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Abstract. Let F : FM → VB be a vector bundle functor. First we classify all nat-
ural operators Tproj|FMm,n

 T (0,0)(F|FMm,n
)∗ transforming projectable vector fields

on Y to functions on the dual bundle (FY )∗ for any FMm,n-object Y . Next, under some
assumption on F we study natural operators T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗ lifting hori-

zontal 1-forms on Y to 1-forms on (FY )∗ for any Y as above. As an application we classify
natural operators T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗ for some vector bundle functors F on

fibered manifolds.

0. Introduction. In this paper we consider the following categories
over manifolds: the categoryMf of manifolds and maps, the categoryMfm
of m-dimensional manifolds and embeddings, the category FM of fibered
manifolds and fibered maps, the category FMm,n of fibered manifolds with
m-dimensional bases and n-dimensional fibers and fibered embeddings, and
the category VB of all vector bundles and vector bundle maps.

The notions of bundle functors and natural operators can be found in
the fundamental monograph [3].

In [5], given a vector bundle functor F : Mf → VB we classified all
natural operators A : T|Mfm  T (0,0)(F|Mfm)∗ transforming a vector field
X on an m-manifold M into a function A(X) : (FM)∗ → R on the dual
vector bundle (FM)∗ and proved that every natural operator B : T ∗|Mfm

 
T ∗(F|Mfm)∗ transforming a 1-form ω on an m-manifold M into a 1-form
B(ω) on (FM)∗ is of the form B(ω) = aωV +λ for some uniquely determined
canonical map a : (FM)∗ → R and some canonical 1-form λ on (FM)∗.
These results were generalizations of [1, 4].

In the present paper we study similar problems for a vector bundle
functor F : FM → VB on a fibered manifold instead of on a mani-
fold. Modifying methods from [5], for natural numbers m and n we clas-
sify all natural operators A : Tproj|FMm,n

 T (0,0)(F|FMm,n
)∗ transform-
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ing a projectable vector field X on an (m,n)-dimensional fibered mani-
fold Y into a function A(X) : (FY )∗ → R on the dual vector bundle
(FY )∗ and prove (under some assumption on F ) that every natural op-
erator B : T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗ transforming a horizontal 1-form ω

on an (m,n)-dimensional fibered manifold Y into a 1-form B(ω) on (FY )∗

is of the form B(ω) = aωV +λ for some uniquely determined canonical map
a : (FY )∗ → R and some canonical 1-form λ on (FY )∗. As an application
we describe all natural operators B : T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗ for some

vector bundle functors F on fibered manifolds.
From now on the usual coordinates on Rm,n, the trivial bundle Rm×Rn

over Rm, will be denoted by x1, . . . , xm, y1, . . . , yn.
All manifolds are assumed to be finite-dimensional and smooth, i.e. of

class C∞. Maps between manifolds are assumed to be smooth.

1. Natural operators Tproj|FMm,n
 T (0,0)(F|FMm,n

)∗. Let F : FM
→ VB be a vector bundle functor. Let m and n be natural numbers. In this
section modifying methods from [5] we classify the natural operators A :
Tproj|FMm,n

 T (0,0)(F|FMm,n
)∗ transforming a projectable vector field X

on an (m,n)-dimensional fibered manifold Y into a function A(X) : (FY )∗

→ R on the dual vector bundle (FY )∗.
We recall that a projectable vector field on a fibered manifold Y over M

is a vector field X on Y such that there exists an underlying vector field X
on M which is p-related with X, where p : Y →M is the bundle projection.
The flow of a projectable vector field is formed by FM-morphisms.

The following example is an extension of Example 1 in [5] to fibered
manifolds.

Example 1. Let v ∈ F0(R1,0). Consider a projectable vector field X
on an (m,n)-dimensional fibered manifold Y over M . We define Av(X) :
(FY )∗ → R by Av(X)η = 〈η, F (ΦXy )(v)〉 for η ∈ (FyY )∗, y ∈ Yx, x ∈ M .
Here ΦXy : (ε, ε) → Y with ΦXy (t) = Exp(tX)y for t ∈ (−ε, ε), ε > 0. We

consider ΦXy as a fibered map R1,0 → Y covering ΦXx : (−ε, ε)→ M , where

Φ
X
x (t) = Exp(tX)x for t ∈ (−ε, ε). The correspondence Av : Tproj|FMm,n

 
T (0,0)(F|FMm,n

)∗ is a natural operator.

