VOL. 97

2003

NO. 2

THE NATURAL OPERATORS LIFTING HORIZONTAL 1-FORMS TO SOME VECTOR BUNDLE FUNCTORS ON FIBERED MANIFOLDS

 $_{\rm BY}$

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. Let $F : \mathcal{FM} \to \mathcal{VB}$ be a vector bundle functor. First we classify all natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{FM}_{m,n}})^*$ transforming projectable vector fields on Y to functions on the dual bundle $(FY)^*$ for any $\mathcal{FM}_{m,n}$ -object Y. Next, under some assumption on F we study natural operators $T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F_{|\mathcal{FM}_{m,n}})^*$ lifting horizontal 1-forms on $(FY)^*$ for any Y as above. As an application we classify natural operators $T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F_{|\mathcal{FM}_{m,n}})^*$ for some vector bundle functors F on fibered manifolds.

0. Introduction. In this paper we consider the following categories over manifolds: the category $\mathcal{M}f$ of manifolds and maps, the category $\mathcal{M}f_m$ of *m*-dimensional manifolds and embeddings, the category \mathcal{FM} of fibered manifolds and fibered maps, the category $\mathcal{FM}_{m,n}$ of fibered manifolds with *m*-dimensional bases and *n*-dimensional fibers and fibered embeddings, and the category \mathcal{VB} of all vector bundles and vector bundle maps.

The notions of bundle functors and natural operators can be found in the fundamental monograph [3].

In [5], given a vector bundle functor $F : \mathcal{M}f \to \mathcal{VB}$ we classified all natural operators $A : T_{|\mathcal{M}f_m} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{M}f_m})^*$ transforming a vector field X on an *m*-manifold M into a function $A(X) : (FM)^* \to \mathbb{R}$ on the dual vector bundle $(FM)^*$ and proved that every natural operator $B : T^*_{|\mathcal{M}f_m} \rightsquigarrow$ $T^*(F_{|\mathcal{M}f_m})^*$ transforming a 1-form ω on an *m*-manifold M into a 1-form $B(\omega)$ on $(FM)^*$ is of the form $B(\omega) = a\omega^V + \lambda$ for some uniquely determined canonical map $a : (FM)^* \to \mathbb{R}$ and some canonical 1-form λ on $(FM)^*$. These results were generalizations of [1, 4].

In the present paper we study similar problems for a vector bundle functor $F : \mathcal{FM} \to \mathcal{VB}$ on a fibered manifold instead of on a manifold. Modifying methods from [5], for natural numbers m and n we classify all natural operators $A : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F|_{\mathcal{FM}_{m,n}})^*$ transform-

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: bundle functor, natural operator.

ing a projectable vector field X on an (m, n)-dimensional fibered manifold Y into a function $A(X) : (FY)^* \to \mathbb{R}$ on the dual vector bundle $(FY)^*$ and prove (under some assumption on F) that every natural operator $B: T^*_{\operatorname{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F_{|\mathcal{FM}_{m,n}})^*$ transforming a horizontal 1-form ω on an (m, n)-dimensional fibered manifold Y into a 1-form $B(\omega)$ on $(FY)^*$ is of the form $B(\omega) = a\omega^V + \lambda$ for some uniquely determined canonical map $a: (FY)^* \to \mathbb{R}$ and some canonical 1-form λ on $(FY)^*$. As an application we describe all natural operators $B: T^*_{\operatorname{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F_{|\mathcal{FM}_{m,n}})^*$ for some vector bundle functors F on fibered manifolds.

From now on the usual coordinates on $\mathbb{R}^{m,n}$, the trivial bundle $\mathbb{R}^m \times \mathbb{R}^n$ over \mathbb{R}^m , will be denoted by $x^1, \ldots, x^m, y^1, \ldots, y^n$.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞} . Maps between manifolds are assumed to be smooth.

1. Natural operators $T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{FM}_{m,n}})^*$. Let $F : \mathcal{FM} \to \mathcal{VB}$ be a vector bundle functor. Let m and n be natural numbers. In this section modifying methods from [5] we classify the natural operators $A : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{FM}_{m,n}})^*$ transforming a projectable vector field X on an (m, n)-dimensional fibered manifold Y into a function $A(X) : (FY)^* \to \mathbb{R}$ on the dual vector bundle $(FY)^*$.

