k}=x_{k}$ for $k=1, \ldots, l$, and $g_{k}=f_{k}-f_{1}, y_{k}=x_{k}-x_{1}$ for $k=l+1, \ldots, n$. Then $\left\{g_{i} \oplus y_{i}\right\}_{i=1}^{n}$ is a cyclic set, and since $g_{k}(0) \neq 0$ for $k=1, \ldots, n$, by Lemmas 2 and 3 there exist $F_{k} \in Y$ such that $F_{k} \widetilde{\circledast} g_{k}=e_{0}, k=1, \ldots, n$. Set

$$
\widetilde{x}_{k}=\sum_{m \geq 0} \frac{F_{k}(m)}{w_{m}} A^{m} y_{k}
$$

Then

$$
g_{k} \oplus y_{k}=\sum_{m \geq 0} \frac{g_{k}(m)}{w_{m}}(T \oplus A)^{m}\left(e_{0} \oplus \widetilde{x}_{k}\right)
$$

Therefore

$$
g_{k} \oplus y_{k} \in \operatorname{span}\left\{(T \oplus A)^{m}\left(e_{0} \oplus \widetilde{x_{i}}\right): m \geq 0, i=1, \ldots, n\right\}
$$

for $k=1, \ldots, n$ and the set $\left\{e_{0} \oplus \widetilde{x}_{i}\right\}_{i=1}^{n}$ is cyclic for $T \oplus A$. We now set $\bar{x}_{1}=\widetilde{x}_{1}, \bar{x}_{k}=\widetilde{x}_{1}-\widetilde{x}_{k}, k=2, \ldots, n$; this yields a new cyclic set $\left\{e_{0} \oplus \bar{x}_{1}\right.$, $\left.\mathbf{0} \oplus \bar{x}_{2}, \ldots, \mathbf{0} \oplus \bar{x}_{n}\right\}$ for $T \oplus A$. Therefore, for any $x \in X$, there exists a family $\left\{P_{m, i}: 1 \leq i \leq n, m \geq 1\right\}$ of polynomials such that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} P_{m, 1}(T) e_{0}=0 \\
& \text { in } Y \\
& \lim _{m \rightarrow \infty} \sum_{i=1}^{n} P_{m, i}(A) \bar{x}_{i}=x \text { in } X
\end{aligned}
$$

By using (5) we deduce that $\lim _{m \rightarrow \infty} q_{m, 1}=0$ in Y, where

$$
q_{m, 1}:=\sum_{k \geq 0} w_{k} P_{m, 1}(k) e_{k}
$$

Then by using condition (ii) of the theorem, the equality $\left\|T^{k} e_{0}\right\|=\left|w_{k}\right|$ and the Hölder inequality we deduce that

$$
\begin{aligned}
\left\|P_{m, 1}(A) \bar{x}_{1}\right\| & =\left\|\sum_{k \geq 0} P_{m, 1}(k) A^{k} \bar{x}_{1}\right\| \leq \sum_{k \geq 0}\left|P_{m, 1}(k)\right|\left\|A^{k} \bar{x}_{1}\right\| \\
& =\sum_{k \geq 0}\left|w_{k}\right|\left|P_{m, 1}(k)\right| \frac{\left\|A^{k} \bar{x}_{1}\right\|}{\left|w_{k}\right|} \\
& \leq\left(\sum_{k \geq 0}\left|w_{k}\right|\left|P_{m, 1}(k)\right|^{p}\right)^{1 / p}\left(\sum_{k \geq 0}\left(\frac{\left\|A^{k} \bar{x}_{1}\right\|}{\left\|T^{k} e_{0}\right\|}\right)^{q}\right)^{1 / q} \\
& =C_{\bar{x}_{1}}^{1 / q}\left(\sum_{k \geq 0}\left|q_{m, 1}(k)\right|^{p}\right)^{1 / p}=C_{\bar{x}_{1}}^{1 / q}\left\|q_{m, 1}\right\|_{l^{p}} \leq C_{\bar{x}_{1}}^{1 / q} \widetilde{C}\left\|q_{m, 1}\right\|_{Y}
\end{aligned}
$$

so that $\lim _{m \rightarrow \infty} P_{m, 1}(A) \bar{x}_{1}=0$. Hence $\lim _{m \rightarrow \infty} \sum_{i=2}^{n} P_{m, i}(A) \bar{x}_{i}=x$. Since the vector x is arbitrary, the last relation means that $\left\{\bar{x}_{i}\right\}_{i=2}^{n}$ is a cyclic set for A, and hence $\mu(A) \leq n-1$. But this contradicts the assumption $\mu(A)=n$.

I am grateful to the referee for his numerous suggestions.

REFERENCES

[1] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 (in Russian).
[2] M. T. Karaev, On multiplicity of the spectrum of orthogonal sums of operators, in: Spectral Theory of Operators and its Applications 10, ELM, Baku, 1991, 165-167 (in Russian).
[3] -, An addition theorem on multiplicities of the spectrum, Trudy IMM AN Azerb. 8 (16) (1998), 123-128 (in Russian).
[4] -, Some applications of Duhamel product, Zap. Nauchn. Sem. POMI 303 (2003), 145-160 (in Russian).
[5] -, On some applications of the ordinary and extended Duhamel products, Siberian Math. J. 46 (2005), 431-442.
[6] N. K. Nikol'skiĭ, Invariant subspaces in operator theory and function theory, Itogi Nauki i Tehniki, Ser. Mat. Analiz, Moscow 12 (1974), 199-412 (in Russian).
[7] -, Hints to the calculation of spectral multiplicity for direct sums, Zap. Nauchn. Sem. LOMI 126 (1983), 150-158 (in Russian).
[8] -, Multiplicity phenomen I. An introduction and maxi-formulas, in: Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 9-57.
[9] V. I. Vasyunin, Formula for multiplicity of contractions with finite defect indices, in: Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 281-304.
[10] V. I. Vasyunin and M. T. Karaev, Spectral multiplicity of certain contractions, Zap. Nauchn. Sem. LOMI 157 (1987), 23-29 (in Russian); English transl.: J. Soviet Math. 44 (1989), 762-767.

Suleyman Demirel University
Department of Mathematics
32260 Isparta, Turkey
E-mail: garayev@fef.sdu.edu.tr

Received 22 November 2004;
revised 20 June 2005