Proposition 1. Let v1, . . . , vL ∈ F0R1,0 be a basis of the vector space
F0R1,0. Every natural operator A : Tproj|FMm,n

 T (0,0)(F|FMm,n
)∗ is of

the form
A = H(Av1 , . . . , AvL)

for some uniquely determined smooth map H ∈ C∞(RL).

Proof. We modify the proof of Proposition 1 in [5] as follows. Let v∗1 , . . .
. . . , v∗L ∈ (F0R1,0)∗ be the dual basis. Let q : Rm×Rn → R be the projection
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onto the first factor. It is a fibered map Rm,n → R1,0 over the projection
Rm → R onto the first factor. For A as above we define H : RL → R by

H(t1, . . . , tL) = A(∂/∂x1)(F0q)∗(
∑L
s=1 tsv

∗
s ).

We prove that A = H(Av1 , . . . , AvL). Since any projectable vector field X on
an FMm,n-object Y such that the underlying vector fieldX is non-vanishing
is locally ∂/∂x1 in some local fiber coordinates on Y , it is sufficient to show
that

A(∂/∂x1)η = H(Av1(∂/∂x1)η, . . . , AvL(∂/∂x1)η)

for any η ∈ (F0Rm,n)∗. By the invariance of A and Avs with respect to
FMm,n-morphisms (x1, t−1x2, . . . , t−1xm, t−1y1, . . . , t−1yn) : Rm × Rn →
Rm × Rn for t 6= 0 and next by letting t → 0, we can assume that η =
(F0q)∗(

∑L
s=1 tsv

∗
s ). Now, it remains to observe that Avs(∂/∂x1)η = ts for

s = 1, . . . , L.
The uniqueness of H is clear because (Avs(∂/∂x1))Ls=1 is a surjection

onto RL.

We have a functor i :Mf → FM, i(M) = (idM : M → M), i(f) = f ,
M ∈ obj(Mf), f : M → N , which is an Mf -morphism.

Thus we have a vector bundle functor F ◦i :Mf → VB. So, by [2], we can
choose a basis v1, . . . , vL ∈ F0R1,0 = (F ◦ i)0R such that vs is homogeneous
of weight ns ∈ N ∪ {0}, i.e. F (τ id)(vs) = τnsvs for any τ ∈ R.

(∗) By a permutation we assume that v1, . . . , vk1 are of weight 0, and
vk1+1, . . . , vk2 are of weight 1, and so on.

Then Av1(X), . . . , Avk1 (X) do not depend on X, i.e. Av1 , . . . , Avk1 are nat-
ural functions on (FY )∗. Moreover Avk1+1(X), . . . , Avk2 (X) depend linearly
on X, i.e. Avk1+1 , . . . , Avk2 are linear operators.

The following corollaries are simple consequences of Proposition 1 and
the homogeneous function theorem.

Corollary 1. Every natural (canonical) function G on (F|FMm,n
)∗ is

of the form
G = K(Av1 , . . . , Avk1 )

for some uniquely determined K ∈ C∞(Rk1). If F ◦ i has the point property ,
i.e. F ◦ i(pt) = pt, then G = const, where pt denotes a one-point manifold.

Corollary 2. Let A : Tproj|FMm,n
 T (0,0)(F|FMm,n

)∗ be a natural
linear operator. Then

A =
k2∑

s=k1+1

Ks(Av1 , . . . , Avk1 )Avs

for some uniquely determined Ks ∈ C∞(Rk1).
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2. A decomposition proposition. Let F and v1, . . . , vL be as in Sec-
tion 1 with the assumption (∗). Let i : Mf → FM be the functor as in
Section 1.

