COLLOQUIUM MATHEMATICUM

THE NATURAL OPERATORS LIFTING HORIZONTAL 1-FORMS TO SOME VECTOR BUNDLE FUNCTORS ON FIBERED MANIFOLDS

BY
J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract

Let $F: \mathcal{F M} \rightarrow \mathcal{V B}$ be a vector bundle functor. First we classify all natural operators $T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ transforming projectable vector fields on Y to functions on the dual bundle $(F Y)^{*}$ for any $\mathcal{F} \mathcal{M}_{m, n}$-object Y. Next, under some assumption on F we study natural operators $T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ lifting horizontal 1-forms on Y to 1-forms on $(F Y)^{*}$ for any Y as above. As an application we classify natural operators $T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ for some vector bundle functors F on fibered manifolds.

0. Introduction. In this paper we consider the following categories over manifolds: the category $\mathcal{M} f$ of manifolds and maps, the category $\mathcal{M} f_{m}$ of m-dimensional manifolds and embeddings, the category $\mathcal{F M}$ of fibered manifolds and fibered maps, the category $\mathcal{F} \mathcal{M}_{m, n}$ of fibered manifolds with m-dimensional bases and n-dimensional fibers and fibered embeddings, and the category $\mathcal{V B}$ of all vector bundles and vector bundle maps.

The notions of bundle functors and natural operators can be found in the fundamental monograph [3].

In [5], given a vector bundle functor $F: \mathcal{M} f \rightarrow \mathcal{V B}$ we classified all natural operators $A: T_{\mid \mathcal{M} f_{m}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{m}}\right)^{*}$ transforming a vector field X on an m-manifold M into a function $A(X):(F M)^{*} \rightarrow \mathbb{R}$ on the dual vector bundle $(F M)^{*}$ and proved that every natural operator $B: T_{\mid \mathcal{M} f_{m}}^{*} \rightsquigarrow$ $T^{*}\left(F_{\mid \mathcal{M} f_{m}}\right)^{*}$ transforming a 1-form ω on an m-manifold M into a 1-form $B(\omega)$ on $(F M)^{*}$ is of the form $B(\omega)=a \omega^{V}+\lambda$ for some uniquely determined canonical map $a:(F M)^{*} \rightarrow \mathbb{R}$ and some canonical 1-form λ on $(F M)^{*}$. These results were generalizations of $[1,4]$.

In the present paper we study similar problems for a vector bundle functor $F: \mathcal{F} \mathcal{M} \rightarrow \mathcal{V B}$ on a fibered manifold instead of on a manifold. Modifying methods from [5], for natural numbers m and n we clas-

[^0]ing a projectable vector field X on an (m, n)-dimensional fibered manifold Y into a function $A(X):(F Y)^{*} \rightarrow \mathbb{R}$ on the dual vector bundle $(F Y)^{*}$ and prove (under some assumption on F) that every natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ transforming a horizontal 1-form ω on an (m, n)-dimensional fibered manifold Y into a 1-form $B(\omega)$ on $(F Y)^{*}$ is of the form $B(\omega)=a \omega^{V}+\lambda$ for some uniquely determined canonical map $a:(F Y)^{*} \rightarrow \mathbb{R}$ and some canonical 1-form λ on $(F Y)^{*}$. As an application we describe all natural operators $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ for some vector bundle functors F on fibered manifolds.

From now on the usual coordinates on $\mathbb{R}^{m, n}$, the trivial bundle $\mathbb{R}^{m} \times \mathbb{R}^{n}$ over \mathbb{R}^{m}, will be denoted by $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$.

All manifolds are assumed to be finite-dimensional and smooth, i.e. of class \mathcal{C}^{∞}. Maps between manifolds are assumed to be smooth.

1. Natural operators $T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$. Let $F: \mathcal{F} \mathcal{M}$ $\rightarrow \mathcal{V B}$ be a vector bundle functor. Let m and n be natural numbers. In this section modifying methods from [5] we classify the natural operators A : $T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ transforming a projectable vector field X on an (m, n)-dimensional fibered manifold Y into a function $A(X):(F Y)^{*}$ $\rightarrow \mathbb{R}$ on the dual vector bundle $(F Y)^{*}$.