We recall that a *projectable* vector field on a fibered manifold Y over M is a vector field X on Y such that there exists an underlying vector field \underline{X} on M which is p-related with X, where $p: Y \to M$ is the bundle projection. The flow of a projectable vector field is formed by \mathcal{FM} -morphisms.

The following example is an extension of Example 1 in [5] to fibered manifolds.

EXAMPLE 1. Let $v \in F_0(\mathbb{R}^{1,0})$. Consider a projectable vector field Xon an (m, n)-dimensional fibered manifold Y over M. We define $A^v(X) :$ $(FY)^* \to \mathbb{R}$ by $A^v(X)_\eta = \langle \eta, F(\Phi_y^X)(v) \rangle$ for $\eta \in (F_yY)^*, y \in Y_x, x \in M$. Here $\Phi_y^X : (\varepsilon, \varepsilon) \to Y$ with $\Phi_y^X(t) = \operatorname{Exp}(tX)_y$ for $t \in (-\varepsilon, \varepsilon), \varepsilon > 0$. We consider Φ_y^X as a fibered map $\mathbb{R}^{1,0} \to Y$ covering $\Phi_x^X : (-\varepsilon, \varepsilon) \to M$, where $\Phi_x^X(t) = \operatorname{Exp}(t\underline{X})_x$ for $t \in (-\varepsilon, \varepsilon)$. The correspondence $A^v : T_{\operatorname{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow$ $T^{(0,0)}(F|_{\mathcal{FM}_{m,n}})^*$ is a natural operator.

PROPOSITION 1. Let $v_1, \ldots, v_L \in F_0 \mathbb{R}^{1,0}$ be a basis of the vector space $F_0 \mathbb{R}^{1,0}$. Every natural operator $A : T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{FM}_{m,n}})^*$ is of the form

$$A = H(A^{v_1}, \dots, A^{v_L})$$

for some uniquely determined smooth map $H \in \mathcal{C}^{\infty}(\mathbb{R}^L)$.

Proof. We modify the proof of Proposition 1 in [5] as follows. Let $v_1^*, \ldots, v_L^* \in (F_0 \mathbb{R}^{1,0})^*$ be the dual basis. Let $q : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ be the projection

onto the first factor. It is a fibered map $\mathbb{R}^{m,n} \to \mathbb{R}^{1,0}$ over the projection $\mathbb{R}^m \to \mathbb{R}$ onto the first factor. For A as above we define $H : \mathbb{R}^L \to \mathbb{R}$ by

$$H(t_1,\ldots,t_L) = A(\partial/\partial x^1)_{(F_0q)^*(\sum_{s=1}^L t_s v_s^*)}.$$

We prove that $A = H(A^{v_1}, \ldots, A^{v_L})$. Since any projectable vector field X on an $\mathcal{FM}_{m,n}$ -object Y such that the underlying vector field <u>X</u> is non-vanishing is locally $\partial/\partial x^1$ in some local fiber coordinates on Y, it is sufficient to show that

$$A(\partial/\partial x^1)_{\eta} = H(A^{v_1}(\partial/\partial x^1)_{\eta}, \dots, A^{v_L}(\partial/\partial x^1)_{\eta})$$

for any $\eta \in (F_0 \mathbb{R}^{m,n})^*$. By the invariance of A and A^{v_s} with respect to $\mathcal{F}\mathcal{M}_{m,n}$ -morphisms $(x^1, t^{-1}x^2, \ldots, t^{-1}x^m, t^{-1}y^1, \ldots, t^{-1}y^n) : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^n$ for $t \neq 0$ and next by letting $t \to 0$, we can assume that $\eta = (F_0q)^*(\sum_{s=1}^L t_s v_s^*)$. Now, it remains to observe that $A^{v_s}(\partial/\partial x^1)_{\eta} = t_s$ for $s = 1, \ldots, L$.

The uniqueness of H is clear because $(A^{v_s}(\partial/\partial x^1))_{s=1}^L$ is a surjection onto \mathbb{R}^L .

We have a functor $i : \mathcal{M}f \to \mathcal{F}\mathcal{M}, i(M) = (\mathrm{id}_M : M \to M), i(f) = f, M \in \mathrm{obj}(\mathcal{M}f), f : M \to N$, which is an $\mathcal{M}f$ -morphism.