Let p : Y → M be a fibered manifold. A 1-form ω : TY → R on Y is
called horizontal if ω|V Y = 0, where V Y is the vertical bundle.

Example 2. If ω : TY → R is a horizontal 1-form on a fibered mani-
fold Y , we have its vertical lifting BV (ω) = ω ◦ Tπ : T (FY )∗ → R to
(FY )∗, where π : (FY )∗ → Y is the bundle projection. The correspondence
BV : T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗ is a natural operator.

Assumption 1. From now on we assume that there exists a basis w1, . . .
. . . , wK ∈ F0Rm,n such that ws is homogeneous of weight ns ∈ N∪{0}. This
means that F (τ idRm×Rn)(ws) = τnsws for any τ ∈ R.

Remark 1. It seems that every vector bundle functor F : FM → VB
satisfies Assumption 1.

Proposition 2 (Decomposition Proposition). Consider a natural oper-
ator B : T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗. Under Assumption 1 there exists a

uniquely determined natural function a on (F|FMm,n
)∗ such that

B = aBV + λ

for some canonical 1-form λ on (F|FMm,n
)∗.

Lemma 1. (a) We have (B(ω)−B(0))|(V (FRm,n)∗)0 = 0 for any hori-
zontal 1-form ω on Rm,n, where (V (FRm,n)∗)0 is the fiber over 0 ∈ Rm×Rn
of the vertical subbundle in T (FRm,n)∗.

(b) If F ◦ i has the point property then B(ω)|(V (FRm,n)∗)0 = 0 for any
horizontal 1-form ω on Rm,n.

Proof. We modify the proof of Lemma 1 in [5] as follows.
(a) We use the invariance of (B(ω)−B(0))|(V (FRm,n)∗)0 with respect to

the homotheties t−1 idRm×Rn for t 6= 0 and apply the homogeneous function
theorem. We deduce that (B(ω)−B(0))|(V (FRm,n)∗)0 is independent of ω.

(b) We observe that if F ◦i has the point property then (F0Rm,n)∗ has no
non-zero homogeneous elements of weight 0. Next, we use the invariance of
B(ω)|(V (FRm,n)∗)0 with respect to the homotheties t−1 idRm×Rn for t 6= 0
and let t→ 0.

Proof of Proposition 2. We modify the proof of Proposition 2 in [5]. Re-
placing B by B − B(0) we can assume B(0) = 0 and B(ω)|(V (FRm,n)∗)0

= 0. Then B is determined by the values 〈B(ω)η, F ∗(∂/∂x1)η〉 for all hori-
zontal 1-forms ω =

∑m
i=1 ωidx

i on Rm,n and η ∈ (F0Rm,n)∗, with F ∗(∂/∂x1)
the complete lifting (flow prolongation) of ∂/∂x1 to (FRm,n)∗. Using the in-
variance of B with respect to the homotheties t−1 idRm×Rn for t 6= 0 we get
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the homogeneity condition

t〈B(ω)η, F ∗(∂/∂x1)η〉
= 〈B((t idRm×Rn)∗ω)F (t−1 idRm×Rn )∗(η), F

∗(∂/∂x1)F (t−1 idRm×Rn )∗(η)〉.
Then by the non-linear Peetre theorem [3], the homogeneous function the-
orem and B(0) = 0 we deduce that 〈B(ω)η, F ∗(∂/∂x1)η〉 is a linear com-
bination of ω1(0), . . . , ωm(0) with coefficients being smooth maps in homo-
geneous coordinates of η of weight 0. Then using the invariance of B with
respect to (x1, t−1x2, . . . , t−1xm, t−1y1, . . . , t−1yn) : Rm × Rn → Rm × Rn
for t 6= 0 and letting t→ 0 we end the proof.

3. On canonical 1-forms on (F|FMm,n
)∗. The injectivity in the fol-

lowing proposition is a consequence of Lemma 1(b).

