VOL. 104

2006

NO. 1

ON THE SPECTRAL MULTIPLICITY OF A DIRECT SUM OF OPERATORS

BҮ

M. T. KARAEV (Isparta)

Abstract. We calculate the spectral multiplicity of the direct sum $T \oplus A$ of a weighted shift operator T on a Banach space Y which is continuously embedded in l^p and a suitable bounded linear operator A on a Banach space X.

1. Introduction. Let L(X) be the Banach algebra of all bounded linear operators on a Banach space X. A subspace $E \subset X$ is called a *cyclic subspace* of an operator $A \in L(X)$ if $\operatorname{span}\{A^n E : n \ge 0\} = X$, where span denotes closed linear hull. A vector $x \in X$ is called *cyclic* $(x \in \operatorname{Cyc}(A))$ if $\operatorname{span}\{A^n x : n \ge 0\} = X$. The spectral multiplicity $\mu(A)$ of $A \in L(X)$ is

 $\mu(A) := \inf\{\dim E : \operatorname{span}\{A^n E : n \ge 0\} = X\},\$

a nonnegative integer or ∞ . Clearly, A is cyclic if and only if $\mu(A) = 1$.

The spectral multiplicity is an important invariant of operators, and it plays a key role in operator theory and its applications. Clearly, the notion of cyclic subspace is important in connection with the general problem of existence of a nontrivial invariant subspace, because an operator $A \in L(X)$ has no nontrivial invariant subspace if and only if $x \in \text{Cyc}(A)$ for every $x \in$ $X \setminus \{0\}$. Cyclic vectors are important in weighted polynomial approximation theory. (More details can be found in [6].)

In this article we calculate the spectral multiplicity of the direct sum $T \oplus A$, where T is a weighted shift operator on a Banach space Y continuously embedded in l^p , and A a suitable bounded operator on a Banach space X (Section 2). Note that the main result of Section 2, Theorem 1, generalizes and strengthens some results of the author in [3, Theorem], [4, Theorem 3] and [5, Theorem 3].

First we introduce some notations and definitions. If $\{e_i\}_{i\geq 0}$ is a sequence of vectors in a Banach space X, we say that $\{e_i\}_{i\geq 0}$ is uniformly minimal if there exists a constant $\delta > 0$ such that

$$d := \inf_{i \ge 0} \operatorname{dist} \{ e_i / \| e_i \|, \ \operatorname{span} \{ e_j : j \neq i \} \} > 0.$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B38.

Key words and phrases: cyclic vector, spectral multiplicity, Banach algebra.

It is clear that if $\{e_i\}_{i\geq 0}$ is a basis in X, then $\{e_i\}_{i\geq 0}$ is uniformly minimal, and therefore for any $x = \sum_{n=0}^{\infty} x(n)e_n \in X$,

(1)
$$||x(n)e_n||_X \le c ||x||_X$$

for all $n \ge 0$ and some c > 0 (actually, one can take c = 1/d).

A weighted shift operator T in a Banach space X with basis $\{e_n\}_{n\geq 0}$ is defined by

$$Te_n = \lambda_n e_{n+1}, \quad n \ge 0,$$

where $\{\lambda_n\}_{n\geq 0}$ is a bounded sequence of complex numbers. Obviously, $\mu(T) = 1$.

2. The spectral multiplicity of $T \oplus A$. Let $A \oplus B$ denote the direct sum of bounded linear operators A and B acting in Banach spaces X and Y, respectively,

$$(A \oplus B)(x \oplus y) = Ax \oplus By, \quad x \oplus y \in X \oplus Y.$$

It is well known that

(2)
$$\max\{\mu(A), \mu(B)\} \le \mu(A \oplus B) \le \mu(A) + \mu(B).$$

One might try to characterize the extremes, that is: When $\mu(A \oplus B) = \max\{\mu(A), \mu(B)\}$? When $\mu(A \oplus B) = \mu(A) + \mu(B)$? It is well known that $\mu(A \oplus B) = \max\{\mu(A), \mu(B)\}$ if the spectra $\sigma(A)$ and $\sigma(B)$ are well separated, i.e., their polynomially convex hulls are disjoint (see, e.g., [7]).