Thus we have a vector bundle functor $F \circ i : \mathcal{M}f \to \mathcal{VB}$. So, by [2], we can choose a basis $v_1, \ldots, v_L \in F_0 \mathbb{R}^{1,0} = (F \circ i)_0 \mathbb{R}$ such that v_s is homogeneous of weight $n_s \in \mathbb{N} \cup \{0\}$, i.e. $F(\tau \operatorname{id})(v_s) = \tau^{n_s} v_s$ for any $\tau \in \mathbb{R}$.

(*) By a permutation we assume that v_1, \ldots, v_{k_1} are of weight 0, and $v_{k_1+1}, \ldots, v_{k_2}$ are of weight 1, and so on.

Then $A^{v_1}(X), \ldots, A^{v_{k_1}}(X)$ do not depend on X, i.e. $A^{v_1}, \ldots, A^{v_{k_1}}$ are natural functions on $(FY)^*$. Moreover $A^{v_{k_1+1}}(X), \ldots, A^{v_{k_2}}(X)$ depend linearly on X, i.e. $A^{v_{k_1+1}}, \ldots, A^{v_{k_2}}$ are linear operators.

The following corollaries are simple consequences of Proposition 1 and the homogeneous function theorem.

COROLLARY 1. Every natural (canonical) function G on $(F_{|\mathcal{FM}_{m,n}})^*$ is of the form

$$G = K(A^{v_1}, \dots, A^{v_{k_1}})$$

for some uniquely determined $K \in \mathcal{C}^{\infty}(\mathbb{R}^{k_1})$. If $F \circ i$ has the point property, *i.e.* $F \circ i(\text{pt}) = \text{pt}$, then G = const, where pt denotes a one-point manifold.

COROLLARY 2. Let $A: T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{FM}_{m,n}})^*$ be a natural linear operator. Then

$$A = \sum_{s=k_1+1}^{k_2} K_s(A^{v_1}, \dots, A^{v_{k_1}}) A^{v_s}$$

for some uniquely determined $K_s \in \mathcal{C}^{\infty}(\mathbb{R}^{k_1})$.

2. A decomposition proposition. Let F and v_1, \ldots, v_L be as in Section 1 with the assumption (*). Let $i : \mathcal{M}f \to \mathcal{FM}$ be the functor as in Section 1.

Let $p: Y \to M$ be a fibered manifold. A 1-form $\omega: TY \to \mathbb{R}$ on Y is called *horizontal* if $\omega|VY = 0$, where VY is the vertical bundle.

EXAMPLE 2. If $\omega : TY \to \mathbb{R}$ is a horizontal 1-form on a fibered manifold Y, we have its vertical lifting $B^V(\omega) = \omega \circ T\pi : T(FY)^* \to \mathbb{R}$ to $(FY)^*$, where $\pi : (FY)^* \to Y$ is the bundle projection. The correspondence $B^V : T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F|_{\mathcal{FM}_{m,n}})^*$ is a natural operator.

ASSUMPTION 1. From now on we assume that there exists a basis $w_1, \ldots, w_K \in F_0 \mathbb{R}^{m,n}$ such that w_s is homogeneous of weight $n_s \in \mathbb{N} \cup \{0\}$. This means that $F(\tau \operatorname{id}_{\mathbb{R}^m \times \mathbb{R}^n})(w_s) = \tau^{n_s} w_s$ for any $\tau \in \mathbb{R}$.

REMARK 1. It seems that every vector bundle functor $F : \mathcal{FM} \to \mathcal{VB}$ satisfies Assumption 1.

PROPOSITION 2 (Decomposition Proposition). Consider a natural operator $B: T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F_{|\mathcal{FM}_{m,n}})^*$. Under Assumption 1 there exists a uniquely determined natural function a on $(F_{|\mathcal{FM}_{m,n}})^*$ such that

$$B = aB^V + \lambda$$

for some canonical 1-form λ on $(F_{|\mathcal{FM}_{m,n}})^*$.