Proposition 3. Every natural (canonical) 1-form λ on (F|FMm,n
)∗ in-

duces a natural linear operator A(λ) : Tproj|FMm,n
 T (0,0)(F|FMm,n

)∗ such
that A(λ)(X)η = 〈λη, F ∗(X)η〉 for η ∈ (FY )∗, X ∈ Xproj(Y ), where F ∗(X)
is the complete lifting (flow operator) of X to (FY )∗. If F ◦ i has the point
property , then (under Assumption 1) the correspondence λ 7→ A(λ) is a lin-
ear injection.

4. A corollary. Let i :Mf → FM be the functor as in Section 1.

Corollary 3. Assume that F ◦i has the point property and there are no
non-zero elements from F0R1,0 of weight 1. (For example, let F = F1⊗F2 :
FM → VB be the tensor product of two vector bundle functors F1, F2 :
FM → VB such that F1 ◦ i, F2 ◦ i have the point property.) Then (under
Assumption 1) every natural operator B : T ∗hor|FMm,n

 T ∗(F|FMm,n
)∗ is

a constant multiple of the vertical lifting.

Proof. Since there are no non-zero elements from F0R1,0 of weight 1, we
see that every canonical 1-form on (F|FMm,n

)∗ is zero because of Corollary 2
and Proposition 3. Then Proposition 2 together with Corollary 1 ends the
proof.

5. Applications. From now on let r, s, q be natural numbers with s ≥
r ≤ q.

Application 1. The concept of r-jets can be generalized as follows
(see [3]). Let Y → M and Z → N be fibered manifolds. We recall that
two fibered maps f, g : Y → Z with base maps f, g : M → N determine

the same (r, s, q)-jet j(r,s,q)
y f = j

(r,s,q)
y g at y ∈ Yx, x ∈ M , if jryf = jryg,

jsy(f |Yx) = jsy(g|Yx) and jqxf = jqxg. The space of all (r, s, q)-jets of Y into Z
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is denoted by J (r,s,q)(Y,Z). The composition of fibered maps induces the
composition of (r, s, q)-jets [3, p. 126].

The vector r-tangent bundle functor T (r) = (Jr(·,R)0)∗ :Mf → VB can
be generalized as follows. Let R1,1 = R×R be the trivial bundle over R. The
space J (r,s,q)(Y,R1,1)0, 0 ∈ R2, has an induced structure of a vector bundle
over Y . Every fibered map f : Y → Z, f(y) = z, induces a linear map
λ(j(r,s,q)

y f) : J (r,s,q)
z (Z,R1,1)0 → J

(r,s,q)
y (Y,R1,1)0 by means of the jet com-

position. If we denote by T (r,s,q)Y the dual vector bundle of J (r,s,q)(Y,R1,1)0

and define T (r,s,q)f : T (r,s,q)Y → T (r,s,q)Z by using the dual maps to
λ(j(r,s,q)

y f), we obtain a vector bundle functor T (r,s,q) : FM→ VB.

Example 3. We have canonical 1-forms λ(r,s,q)
α : TJ (r,s,q)(Y,R1,1)0 → R

on J (r,s,q)(Y,R1,1)0 for α = 1, 2 defined by λ(r,s,q)
α (v) = dγα(Tπ(v)) for v ∈

TwJ
(r,s,q)(Y,R1,1)0, w = j

(r,s,q)
y (γ1, γ2), y ∈ Y , where π : J (r,s,q)(Y,R1,1)0

→ Y is the bundle projection.

Corollary 4. Every natural operator

B : T ∗hor|FMm,n
 T ∗(J (r,s,q)(·,R1,1)0)

is a linear combination of the vertical lifting BV and the canonical 1-forms
λ

(r,s,q)
1 and λ(r,s,q)

2 with real coefficients.

Proof. The vector bundle functor T (r,s,q) satisfies Assumption 1. More-
over, T (r,s,q) ◦ i has the point property and the subspace of elements from
T

(r,s,q)
0 R1,0 of weight 1 is 2-dimensional. Then by Proposition 3 together

with Corollaries 1 and 2, the space of canonical 1-forms on J (r,s,q)(·,R1,1)0

is at most 2-dimensional. Now, Proposition 2 ends the proof.