We recall that a projectable vector field on a fibered manifold Y over M is a vector field X on Y such that there exists an underlying vector field \underline{X} on M which is p-related with X, where $p: Y \rightarrow M$ is the bundle projection. The flow of a projectable vector field is formed by $\mathcal{F} \mathcal{M}$-morphisms.

The following example is an extension of Example 1 in [5] to fibered manifolds.

Example 1. Let $v \in F_{0}\left(\mathbb{R}^{1,0}\right)$. Consider a projectable vector field X on an (m, n)-dimensional fibered manifold Y over M. We define $A^{v}(X)$: $(F Y)^{*} \rightarrow \mathbb{R}$ by $A^{v}(X)_{\eta}=\left\langle\eta, F\left(\Phi_{y}^{X}\right)(v)\right\rangle$ for $\eta \in\left(F_{y} Y\right)^{*}, y \in Y_{x}, x \in M$. Here $\Phi_{y}^{X}:(\varepsilon, \varepsilon) \rightarrow Y$ with $\Phi_{y}^{X}(t)=\operatorname{Exp}(t X)_{y}$ for $t \in(-\varepsilon, \varepsilon), \varepsilon>0$. We consider Φ_{y}^{X} as a fibered map $\mathbb{R}^{1,0} \rightarrow Y$ covering $\Phi_{\bar{x}}^{\frac{X}{x}}:(-\varepsilon, \varepsilon) \rightarrow M$, where $\Phi_{\bar{x}}^{\underline{X}}(t)=\operatorname{Exp}(\underline{X})_{x}$ for $t \in(-\varepsilon, \varepsilon)$. The correspondence $A^{v}: T_{\operatorname{proj} \mid \mathcal{F}} \mathcal{M}_{m, n} \rightsquigarrow$ $T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ is a natural operator.

Proposition 1. Let $v_{1}, \ldots, v_{L} \in F_{0} \mathbb{R}^{1,0}$ be a basis of the vector space $F_{0} \mathbb{R}^{1,0}$. Every natural operator $A: T_{\operatorname{proj} \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ is of the form

$$
A=H\left(A^{v_{1}}, \ldots, A^{v_{L}}\right)
$$

for some uniquely determined smooth map $H \in \mathcal{C}^{\infty}\left(\mathbb{R}^{L}\right)$.
Proof. We modify the proof of Proposition 1 in [5] as follows. Let v_{1}^{*}, \ldots $\ldots, v_{L}^{*} \in\left(F_{0} \mathbb{R}^{1,0}\right)^{*}$ be the dual basis. Let $q: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the projection
onto the first factor. It is a fibered map $\mathbb{R}^{m, n} \rightarrow \mathbb{R}^{1,0}$ over the projection $\mathbb{R}^{m} \rightarrow \mathbb{R}$ onto the first factor. For A as above we define $H: \mathbb{R}^{L} \rightarrow \mathbb{R}$ by

$$
H\left(t_{1}, \ldots, t_{L}\right)=A\left(\partial / \partial x^{1}\right)_{\left(F_{0} q\right)^{*}\left(\sum_{s=1}^{L} t_{s} v_{s}^{*}\right)}
$$

We prove that $A=H\left(A^{v_{1}}, \ldots, A^{v_{L}}\right)$. Since any projectable vector field X on an $\mathcal{F} \mathcal{M}_{m, n}$-object Y such that the underlying vector field \underline{X} is non-vanishing is locally $\partial / \partial x^{1}$ in some local fiber coordinates on Y, it is sufficient to show that

$$
A\left(\partial / \partial x^{1}\right)_{\eta}=H\left(A^{v_{1}}\left(\partial / \partial x^{1}\right)_{\eta}, \ldots, A^{v_{L}}\left(\partial / \partial x^{1}\right)_{\eta}\right)
$$