LEMMA 1. (a) We have $(B(\omega) - B(0))|(V(F\mathbb{R}^{m,n})^*)_0 = 0$ for any horizontal 1-form ω on $\mathbb{R}^{m,n}$, where $(V(F\mathbb{R}^{m,n})^*)_0$ is the fiber over $0 \in \mathbb{R}^m \times \mathbb{R}^n$ of the vertical subbundle in $T(F\mathbb{R}^{m,n})^*$.

(b) If $F \circ i$ has the point property then $B(\omega)|(V(F\mathbb{R}^{m,n})^*)_0 = 0$ for any horizontal 1-form ω on $\mathbb{R}^{m,n}$.

Proof. We modify the proof of Lemma 1 in [5] as follows.

(a) We use the invariance of $(B(\omega)-B(0))|(V(F\mathbb{R}^{m,n})^*)_0$ with respect to the homotheties $t^{-1} \operatorname{id}_{\mathbb{R}^m \times \mathbb{R}^n}$ for $t \neq 0$ and apply the homogeneous function theorem. We deduce that $(B(\omega) - B(0))|(V(F\mathbb{R}^{m,n})^*)_0$ is independent of ω .

(b) We observe that if $F \circ i$ has the point property then $(F_0 \mathbb{R}^{m,n})^*$ has no non-zero homogeneous elements of weight 0. Next, we use the invariance of $B(\omega)|(V(F\mathbb{R}^{m,n})^*)_0$ with respect to the homotheties $t^{-1} \operatorname{id}_{\mathbb{R}^m \times \mathbb{R}^n}$ for $t \neq 0$ and let $t \to 0$.

Proof of Proposition 2. We modify the proof of Proposition 2 in [5]. Replacing B by B - B(0) we can assume B(0) = 0 and $B(\omega)|(V(F\mathbb{R}^{m,n})^*)_0 = 0$. Then B is determined by the values $\langle B(\omega)_{\eta}, F^*(\partial/\partial x^1)_{\eta} \rangle$ for all horizontal 1-forms $\omega = \sum_{i=1}^m \omega_i dx^i$ on $\mathbb{R}^{m,n}$ and $\eta \in (F_0\mathbb{R}^{m,n})^*$, with $F^*(\partial/\partial x^1)$ the complete lifting (flow prolongation) of $\partial/\partial x^1$ to $(F\mathbb{R}^{m,n})^*$. Using the invariance of B with respect to the homotheties t^{-1} id $\mathbb{R}^m \times \mathbb{R}^n$ for $t \neq 0$ we get the homogeneity condition

$$t\langle B(\omega)_{\eta}, F^{*}(\partial/\partial x^{1})_{\eta}\rangle = \langle B((t \operatorname{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}})^{*}\omega)_{F(t^{-1} \operatorname{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}})^{*}(\eta)}, F^{*}(\partial/\partial x^{1})_{F(t^{-1} \operatorname{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}})^{*}(\eta)}\rangle.$$

Then by the non-linear Peetre theorem [3], the homogeneous function theorem and B(0) = 0 we deduce that $\langle B(\omega)_{\eta}, F^*(\partial/\partial x^1)_{\eta} \rangle$ is a linear combination of $\omega_1(0), \ldots, \omega_m(0)$ with coefficients being smooth maps in homogeneous coordinates of η of weight 0. Then using the invariance of B with respect to $(x^1, t^{-1}x^2, \ldots, t^{-1}x^m, t^{-1}y^1, \ldots, t^{-1}y^n) : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^n$ for $t \neq 0$ and letting $t \to 0$ we end the proof.

3. On canonical 1-forms on $(F_{|\mathcal{FM}_{m,n}})^*$. The injectivity in the following proposition is a consequence of Lemma 1(b).

PROPOSITION 3. Every natural (canonical) 1-form λ on $(F_{|\mathcal{FM}_{m,n}})^*$ induces a natural linear operator $A^{(\lambda)}: T_{\text{proj}|\mathcal{FM}_{m,n}} \rightsquigarrow T^{(0,0)}(F_{|\mathcal{FM}_{m,n}})^*$ such that $A^{(\lambda)}(X)_{\eta} = \langle \lambda_{\eta}, F^*(X)_{\eta} \rangle$ for $\eta \in (FY)^*$, $X \in \mathcal{X}_{\text{proj}}(Y)$, where $F^*(X)$ is the complete lifting (flow operator) of X to $(FY)^*$. If $F \circ i$ has the point property, then (under Assumption 1) the correspondence $\lambda \mapsto A^{(\lambda)}$ is a linear injection.