Application 2. Let r, s be integers such that s ≥ r ≥ 0. The concept
of r-jets can also be generalized as follows (see [3]). Let Y →M be a fibered
manifold and Q be a manifold. We recall that two maps f, g : Y → Q

determine the same (r, s)-jet j(r,s)
y f = j

(r,s)
y g at y ∈ Yx, x ∈M , if jryf = jryg

and jsy(f |Yx) = jsy(g|Yx). The space of all (r, s)-jets of Y into Q is denoted
by J (r,s)(Y,Q).

The vector r-tangent bundle functor T (r) = (Jr(·,R)0)∗ : Mf → VB
can be generalized as follows. The space J (r,s)(Y,R)0, 0 ∈ R, has an induced
structure of a vector bundle over Y . Every fibered map f : Y → Z, f(y) = z,
induces a linear map λ(j(r,s)

y f) : J (r,s)
z (Z,R)0 → J

(r,s)
y (Y,R)0 by means

of the jet composition. If we denote by T (r,s)Y the dual vector bundle of
J (r,s)(Y,R)0 and define T (r,s)f : T (r,s)Y → T (r,s)Z by using the dual maps
to λ(j(r,s)

y f), we obtain a vector bundle functor T (r,s) : FM→ VB.

Example 4. Assume additionally r ≥ 1. We have a canonical 1-form
λ(r,s) : TJ (r,s)(Y,R)0 → R on J (r,s)(Y,R)0 defined by λ(r,s)(v) = dγ(Tπ(v))
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for v ∈ TwJ (r,s)(Y,R)0, w = j
(r,s)
y (γ), y ∈ Y , where π : J (r,s)(Y,R)0 → Y is

the bundle projection.

Corollary 5. Let r, s be as above. Every natural operator

B : T ∗hor|FMm,n
 T ∗(J (r,s)(·,R)0)

is a linear combination of the vertical lifting BV and the canonical 1-form
λ(r,s) with real coefficients. If r = 0, then the λ(0,s) do not occur.

Proof. Note that the subspace of elements from T
(r,s)
0 R1,0 of weight 1 is

1-dimensional, and use the same arguments as in the proof of Corollary 4.

Application 3. For any fibered manifold Y we have the vertical bundle
V Y of Y and for every FM-map f : Y → Z we have the induced map
V f : V Y → V Z. The functor V : FM → VB is a vector bundle functor.
Let V ∗ = (V|FMm,n

)∗ be the dual bundle functor.

Corollary 6. Every natural operator B : T ∗hor|FMm,n
 T ∗V ∗ is a

constant multiple of the vertical lifting BV .

Proof. We observe that V ∼= T (0,1) and apply Corollary 5. Given a
FM-object p : Y → M , an isomorphism i : V Y → T (0,1)Y is given by
i(v)(j(0,1)

y γ) = dy(γ|Yp(y))(v).

Application 4. For any fibered manifold Y we have a vector bundle

JrT ∗horY = {jryω | ω is a horizontal 1-form on Y, y ∈ Y }
over Y . Let (JrT ∗hor)

∗Y = (JrT ∗horY )∗ be the dual bundle. Every FM-
map f : Y → Z induces a vector bundle map (JrT ∗hor)

∗f : (JrT ∗hor)
∗Y →

(JrT ∗hor)
∗Z covering f such that 〈(JrT ∗hor)

∗f(η), jrf(y)ω〉 = 〈η, jry(f∗ω)〉 for
η ∈ (JrT ∗hor)

∗
yY , jrf(y)ω ∈ (JrT ∗hor)f(y)Z, y ∈ Y . The functor (JrT ∗hor)

∗ :
FM→ VB is a vector bundle functor.

Given an FMm,n-object Y we have a canonical 1-form θr on JrT ∗horY
such that

〈θrw, v〉 = 〈ωy, Tπ(v)〉
for v ∈ Tw(JrT ∗horY ), w = jryω, y ∈ Y , ω ∈ Ω1

hor(Y ), where π : JrT ∗horY → Y
is the bundle projection.

Corollary 7. Every natural operator B : T ∗hor|FMm,n
 T ∗(JrT ∗hor) is

a linear combination of the vertical lifting BV and θr with real coefficients.