In this section we shall be interested in the equality $\mu(A \oplus B) = \mu(A) + \mu(B)$. In this connection we shall prove the following theorem which generalizes and strengthens some results in [3–5]. (More general results related to the equality $\mu(A \oplus B) = \mu(A) + \mu(B)$ can be found, for instance, in [2, 7–10]).

THEOREM 1. Let Y be a Banach space with a basis $\{e_n\}_{n\geq 0}$ of unit vectors, which is continuously embedded in l^p for some $p, 1 \leq p \leq \infty$. Let $\{\lambda_n\}_{n\geq 0}$ denote a bounded sequence of nonzero complex numbers $\lambda_n \in \mathbb{C}$, and let T be the corresponding weighted shift operator acting in Y, $Te_n = \lambda_n e_{n+1}$, $n \geq 0$. Let X be a separable Banach space and $A \in L(X)$. Suppose that:

- (i) $\sum_{n,m\geq N} |w_{n+m}/w_nw_m| =: \Omega_N < \infty$ for some $N \ge 0$, where $w_n := \lambda_0 \lambda_1 \cdots \lambda_{n-1}, w_0 := 1$.
- (ii) $\sum_{n=0}^{\infty} (\|A^n x\|_X) \|T^n e_0\|_Y)^q =: C_x < \infty$ for all $x \in X$, where 1/p + 1/q = 1.
- (iii) $||e_{n+m}||_Y \le c ||e_n||_Y ||e_m||_Y$ for all $n, m \ge 0$ and for some $c \ge 0$.

Then $\mu(T \oplus A) = \mu(T) + \mu(A) = 1 + \mu(A).$

The proof of the theorem uses the following product:

(3)
$$f \ \widetilde{\circledast} \ g := \sum_{n,m \ge 0} \frac{w_{n+m}}{w_n w_m} f(n) g(m) e_{n+m}$$

where $f = \sum_{n=0}^{\infty} f(n)e_n, g = \sum_{n=0}^{\infty} g(n)e_n \in Y.$

LEMMA 2. $(Y, \widetilde{\circledast})$ is a Banach algebra with the unit $f = e_0$ and $\mathcal{M}(Y, \widetilde{\circledast}) = \{0\}$, *i.e.*, its maximal ideal space $\mathcal{M}(Y, \widetilde{\circledast})$ consists of one homomorphism $f \mapsto f(0)$.

Proof. First we prove that

(4)
$$\|f \widetilde{\circledast} g\| \le C \|f\| \|g\|$$

for all $f, g \in Y$ and for some number C > 0, not depending on f, g.

Note that if N = 0, then (4) is immediate from (3), and so assume that $N \ge 1$. By setting $R_n(f) := \sum_{k \ge n} f(k)e_k$, and using (i) and the inequalities

$$||R_n(T^k f)|| \le ||T^k f||, \quad k = 0, 1, \dots, N - 1, ||T^k|| \le \sup\{|\lambda_n \lambda_{n+1} \cdots \lambda_{n+k-1}|\}_{n=1}^{\infty} =: \Lambda_k,$$

we have

$$\begin{split} f \ \widetilde{\circledast} \ g &= \sum_{n,m \ge 0} \frac{w_{n+m}}{w_n w_m} f(n) g(m) e_{n+m} \\ &= f(0) \sum_{m=0}^{\infty} g(m) e_m + \frac{f(1)}{w_1} \sum_{m=0}^{\infty} g(m) \frac{w_{m+1}}{w_m} e_{m+1} \\ &+ \frac{f(2)}{w_2} \sum_{m=0}^{\infty} g(m) \frac{w_{m+2}}{w_m} e_{m+2} + \cdots \\ &+ \frac{f(N-1)}{w_{N-1}} \sum_{m=0}^{\infty} g(m) \frac{w_{m+N-1}}{w_m} e_{m+N-1} \\ &+ g(0) \sum_{n=N}^{\infty} f(n) e_n + \frac{g(1)}{w_1} \sum_{n=N}^{\infty} f(n) \frac{w_{n+1}}{w_n} e_{n+1} \\ &+ \frac{g(2)}{w_2} \sum_{n=N}^{\infty} f(n) \frac{w_{n+2}}{w_n} e_{n+2} + \cdots \\ &+ \frac{g(N-1)}{w_{N-1}} \sum_{n=N}^{\infty} f(n) \frac{w_{n+N-1}}{w_n} e_{n+N-1} \\ &+ \sum_{n=N}^{\infty} \sum_{m=N}^{\infty} \frac{w_{n+m}}{w_n w_m} f(n) g(m) e_{n+m} \end{split}$$