for any $\eta \in\left(F_{0} \mathbb{R}^{m, n}\right)^{*}$. By the invariance of A and $A^{v_{s}}$ with respect to $\mathcal{F} \mathcal{M}_{m, n}$-morphisms $\left(x^{1}, t^{-1} x^{2}, \ldots, t^{-1} x^{m}, t^{-1} y^{1}, \ldots, t^{-1} y^{n}\right): \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{m} \times \mathbb{R}^{n}$ for $t \neq 0$ and next by letting $t \rightarrow 0$, we can assume that $\eta=$ $\left(F_{0} q\right)^{*}\left(\sum_{s=1}^{L} t_{s} v_{s}^{*}\right)$. Now, it remains to observe that $A^{v_{s}}\left(\partial / \partial x^{1}\right)_{\eta}=t_{s}$ for $s=1, \ldots, L$.

The uniqueness of H is clear because $\left(A^{v_{s}}\left(\partial / \partial x^{1}\right)\right)_{s=1}^{L}$ is a surjection onto \mathbb{R}^{L}.

We have a functor $i: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}, i(M)=\left(\operatorname{id}_{M}: M \rightarrow M\right), i(f)=f$, $M \in \operatorname{obj}(\mathcal{M} f), f: M \rightarrow N$, which is an $\mathcal{M} f$-morphism.

Thus we have a vector bundle functor $F \circ i: \mathcal{M} f \rightarrow \mathcal{V B}$. So, by [2], we can choose a basis $v_{1}, \ldots, v_{L} \in F_{0} \mathbb{R}^{1,0}=(F \circ i)_{0} \mathbb{R}$ such that v_{s} is homogeneous of weight $n_{s} \in \mathbb{N} \cup\{0\}$, i.e. $F(\tau \mathrm{id})\left(v_{s}\right)=\tau^{n_{s}} v_{s}$ for any $\tau \in \mathbb{R}$.
$(*) \quad$ By a permutation we assume that $v_{1}, \ldots, v_{k_{1}}$ are of weight 0 , and $v_{k_{1}+1}, \ldots, v_{k_{2}}$ are of weight 1 , and so on.
Then $A^{v_{1}}(X), \ldots, A^{v_{k_{1}}}(X)$ do not depend on X, i.e. $A^{v_{1}}, \ldots, A^{v_{k_{1}}}$ are natural functions on $(F Y)^{*}$. Moreover $A^{v_{k_{1}+1}}(X), \ldots, A^{v_{k_{2}}}(X)$ depend linearly on X, i.e. $A^{v_{k_{1}+1}}, \ldots, A^{v_{k_{2}}}$ are linear operators.

The following corollaries are simple consequences of Proposition 1 and the homogeneous function theorem.

Corollary 1. Every natural (canonical) function G on $\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ is of the form

$$
G=K\left(A^{v_{1}}, \ldots, A^{v_{k_{1}}}\right)
$$

for some uniquely determined $K \in \mathcal{C}^{\infty}\left(\mathbb{R}^{k_{1}}\right)$. If $F \circ i$ has the point property, i.e. $F \circ i(\mathrm{pt})=\mathrm{pt}$, then $G=\mathrm{const}$, where pt denotes a one-point manifold.

Corollary 2. Let $A: T_{\text {proj| }} \mathcal{F M}_{m, n} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{\text {* }}$ be a natural linear operator. Then

$$
A=\sum_{s=k_{1}+1}^{k_{2}} K_{s}\left(A^{v_{1}}, \ldots, A^{v_{k_{1}}}\right) A^{v_{s}}
$$

for some uniquely determined $K_{s} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{k_{1}}\right)$.
2. A decomposition proposition. Let F and v_{1}, \ldots, v_{L} be as in Section 1 with the assumption (*). Let $i: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ be the functor as in Section 1.

Let $p: Y \rightarrow M$ be a fibered manifold. A 1-form $\omega: T Y \rightarrow \mathbb{R}$ on Y is called horizontal if $\omega \mid V Y=0$, where $V Y$ is the vertical bundle.