Proof. We observe that the subspace of elements from (JrT ∗hor)
∗
0R1,0 of

weight 1 is 1-dimensional.

Application 5. We can generalize Application 4 as follows. For any
fibered manifold Y we have a vector bundle

Jr(∧kT ∗hor)Y = {jryω | ω is a horizontal k-form on Y, y ∈ Y }
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over Y . Let (Jr(∧kT ∗hor))
∗Y = (Jr(∧kT ∗hor)Y )∗ be the dual bundle. Ev-

ery FM-map f : Y → Z induces a vector bundle map (Jr(∧kT ∗hor))
∗f :

(Jr(∧kT ∗hor))
∗Y → (Jr(∧kT ∗hor))

∗Z covering f such that

〈(Jr(∧kT ∗hor))
∗f(η), jrf(y)ω〉 = 〈η, jry(f∗ω)〉

for η ∈ (Jr(∧kT ∗hor))
∗
yY , jrf(y)ω ∈ (Jr(∧kT ∗hor))f(y)Z, y ∈ Y . Then

(Jr(∧kT ∗hor))
∗ : FM→ VB is a vector bundle functor.

Corollary 8. Let k ≥ 2. Every natural operator B : T ∗hor|FMm,n
 

T ∗(Jr(∧kT ∗hor)) is a constant multiple of the vertical lifting BV .

Proof. We observe that the subspace of elements from (Jr(∧kT ∗hor))
∗
0R1,0

of weight 1 is 0-dimensional.

Similar facts hold for

Jr(⊗kT ∗hor)Y = {jryτ | τ is a horizontal tensor field

of type (0, k) on Y, y ∈ Y },
Jr(�kT ∗hor)Y = {jryτ | τ is a horizontal symmetric tensor field

of type (0, k) on Y, y ∈ Y }
in place of Jr(∧kT ∗hor)Y .

Application 6. We can also generalize Application 4 as follows. Let r
and s be two integers with s ≥ r ≥ 0. For any fibered manifold Y we have
a vector bundle

J (r,s)T ∗horY = {j(r,s)
y ω | ω is a horizontal 1-form on Y, y ∈ Y }

over Y . Let (J (r,s)T ∗hor)
∗Y = (J (r,s)T ∗horY )∗ be the dual bundle. Every FM-

map f : Y → Z induces a vector bundle map (J (r,s)T ∗hor)
∗f : (J (r,s)T ∗hor)

∗Y
→ (J (r,s)T ∗hor)

∗Z covering f such that

〈(J (r,s)T ∗hor)
∗f(η), j(r,s)

f(y)ω〉 = 〈η, j(r,s)
y (f∗ω)〉

for η ∈ (J (r,s)T ∗hor)
∗
yY , j(r,s)

f(y)ω ∈ (J (r,s)T ∗hor)f(y)Z, y ∈ Y . Then (J (r,s)T ∗hor)
∗ :

FM→ VB is a vector bundle functor.
Given an FMm,n-object Y we have a canonical 1-form Θ(r,s) on

J (r,s)T ∗horY such that

〈Θ(r,s)
w , v〉 = 〈ωy, Tπ(v)〉

for v ∈ Tw(J (r,s)T ∗horY ), w = j
(r,s)
y ω, y ∈ Y , ω ∈ Ω1

hor(Y ), where π :
J (r,s)T ∗horY → Y is the bundle projection.

Corollary 9. Every natural operator B : T ∗hor|FMm,n
 T ∗(J (r,s)T ∗hor)

is a linear combination of the vertical lifting BV and Θ(r,s) with real coeffi-
cients.
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Proof. We observe that the subspace of elements from (J (r,s)T ∗hor)
∗
0R1,0

of weight 1 is 1-dimensional.

Of course, other applications are also possible. For example we can study
liftings to J (r,s)(∧kT ∗hor), J

(r,s)(⊗kT ∗hor), J
(r,s)(�kT ∗hor), J

r(T ∗), J (r,s)(T ∗),
etc.
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