$$= f(0)g + \frac{f(1)}{w_1}Tg + \frac{f(2)}{w_2}T^2g + \dots + \frac{f(N-1)}{w_{N-1}}T^{N-1}g + g(0)R_N(f) + \frac{g(1)}{w_1}R_N(Tf) + \frac{g(2)}{w_2}R_N(T^2f) + \dots + \frac{g(N-1)}{w_{N-1}}R_N(T^{N-1}f) + \sum_{n=N}^{\infty}\sum_{m=N}^{\infty}\frac{w_{n+m}}{w_nw_m}f(n)g(m)e_{n+m}.$$

From this, by using (iii), the equality $|f(i)| = ||f(i)e_i||_Y$ and inequality (1) we obtain

$$\begin{split} \|f \ \widetilde{\circledast} \ g\| &\leq |f(0)| \, \|g\| + \frac{|f(1)|}{|w_1|} \|Tg\| + \cdots \\ &+ \frac{|f(N-1)|}{|w_{N-1}|} \, \|T^{N-1}g\| + |g(0)| \, \|R_N(f)\| \\ &+ \frac{|g(1)|}{|w_1|} \|R_N(Tf)\| + \cdots + \frac{|g(N-1)|}{|w_{N-1}|} \, \|R_N(T^{N-1}f)\| \\ &+ \sum_{n=N}^{\infty} \sum_{m=N}^{\infty} \left| \frac{w_{n+m}}{w_n w_m} \right| \|f(n)e_n\| \|g(m)e_m\| \\ &\leq c \Big[\left(1 + \frac{\|T\|}{|w_1|} + \cdots + \frac{\|T^{N-1}\|}{|w_{N-1}|} \right) + \left(1 + \frac{\|T\|}{|w_1|} + \cdots + \frac{\|T^{N-1}\|}{|w_{N-1}|} \right) \\ &+ \sum_{n=N}^{\infty} \sum_{m=N}^{\infty} \left| \frac{w_{n+m}}{w_n w_m} \right| \Big] \|f\| \|g\| \\ &\leq c \Big[2 \sum_{i=0}^{N-1} \frac{\Lambda_i}{|w_i|} + \Omega_N \Big] \|f\| \|g\| =: C \|f\| \|g\|. \end{split}$$

By standard arguments (i.e., by passing to the equivalent norm in Y) we deduce from the last inequality that (Y, \mathfrak{F}) is a Banach algebra. Clearly, $f \mathfrak{F} = e_0 = f$ for each $f \in Y$.

To prove that $\mathcal{M}(Y, \widehat{\circledast}) = \{0\}$, it suffices to show that an element $f \in Y$ is $\widehat{\circledast}$ -invertible if and only if $f(0) \neq 0$. In fact, let $f(0) \neq 0$. Let us prove that then \mathcal{D}_f , where $\mathcal{D}_f g := f \widehat{\circledast} g$, is an invertible operator in Y (boundedness of \mathcal{D}_f is a consequence of (4)). Rewrite \mathcal{D}_f in the form $\mathcal{D}_f = f(0)I + \mathcal{D}_{f-f(0)}$ and set

$$h := f - f(0)$$
 and $F := \underbrace{h \underbrace{\widetilde{\circledast} \cdots \widetilde{\circledast} h}_{N+1}}_{N+1}$.