4. A corollary. Let $i: \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be the functor as in Section 1.

COROLLARY 3. Assume that $F \circ i$ has the point property and there are no non-zero elements from $F_0 \mathbb{R}^{1,0}$ of weight 1. (For example, let $F = F_1 \otimes F_2$: $\mathcal{FM} \to \mathcal{VB}$ be the tensor product of two vector bundle functors F_1, F_2 : $\mathcal{FM} \to \mathcal{VB}$ such that $F_1 \circ i, F_2 \circ i$ have the point property.) Then (under Assumption 1) every natural operator $B : T^*_{hor|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(F|_{\mathcal{FM}_{m,n}})^*$ is a constant multiple of the vertical lifting.

Proof. Since there are no non-zero elements from $F_0\mathbb{R}^{1,0}$ of weight 1, we see that every canonical 1-form on $(F_{|\mathcal{FM}_{m,n}})^*$ is zero because of Corollary 2 and Proposition 3. Then Proposition 2 together with Corollary 1 ends the proof.

5. Applications. From now on let r, s, q be natural numbers with $s \ge r \le q$.

APPLICATION 1. The concept of r-jets can be generalized as follows (see [3]). Let $Y \to M$ and $Z \to N$ be fibered manifolds. We recall that two fibered maps $f, g: Y \to Z$ with base maps $\underline{f}, \underline{g}: M \to N$ determine the same (r, s, q)-jet $j_y^{(r,s,q)}f = j_y^{(r,s,q)}g$ at $y \in Y_x$, $x \in M$, if $j_y^r f = j_y^r g$, $j_y^s(f|Y_x) = j_y^s(g|Y_x)$ and $j_x^q \underline{f} = j_x^q \underline{g}$. The space of all (r, s, q)-jets of Y into Z is denoted by $J^{(r,s,q)}(Y,Z)$. The composition of fibered maps induces the composition of (r, s, q)-jets [3, p. 126].

The vector r-tangent bundle functor $T^{(r)} = (J^r(\cdot, \mathbb{R})_0)^* : \mathcal{M}f \to \mathcal{VB}$ can be generalized as follows. Let $\mathbb{R}^{1,1} = \mathbb{R} \times \mathbb{R}$ be the trivial bundle over \mathbb{R} . The space $J^{(r,s,q)}(Y, \mathbb{R}^{1,1})_0, 0 \in \mathbb{R}^2$, has an induced structure of a vector bundle over Y. Every fibered map $f : Y \to Z$, f(y) = z, induces a linear map $\lambda(j_y^{(r,s,q)}f) : J_z^{(r,s,q)}(Z, \mathbb{R}^{1,1})_0 \to J_y^{(r,s,q)}(Y, \mathbb{R}^{1,1})_0$ by means of the jet composition. If we denote by $T^{(r,s,q)}Y$ the dual vector bundle of $J^{(r,s,q)}(Y, \mathbb{R}^{1,1})_0$ and define $T^{(r,s,q)}f : T^{(r,s,q)}Y \to T^{(r,s,q)}Z$ by using the dual maps to $\lambda(j_y^{(r,s,q)}f)$, we obtain a vector bundle functor $T^{(r,s,q)}: \mathcal{FM} \to \mathcal{VB}$.

EXAMPLE 3. We have canonical 1-forms $\lambda_{\alpha}^{(r,s,q)}: TJ^{(r,s,q)}(Y,\mathbb{R}^{1,1})_0 \to \mathbb{R}$ on $J^{(r,s,q)}(Y,\mathbb{R}^{1,1})_0$ for $\alpha = 1,2$ defined by $\lambda_{\alpha}^{(r,s,q)}(v) = d\gamma_{\alpha}(T\pi(v))$ for $v \in T_w J^{(r,s,q)}(Y,\mathbb{R}^{1,1})_0$, $w = j_y^{(r,s,q)}(\gamma_1,\gamma_2)$, $y \in Y$, where $\pi : J^{(r,s,q)}(Y,\mathbb{R}^{1,1})_0 \to Y$ is the bundle projection.