Example 2. If $\omega: T Y \rightarrow \mathbb{R}$ is a horizontal 1-form on a fibered manifold Y, we have its vertical lifting $B^{V}(\omega)=\omega \circ T \pi: T(F Y)^{*} \rightarrow \mathbb{R}$ to $(F Y)^{*}$, where $\pi:(F Y)^{*} \rightarrow Y$ is the bundle projection. The correspondence $B^{V}: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ is a natural operator.

Assumption 1. From now on we assume that there exists a basis w_{1}, \ldots $\ldots, w_{K} \in F_{0} \mathbb{R}^{m, n}$ such that w_{s} is homogeneous of weight $n_{s} \in \mathbb{N} \cup\{0\}$. This means that $F\left(\tau \operatorname{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}}\right)\left(w_{s}\right)=\tau^{n_{s}} w_{s}$ for any $\tau \in \mathbb{R}$.

REmark 1. It seems that every vector bundle functor $F: \mathcal{F M} \rightarrow \mathcal{V B}$ satisfies Assumption 1.

Proposition 2 (Decomposition Proposition). Consider a natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$. Under Assumption 1 there exists a uniquely determined natural function a on $\left(F_{\mid \mathcal{F M}_{m, n}}\right)^{*}$ such that

$$
B=a B^{V}+\lambda
$$

for some canonical 1-form λ on $\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$.
Lemma 1. (a) We have $(B(\omega)-B(0)) \mid\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}=0$ for any horizontal 1 -form ω on $\mathbb{R}^{m, n}$, where $\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}$ is the fiber over $0 \in \mathbb{R}^{m} \times \mathbb{R}^{n}$ of the vertical subbundle in $T\left(F \mathbb{R}^{m, n}\right)^{*}$.
(b) If $F \circ i$ has the point property then $B(\omega) \mid\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}=0$ for any horizontal 1-form ω on $\mathbb{R}^{m, n}$.

Proof. We modify the proof of Lemma 1 in [5] as follows.
(a) We use the invariance of $(B(\omega)-B(0)) \mid\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}$ with respect to the homotheties $t^{-1} \mathrm{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}}$ for $t \neq 0$ and apply the homogeneous function theorem. We deduce that $(B(\omega)-B(0)) \mid\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}$ is independent of ω.
(b) We observe that if $F \circ i$ has the point property then $\left(F_{0} \mathbb{R}^{m, n}\right)^{*}$ has no non-zero homogeneous elements of weight 0 . Next, we use the invariance of $B(\omega) \mid\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}$ with respect to the homotheties $t^{-1} \mathrm{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}}$ for $t \neq 0$ and let $t \rightarrow 0$.

Proof of Proposition 2. We modify the proof of Proposition 2 in [5]. Replacing B by $B-B(0)$ we can assume $B(0)=0$ and $B(\omega) \mid\left(V\left(F \mathbb{R}^{m, n}\right)^{*}\right)_{0}$ $=0$. Then B is determined by the values $\left\langle B(\omega)_{\eta}, F^{*}\left(\partial / \partial x^{1}\right)_{\eta}\right\rangle$ for all horizontal 1-forms $\omega=\sum_{i=1}^{m} \omega_{i} d x^{i}$ on $\mathbb{R}^{m, n}$ and $\eta \in\left(F_{0} \mathbb{R}^{m, n}\right)^{*}$, with $F^{*}\left(\partial / \partial x^{1}\right)$ the complete lifting (flow prolongation) of $\partial / \partial x^{1}$ to $\left(F \mathbb{R}^{m, n}\right)^{*}$. Using the invariance of B with respect to the homotheties $t^{-1} \mathrm{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}}$ for $t \neq 0$ we get
the homogeneity condition

$$
\begin{aligned}
& t\left\langle B(\omega)_{\eta}, F^{*}\left(\partial / \partial x^{1}\right)_{\eta}\right\rangle \\
& \quad=\left\langle B\left(\left(t \operatorname{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}}\right)^{*} \omega\right)_{F\left(t^{-1} \mathrm{id}_{\mathbb{R}^{m} \times \mathbb{R}^{n}}\right)^{*}(\eta)}, F^{*}\left(\partial / \partial x^{1}\right)_{F\left(t^{-1} \operatorname{id}_{\mathbb{R}^{m}} \times \mathbb{R}^{n}\right)^{*}(\eta)}\right\rangle .
\end{aligned}
$$