It is easy to verify that $F(0) = F(1) = \cdots = F(N) = 0$. Therefore for every $g \in Y$ and M > N we obtain

$$\begin{aligned} \mathcal{D}_{h}^{N+1}g &= F \ \widehat{\circledast} \ g \\ &= g(0)R_{N+1}(f) + \frac{g(1)}{w_{1}} R_{N+1}(TF) + \frac{g(2)}{w_{2}} R_{N+1}(T^{2}F) \\ &+ \dots + \frac{g(N)}{w_{N}} R_{N+1}(T^{N}F) + \sum_{n \ge N+1} \sum_{m \ge N+1} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m} \\ &= \sum_{i=0}^{N} \frac{g(i)}{w_{i}} R_{N+1}(T^{i}F) + \sum_{n \ge N+1} \sum_{m \ge N+1} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m} \\ &= \sum_{i=0}^{N} \frac{g(i)}{w_{i}} R_{N+1}(T^{i}F) + \sum_{n=N+1}^{M} \sum_{m=N+1}^{M} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m} \\ &+ \sum_{n=N+1}^{M} \sum_{m=N+1}^{\infty} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m} \\ &+ \sum_{n=M+1}^{\infty} \sum_{m=N+1}^{\infty} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m}. \end{aligned}$$

It is clear that the operator \mathcal{K}_M defined by

$$\mathcal{K}_{M}g := \sum_{i=0}^{N} \frac{g(i)}{w_{i}} R_{N+1}(T^{i}F) + \sum_{n=N+1}^{M} \sum_{m=N+1}^{M} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m},$$

is a finite-rank (hence compact) operator. By considering (iii) and estimate (4) we obtain

$$\begin{split} \|\mathcal{D}_{h}^{N+1} - \mathcal{K}_{M}\|_{L(Y)} &= \sup_{\|g\| \le 1} \|\mathcal{D}_{h}^{N+1}g - \mathcal{K}_{M}g\| \\ &= \sup_{\|g\| \le 1} \left\| \sum_{n=N+1}^{M} \sum_{m=M+1}^{\infty} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m} \right. \\ &+ \sum_{n=M+1}^{\infty} \sum_{m=N+1}^{\infty} \frac{w_{n+m}}{w_{n}w_{m}} F(n)g(m)e_{n+m} \\ &\leq C \|F\| \left[\sum_{n=N+1}^{M} \sum_{m=M+1}^{\infty} \left| \frac{w_{n+m}}{w_{n}w_{m}} \right| + \sum_{n=M+1}^{\infty} \sum_{m=N+1}^{\infty} \left| \frac{w_{n+m}}{w_{n}w_{m}} \right| \right] \to 0 \end{split}$$

as $M \to \infty$. Hence $\mathcal{K}_M \rightrightarrows \mathcal{D}_h^{N+1}$ as $M \to \infty$, which means that \mathcal{D}_h^{N+1} is compact.

On the other hand, if $g \in Y$ and $\mathcal{D}_f g = 0$, then it follows from (3) that

$$(\mathcal{D}_f g)(n) = \sum_{k=0}^n f(k)g(n-k) \frac{w_n}{w_k w_{n-k}} = 0, \quad n = 0, 1, 2, \dots$$

Since $f(0) \neq 0$, simple calculations show that $0 = g(0) = g(1) = \cdots$, that is, g = 0, which implies that $\ker(f(0)I + \mathcal{D}_h) = \ker \mathcal{D}_f = \{0\}$. Then by a well known theorem of S. M. Nikol'skiĭ (see [1]) we deduce that \mathcal{D}_f is invertible in Y, that is, f is \mathfrak{F} -invertible in Y.

Conversely, if f is \circledast -invertible then it follows from (3) that $f(0) \neq 0$, i.e., $f(0) \neq 0$. The lemma is proved.

LEMMA 3. $f \in \operatorname{Cyc}(T)$ if and only if $f(0) \neq 0$.