COROLLARY 4. Every natural operator

$$B: T^*_{\operatorname{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{(r,s,q)}(\cdot, \mathbb{R}^{1,1})_0)$$

is a linear combination of the vertical lifting B^V and the canonical 1-forms $\lambda_1^{(r,s,q)}$ and $\lambda_2^{(r,s,q)}$ with real coefficients.

Proof. The vector bundle functor $T^{(r,s,q)}$ satisfies Assumption 1. Moreover, $T^{(r,s,q)} \circ i$ has the point property and the subspace of elements from $T_0^{(r,s,q)} \mathbb{R}^{1,0}$ of weight 1 is 2-dimensional. Then by Proposition 3 together with Corollaries 1 and 2, the space of canonical 1-forms on $J^{(r,s,q)}(\cdot, \mathbb{R}^{1,1})_0$ is at most 2-dimensional. Now, Proposition 2 ends the proof. ■

APPLICATION 2. Let r, s be integers such that $s \ge r \ge 0$. The concept of r-jets can also be generalized as follows (see [3]). Let $Y \to M$ be a fibered manifold and Q be a manifold. We recall that two maps $f, g : Y \to Q$ determine the same (r, s)-jet $j_y^{(r,s)}f = j_y^{(r,s)}g$ at $y \in Y_x, x \in M$, if $j_y^r f = j_y^r g$ and $j_y^s(f|Y_x) = j_y^s(g|Y_x)$. The space of all (r, s)-jets of Y into Q is denoted by $J^{(r,s)}(Y,Q)$.

The vector r-tangent bundle functor $T^{(r)} = (J^r(\cdot, \mathbb{R})_0)^* : \mathcal{M}f \to \mathcal{VB}$ can be generalized as follows. The space $J^{(r,s)}(Y,\mathbb{R})_0, 0 \in \mathbb{R}$, has an induced structure of a vector bundle over Y. Every fibered map $f: Y \to Z, f(y) = z$, induces a linear map $\lambda(j_y^{(r,s)}f) : J_z^{(r,s)}(Z,\mathbb{R})_0 \to J_y^{(r,s)}(Y,\mathbb{R})_0$ by means of the jet composition. If we denote by $T^{(r,s)}Y$ the dual vector bundle of $J^{(r,s)}(Y,\mathbb{R})_0$ and define $T^{(r,s)}f: T^{(r,s)}Y \to T^{(r,s)}Z$ by using the dual maps to $\lambda(j_y^{(r,s)}f)$, we obtain a vector bundle functor $T^{(r,s)}: \mathcal{FM} \to \mathcal{VB}$.

EXAMPLE 4. Assume additionally $r \geq 1$. We have a canonical 1-form $\lambda^{(r,s)}: TJ^{(r,s)}(Y,\mathbb{R})_0 \to \mathbb{R}$ on $J^{(r,s)}(Y,\mathbb{R})_0$ defined by $\lambda^{(r,s)}(v) = d\gamma(T\pi(v))$

for $v \in T_w J^{(r,s)}(Y,\mathbb{R})_0$, $w = j_y^{(r,s)}(\gamma)$, $y \in Y$, where $\pi : J^{(r,s)}(Y,\mathbb{R})_0 \to Y$ is the bundle projection.

COROLLARY 5. Let r, s be as above. Every natural operator

 $B: T^*_{\operatorname{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{(r,s)}(\cdot, \mathbb{R})_0)$

is a linear combination of the vertical lifting B^V and the canonical 1-form $\lambda^{(r,s)}$ with real coefficients. If r = 0, then the $\lambda^{(0,s)}$ do not occur.

Proof. Note that the subspace of elements from $T_0^{(r,s)} \mathbb{R}^{1,0}$ of weight 1 is 1-dimensional, and use the same arguments as in the proof of Corollary 4.

APPLICATION 3. For any fibered manifold Y we have the vertical bundle VY of Y and for every \mathcal{FM} -map $f: Y \to Z$ we have the induced map $Vf: VY \to VZ$. The functor $V: \mathcal{FM} \to \mathcal{VB}$ is a vector bundle functor. Let $V^* = (V_{|\mathcal{FM}_{m,n}})^*$ be the dual bundle functor.

COROLLARY 6. Every natural operator $B : T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*V^*$ is a constant multiple of the vertical lifting B^V .