Then by the non-linear Peetre theorem [3], the homogeneous function theorem and $B(0)=0$ we deduce that $\left\langle B(\omega)_{\eta}, F^{*}\left(\partial / \partial x^{1}\right)_{\eta}\right\rangle$ is a linear combination of $\omega_{1}(0), \ldots, \omega_{m}(0)$ with coefficients being smooth maps in homogeneous coordinates of η of weight 0 . Then using the invariance of B with respect to $\left(x^{1}, t^{-1} x^{2}, \ldots, t^{-1} x^{m}, t^{-1} y^{1}, \ldots, t^{-1} y^{n}\right): \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ for $t \neq 0$ and letting $t \rightarrow 0$ we end the proof.
3. On canonical 1-forms on $\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$. The injectivity in the following proposition is a consequence of Lemma 1(b).

Proposition 3. Every natural (canonical) 1-form λ on $\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ induces a natural linear operator $A^{(\lambda)}: T_{\text {proj } \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F M}_{m, n}}\right)^{*}$ such that $A^{(\lambda)}(X)_{\eta}=\left\langle\lambda_{\eta}, F^{*}(X)_{\eta}\right\rangle$ for $\eta \in(F Y)^{*}, X \in \mathcal{X}_{\text {proj }}(Y)$, where $F^{*}(X)$ is the complete lifting (flow operator) of X to $(F Y)^{*}$. If $F \circ i$ has the point property, then (under Assumption 1) the correspondence $\lambda \mapsto A^{(\lambda)}$ is a linear injection.
4. A corollary. Let $i: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ be the functor as in Section 1 .

Corollary 3. Assume that $F \circ i$ has the point property and there are no non-zero elements from $F_{0} \mathbb{R}^{1,0}$ of weight 1 . (For example, let $F=F_{1} \otimes F_{2}$: $\mathcal{F M} \rightarrow \mathcal{V B}$ be the tensor product of two vector bundle functors F_{1}, F_{2} : $\mathcal{F M} \rightarrow \mathcal{V B}$ such that $F_{1} \circ i, F_{2} \circ i$ have the point property.) Then (under Assumption 1) every natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F M}_{m, n}}\right)^{*}$ is a constant multiple of the vertical lifting.

Proof. Since there are no non-zero elements from $F_{0} \mathbb{R}^{1,0}$ of weight 1 , we see that every canonical 1-form on $\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ is zero because of Corollary 2 and Proposition 3. Then Proposition 2 together with Corollary 1 ends the proof.
5. Applications. From now on let r, s, q be natural numbers with $s \geq$ $r \leq q$.

Application 1. The concept of r-jets can be generalized as follows (see [3]). Let $Y \rightarrow M$ and $Z \rightarrow N$ be fibered manifolds. We recall that two fibered maps $f, g: Y \rightarrow Z$ with base maps $\underline{f}, \underline{g}: M \rightarrow N$ determine the same (r, s, q)-jet $j_{y}^{(r, s, q)} f=j_{y}^{(r, s, q)} g$ at $y \in \bar{Y}_{x}, x \in M$, if $j_{y}^{r} f=j_{y}^{r} g$, $j_{y}^{s}\left(f \mid Y_{x}\right)=j_{y}^{s}\left(g \mid Y_{x}\right)$ and $j_{x}^{q} \underline{f}=j_{x}^{q} \underline{g}$. The space of all (r, s, q)-jets of Y into Z
is denoted by $J^{(r, s, q)}(Y, Z)$. The composition of fibered maps induces the composition of (r, s, q)-jets [3, p. 126].