Proof. It follows from (3) that

$$w_{1}z \stackrel{\approx}{\circledast} g = w_{1}z \stackrel{\approx}{\circledast} \sum_{n=0}^{\infty} g(n)e_{n} = \sum_{n=0}^{\infty} g(n)w_{1}(e_{1} \circledast e_{n})$$
$$= \sum_{n=0}^{\infty} g(n)w_{1}\frac{w_{n+1}}{w_{1}w_{n}}e_{n+1} = \sum_{n=0}^{\infty} g(n)\frac{w_{n+1}}{w_{n}}e_{n+1}$$
$$= \sum_{n=0}^{\infty} g(n)\lambda_{n}e_{n+1} = \sum_{n=0}^{\infty} g(n)Te_{n} = T\left(\sum_{n=0}^{\infty} g(n)e_{n}\right) = Tg$$

for all $g \in Y$, and in general,

(5)
$$T^n g = w_n e_n \circledast g$$

for any $g \in Y$ and $n \ge 0$. Hence

(6)
$$E_f := \operatorname{span}\{T^n f : n \ge 0\} = \operatorname{span}\{w_n e_n \circledast f : n \ge 0\}$$
$$= \operatorname{span}\{\mathcal{D}_f(w_n e_n) : n \ge 0\} = \operatorname{clos} \mathcal{D}_f Y.$$

Therefore, if $f \in \operatorname{Cyc}(T)$ then $\operatorname{clos} \mathcal{D}_f Y = Y$, which implies the existence of a sequence $\{f_n\}_{n\geq 0} \in Y$ such that $f \oplus f_n \to e_0$ in Y as $n \to \infty$. Consequently, $(f \oplus f_n)(0) \to 1$ as $n \to \infty$, or $f(0)f_n(0) \to 1$ as $n \to \infty$, and therefore, $f(0) \neq 0$.

Conversely, if $f(0) \neq 0$, then according to the equality (6) and Lemma 2, we have $E_f = Y$, that is, $f \in \operatorname{Cyc}(T)$.

Proof of Theorem 1. If $\mu(A) = \infty$, then by inequalities (2) the assertion of the theorem is obvious, and therefore we will assume that $\mu(A) = n < \infty$.

Suppose that $\mu(T \oplus A) = \mu(A) = n$. Let $\{f_i \oplus x_i\}_{i=1}^n$ be a cyclic set for $T \oplus A$. Then $\{f_i\}_{i=1}^n$ is a cyclic set for T. Suppose that $f_k(0) \neq 0$ for $k = 1, \ldots, l$ and $f_k(0) = 0$ for $k = l + 1, \ldots, n$. We set $g_k = f_k, y_k = x_k$ for $k = 1, \ldots, l$, and $g_k = f_k - f_1, y_k = x_k - x_1$ for $k = l + 1, \ldots, n$. Then $\{g_i \oplus y_i\}_{i=1}^n$ is a cyclic set, and since $g_k(0) \neq 0$ for $k = 1, \ldots, n$, by Lemmas 2 and 3 there exist $F_k \in Y$ such that $F_k \circledast g_k = e_0, k = 1, \ldots, n$. Set

$$\widetilde{x}_k = \sum_{m \ge 0} \frac{F_k(m)}{w_m} A^m y_k.$$

Then

$$g_k \oplus y_k = \sum_{m \ge 0} \frac{g_k(m)}{w_m} (T \oplus A)^m (e_0 \oplus \widetilde{x}_k).$$

Therefore

$$g_k \oplus y_k \in \operatorname{span}\{(T \oplus A)^m (e_0 \oplus \widetilde{x}_i) : m \ge 0, i = 1, \dots, n\}$$

for k = 1, ..., n and the set $\{e_0 \oplus \widetilde{x}_i\}_{i=1}^n$ is cyclic for $T \oplus A$. We now set $\overline{x}_1 = \widetilde{x}_1, \overline{x}_k = \widetilde{x}_1 - \widetilde{x}_k, k = 2, ..., n$; this yields a new cyclic set $\{e_0 \oplus \overline{x}_1, \mathbf{0} \oplus \overline{x}_2, ..., \mathbf{0} \oplus \overline{x}_n\}$ for $T \oplus A$. Therefore, for any $x \in X$, there exists a family $\{P_{m,i} : 1 \leq i \leq n, m \geq 1\}$ of polynomials such that

$$\lim_{m \to \infty} P_{m,1}(T)e_0 = 0 \quad \text{in } Y,$$
$$\lim_{m \to \infty} \sum_{i=1}^n P_{m,i}(A)\overline{x}_i = x \quad \text{in } X.$$