Proof. We observe that $V \cong T^{(0,1)}$ and apply Corollary 5. Given a \mathcal{FM} -object $p: Y \to M$, an isomorphism $i: VY \to T^{(0,1)}Y$ is given by $i(v)(j_y^{(0,1)}\gamma) = d_y(\gamma|Y_{p(y)})(v)$.

APPLICATION 4. For any fibered manifold Y we have a vector bundle

 $J^r T^*_{\text{hor}} Y = \{j^r_u \omega \mid \omega \text{ is a horizontal 1-form on } Y, y \in Y\}$

over Y. Let $(J^r T_{\text{hor}}^*)^* Y = (J^r T_{\text{hor}}^* Y)^*$ be the dual bundle. Every \mathcal{FM} map $f: Y \to Z$ induces a vector bundle map $(J^r T_{\text{hor}}^*)^* f: (J^r T_{\text{hor}}^*)^* Y \to (J^r T_{\text{hor}}^*)^* Z$ covering f such that $\langle (J^r T_{\text{hor}}^*)^* f(\eta), j_{f(y)}^r \omega \rangle = \langle \eta, j_y^r (f^* \omega) \rangle$ for $\eta \in (J^r T_{\text{hor}}^*)_y^* Y, j_{f(y)}^r \omega \in (J^r T_{\text{hor}}^*)_{f(y)} Z, y \in Y$. The functor $(J^r T_{\text{hor}}^*)^* : \mathcal{FM} \to \mathcal{VB}$ is a vector bundle functor.

Given an $\mathcal{FM}_{m,n}$ -object Y we have a canonical 1-form θ^r on $J^r T^*_{hor} Y$ such that

$$\langle \theta_w^r, v \rangle = \langle \omega_y, T\pi(v) \rangle$$

for $v \in T_w(J^r T^*_{\text{hor}}Y), w = j_y^r \omega, y \in Y, \omega \in \Omega^1_{\text{hor}}(Y)$, where $\pi : J^r T^*_{\text{hor}}Y \to Y$ is the bundle projection.

COROLLARY 7. Every natural operator $B: T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^r T^*_{\text{hor}})$ is a linear combination of the vertical lifting B^V and θ^r with real coefficients.

Proof. We observe that the subspace of elements from $(J^r T^*_{hor})^*_0 \mathbb{R}^{1,0}$ of weight 1 is 1-dimensional.

APPLICATION 5. We can generalize Application 4 as follows. For any fibered manifold Y we have a vector bundle

$$J^{r}(\wedge^{k}T^{*}_{hor})Y = \{j_{y}^{r}\omega \mid \omega \text{ is a horizontal } k\text{-form on } Y, y \in Y\}$$

over Y. Let $(J^r(\wedge^k T^*_{hor}))^*Y = (J^r(\wedge^k T^*_{hor})Y)^*$ be the dual bundle. Every \mathcal{FM} -map $f: Y \to Z$ induces a vector bundle map $(J^r(\wedge^k T^*_{hor}))^*f : (J^r(\wedge^k T^*_{hor}))^*Y \to (J^r(\wedge^k T^*_{hor}))^*Z$ covering f such that

$$\langle (J^r(\wedge^k T^*_{\rm hor}))^* f(\eta), j^r_{f(y)}\omega \rangle = \langle \eta, j^r_y(f^*\omega) \rangle$$

for $\eta \in (J^r(\wedge^k T^*_{hor}))^*_y Y$, $j^r_{f(y)}\omega \in (J^r(\wedge^k T^*_{hor}))_{f(y)}Z$, $y \in Y$. Then $(J^r(\wedge^k T^*_{hor}))^* : \mathcal{FM} \to \mathcal{VB}$ is a vector bundle functor.

COROLLARY 8. Let $k \geq 2$. Every natural operator $B : T^*_{\text{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^r(\wedge^k T^*_{\text{hor}}))$ is a constant multiple of the vertical lifting B^V .