The vector r-tangent bundle functor $T^{(r)}=\left(J^{r}(\cdot, \mathbb{R})_{0}\right)^{*}: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ can be generalized as follows. Let $\mathbb{R}^{1,1}=\mathbb{R} \times \mathbb{R}$ be the trivial bundle over \mathbb{R}. The space $J^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0}, 0 \in \mathbb{R}^{2}$, has an induced structure of a vector bundle over Y. Every fibered map $f: Y \rightarrow Z, f(y)=z$, induces a linear map $\lambda\left(j_{y}^{(r, s, q)} f\right): J_{z}^{(r, s, q)}\left(Z, \mathbb{R}^{1,1}\right)_{0} \rightarrow J_{y}^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0}$ by means of the jet composition. If we denote by $T^{(r, s, q)} Y$ the dual vector bundle of $J^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0}$ and define $T^{(r, s, q)} f: T^{(r, s, q)} Y \rightarrow T^{(r, s, q)} Z$ by using the dual maps to $\lambda\left(j_{y}^{(r, s, q)} f\right)$, we obtain a vector bundle functor $T^{(r, s, q)}: \mathcal{F} \mathcal{M} \rightarrow \mathcal{V B}$.

Example 3. We have canonical 1-forms $\lambda_{\alpha}^{(r, s, q)}: T J^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0} \rightarrow \mathbb{R}$ on $J^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0}$ for $\alpha=1,2$ defined by $\lambda_{\alpha}^{(r, s, q)}(v)=d \gamma_{\alpha}(T \pi(v))$ for $v \in$ $T_{w} J^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0}, w=j_{y}^{(r, s, q)}\left(\gamma_{1}, \gamma_{2}\right), y \in Y$, where $\pi: J^{(r, s, q)}\left(Y, \mathbb{R}^{1,1}\right)_{0}$ $\rightarrow Y$ is the bundle projection.

Corollary 4. Every natural operator

$$
B: T_{\mathrm{hor} \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(J^{(r, s, q)}\left(\cdot, \mathbb{R}^{1,1}\right)_{0}\right)
$$

is a linear combination of the vertical lifting B^{V} and the canonical 1-forms $\lambda_{1}^{(r, s, q)}$ and $\lambda_{2}^{(r, s, q)}$ with real coefficients.

Proof. The vector bundle functor $T^{(r, s, q)}$ satisfies Assumption 1. Moreover, $T^{(r, s, q)} \circ i$ has the point property and the subspace of elements from $T_{0}^{(r, s, q)} \mathbb{R}^{1,0}$ of weight 1 is 2 -dimensional. Then by Proposition 3 together with Corollaries 1 and 2, the space of canonical 1-forms on $J^{(r, s, q)}\left(\cdot, \mathbb{R}^{1,1}\right)_{0}$ is at most 2-dimensional. Now, Proposition 2 ends the proof.

Application 2. Let r, s be integers such that $s \geq r \geq 0$. The concept of r-jets can also be generalized as follows (see [3]). Let $Y \rightarrow M$ be a fibered manifold and Q be a manifold. We recall that two maps $f, g: Y \rightarrow Q$ determine the same (r, s)-jet $j_{y}^{(r, s)} f=j_{y}^{(r, s)} g$ at $y \in Y_{x}, x \in M$, if $j_{y}^{r} f=j_{y}^{r} g$ and $j_{y}^{s}\left(f \mid Y_{x}\right)=j_{y}^{s}\left(g \mid Y_{x}\right)$. The space of all (r, s)-jets of Y into Q is denoted by $J^{(r, s)}(Y, Q)$.

The vector r-tangent bundle functor $T^{(r)}=\left(J^{r}(\cdot, \mathbb{R})_{0}\right)^{*}: \mathcal{M} f \rightarrow \mathcal{V B}$ can be generalized as follows. The space $J^{(r, s)}(Y, \mathbb{R})_{0}, 0 \in \mathbb{R}$, has an induced structure of a vector bundle over Y. Every fibered map $f: Y \rightarrow Z, f(y)=z$, induces a linear map $\lambda\left(j_{y}^{(r, s)} f\right): J_{z}^{(r, s)}(Z, \mathbb{R})_{0} \rightarrow J_{y}^{(r, s)}(Y, \mathbb{R})_{0}$ by means of the jet composition. If we denote by $T^{(r, s)} Y$ the dual vector bundle of $J^{(r, s)}(Y, \mathbb{R})_{0}$ and define $T^{(r, s)} f: T^{(r, s)} Y \rightarrow T^{(r, s)} Z$ by using the dual maps to $\lambda\left(j_{y}^{(r, s)} f\right)$, we obtain a vector bundle functor $T^{(r, s)}: \mathcal{F} \mathcal{M} \rightarrow \mathcal{V B}$.