By using (5) we deduce that $\lim_{m\to\infty} q_{m,1} = 0$ in Y, where

$$q_{m,1} := \sum_{k \ge 0} w_k P_{m,1}(k) e_k.$$

Then by using condition (ii) of the theorem, the equality $||T^k e_0|| = |w_k|$ and the Hölder inequality we deduce that

$$\begin{aligned} \|P_{m,1}(A)\overline{x}_{1}\| &= \left\|\sum_{k\geq 0} P_{m,1}(k)A^{k}\overline{x}_{1}\right\| \leq \sum_{k\geq 0} |P_{m,1}(k)| \, \|A^{k}\overline{x}_{1}\| \\ &= \sum_{k\geq 0} |w_{k}| \, |P_{m,1}(k)| \, \frac{\|A^{k}\overline{x}_{1}\|}{|w_{k}|} \\ &\leq \left(\sum_{k\geq 0} |w_{k}| \, |P_{m,1}(k)|^{p}\right)^{1/p} \left(\sum_{k\geq 0} \left(\frac{\|A^{k}\overline{x}_{1}\|}{\|T^{k}e_{0}\|}\right)^{q}\right)^{1/q} \\ &= C_{\overline{x}_{1}}^{1/q} \left(\sum_{k\geq 0} |q_{m,1}(k)|^{p}\right)^{1/p} = C_{\overline{x}_{1}}^{1/q} \|q_{m,1}\|_{l^{p}} \leq C_{\overline{x}_{1}}^{1/q} \widetilde{C} \|q_{m,1}\|_{Y}, \end{aligned}$$

so that $\lim_{m\to\infty} P_{m,1}(A)\overline{x}_1 = 0$. Hence $\lim_{m\to\infty} \sum_{i=2}^n P_{m,i}(A)\overline{x}_i = x$. Since the vector x is arbitrary, the last relation means that $\{\overline{x}_i\}_{i=2}^n$ is a cyclic set for A, and hence $\mu(A) \leq n-1$. But this contradicts the assumption $\mu(A) = n$.

I am grateful to the referee for his numerous suggestions.

REFERENCES

 L. V. Kantorovich and G. P. Akilov, *Functional Analysis*, Nauka, Moscow, 1977 (in Russian).

- [2] M. T. Karaev, On multiplicity of the spectrum of orthogonal sums of operators, in: Spectral Theory of Operators and its Applications 10, ELM, Baku, 1991, 165–167 (in Russian).
- [3] —, An addition theorem on multiplicities of the spectrum, Trudy IMM AN Azerb.
 8 (16) (1998), 123–128 (in Russian).
- [4] —, Some applications of Duhamel product, Zap. Nauchn. Sem. POMI 303 (2003), 145–160 (in Russian).
- [5] —, On some applications of the ordinary and extended Duhamel products, Siberian Math. J. 46 (2005), 431–442.
- [6] N. K. Nikol'skiĭ, Invariant subspaces in operator theory and function theory, Itogi Nauki i Tehniki, Ser. Mat. Analiz, Moscow 12 (1974), 199–412 (in Russian).
- [7] —, Hints to the calculation of spectral multiplicity for direct sums, Zap. Nauchn. Sem. LOMI 126 (1983), 150–158 (in Russian).
- [8] —, Multiplicity phenomen I. An introduction and maxi-formulas, in: Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 9–57.
- [9] V. I. Vasyunin, Formula for multiplicity of contractions with finite defect indices, in: Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 281–304.
- [10] V. I. Vasyunin and M. T. Karaev, Spectral multiplicity of certain contractions, Zap. Nauchn. Sem. LOMI 157 (1987), 23–29 (in Russian); English transl.: J. Soviet Math. 44 (1989), 762–767.

Suleyman Demirel University Department of Mathematics 32260 Isparta, Turkey E-mail: garayev@fef.sdu.edu.tr

> Received 22 November 2004; revised 20 June 2005

(4531)