Proof. We observe that the subspace of elements from $(J^r(\wedge^k T^*_{hor}))^*_0 \mathbb{R}^{1,0}$ of weight 1 is 0-dimensional. ■

Similar facts hold for

 $J^r(\otimes^k T^*_{hor})Y = \{j^r_y \tau \mid \tau \text{ is a horizontal tensor field}$

of type (0, k) on $Y, y \in Y$,

 $J^r(\odot^k T^*_{\rm hor})Y=\{j^r_y\tau\mid \tau \text{ is a horizontal symmetric tensor field}$

of type (0, k) on $Y, y \in Y$

in place of $J^r(\wedge^k T^*_{hor})Y$.

APPLICATION 6. We can also generalize Application 4 as follows. Let r and s be two integers with $s \ge r \ge 0$. For any fibered manifold Y we have a vector bundle

 $J^{(r,s)}T^*_{\mathrm{hor}}Y=\{j^{(r,s)}_y\omega\mid\omega\text{ is a horizontal 1-form on }Y,\,y\in Y\}$

over Y. Let $(J^{(r,s)}T^*_{hor})^*Y = (J^{(r,s)}T^*_{hor}Y)^*$ be the dual bundle. Every \mathcal{FM} map $f: Y \to Z$ induces a vector bundle map $(J^{(r,s)}T^*_{hor})^*f : (J^{(r,s)}T^*_{hor})^*Y \to (J^{(r,s)}T^*_{hor})^*Z$ covering f such that

$$\langle (J^{(r,s)}T^*_{\mathrm{hor}})^*f(\eta), j^{(r,s)}_{f(y)}\omega \rangle = \langle \eta, j^{(r,s)}_y(f^*\omega) \rangle$$

for $\eta \in (J^{(r,s)}T^*_{hor})_y^*Y$, $j_{f(y)}^{(r,s)}\omega \in (J^{(r,s)}T^*_{hor})_{f(y)}Z$, $y \in Y$. Then $(J^{(r,s)}T^*_{hor})^*$: $\mathcal{FM} \to \mathcal{VB}$ is a vector bundle functor.

Given an $\mathcal{FM}_{m,n}$ -object Y we have a canonical 1-form $\Theta^{(r,s)}$ on $J^{(r,s)}T^*_{hor}Y$ such that

$$\langle \Theta_w^{(r,s)}, v \rangle = \langle \omega_y, T\pi(v) \rangle$$

for $v \in T_w(J^{(r,s)}T^*_{hor}Y)$, $w = j_y^{(r,s)}\omega$, $y \in Y$, $\omega \in \Omega^1_{hor}(Y)$, where $\pi : J^{(r,s)}T^*_{hor}Y \to Y$ is the bundle projection.

COROLLARY 9. Every natural operator $B: T^*_{\operatorname{hor}|\mathcal{FM}_{m,n}} \rightsquigarrow T^*(J^{(r,s)}T^*_{\operatorname{hor}})$ is a linear combination of the vertical lifting B^V and $\Theta^{(r,s)}$ with real coefficients. *Proof.* We observe that the subspace of elements from $(J^{(r,s)}T^*_{hor})^*_0\mathbb{R}^{1,0}$ of weight 1 is 1-dimensional.

Of course, other applications are also possible. For example we can study liftings to $J^{(r,s)}(\wedge^k T^*_{hor}), J^{(r,s)}(\otimes^k T^*_{hor}), J^{(r,s)}(\odot^k T^*_{hor}), J^r(T^*), J^{(r,s)}(T^*),$ etc.

REFERENCES

- M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geometry and Applications, (Brno, 1995), Masaryk Univ., Brno, 1996, 141–150.
- [2] D. B. A. Epstein, Natural vector bundles, in: Category Theory, Homology Theory and Their Applications III, Lecture Notes in Math. 99, Springer, 1969, 171–195.
- [3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [4] J. Kurek and W. M. Mikulski, The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, in: Differential Geometry and Its Application Opava (2001), Math. Publ. 3, Silesian Univ. Opava, Opava, 2001, 215–227.
- [5] —, —, The natural operators lifting 1-forms to some vector bundle functors, Colloq. Math. 93 (2002), 259–265.

Institute of MathematicsInstitute of MathematicsMaria Curie-Skłodowska UniversityJagiellonian UniversityPl. Marii Curie-Skłodowskiej 1Reymonta 420-031 Lublin, Poland30-059 Kraków, PolandE-mail: kurek@golem.umcs.lublin.plE-mail: mikulski@im.uj.edu.pl

Received 18 September 2002

(4269)