Example 4. Assume additionally $r \geq 1$. We have a canonical 1-form $\lambda^{(r, s)}: T J^{(r, s)}(Y, \mathbb{R})_{0} \rightarrow \mathbb{R}$ on $J^{(r, s)}(Y, \mathbb{R})_{0}$ defined by $\lambda^{(r, s)}(v)=d \gamma(T \pi(v))$
for $v \in T_{w} J^{(r, s)}(Y, \mathbb{R})_{0}, w=j_{y}^{(r, s)}(\gamma), y \in Y$, where $\pi: J^{(r, s)}(Y, \mathbb{R})_{0} \rightarrow Y$ is the bundle projection.

Corollary 5. Let r, s be as above. Every natural operator

$$
B: T_{\mathrm{hor} \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(J^{(r, s)}(\cdot, \mathbb{R})_{0}\right)
$$

is a linear combination of the vertical lifting B^{V} and the canonical 1-form $\lambda^{(r, s)}$ with real coefficients. If $r=0$, then the $\lambda^{(0, s)}$ do not occur.

Proof. Note that the subspace of elements from $T_{0}^{(r, s)} \mathbb{R}^{1,0}$ of weight 1 is 1-dimensional, and use the same arguments as in the proof of Corollary 4.

Application 3. For any fibered manifold Y we have the vertical bundle $V Y$ of Y and for every $\mathcal{F} \mathcal{M}$-map $f: Y \rightarrow Z$ we have the induced map $V f: V Y \rightarrow V Z$. The functor $V: \mathcal{F M} \rightarrow \mathcal{V B}$ is a vector bundle functor. Let $V^{*}=\left(V_{\mid \mathcal{F M}}^{m, n}, ~\right)^{*}$ be the dual bundle functor.

Corollary 6. Every natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*} V^{*}$ is a constant multiple of the vertical lifting B^{V}.

Proof. We observe that $V \cong T^{(0,1)}$ and apply Corollary 5. Given a $\mathcal{F} \mathcal{M}$-object $p: Y \rightarrow M$, an isomorphism $i: V Y \rightarrow T^{(0,1)} Y$ is given by $i(v)\left(j_{y}^{(0,1)} \gamma\right)=d_{y}\left(\gamma \mid Y_{p(y)}\right)(v)$.

Application 4. For any fibered manifold Y we have a vector bundle

$$
J^{r} T_{\mathrm{hor}}^{*} Y=\left\{j_{y}^{r} \omega \mid \omega \text { is a horizontal 1-form on } Y, y \in Y\right\}
$$

over Y. Let $\left(J^{r} T_{\text {hor }}^{*}\right)^{*} Y=\left(J^{r} T_{\text {hor }}^{*} Y\right)^{*}$ be the dual bundle. Every $\mathcal{F} \mathcal{M}$ map $f: Y \rightarrow Z$ induces a vector bundle map $\left(J^{r} T_{\text {hor }}^{*}\right)^{*} f:\left(J^{r} T_{\text {hor }}^{*}\right)^{*} Y \rightarrow$ $\left(J^{r} T_{\text {hor }}^{*}\right)^{*} Z$ covering f such that $\left\langle\left(J^{r} T_{\text {hor }}^{*}\right)^{*} f(\eta), j_{f(y)}^{r} \omega\right\rangle=\left\langle\eta, j_{y}^{r}\left(f^{*} \omega\right)\right\rangle$ for $\eta \in\left(J^{r} T_{\text {hor }}^{*}\right)_{y}^{*} Y, j_{f(y)}^{r} \omega \in\left(J^{r} T_{\text {hor }}^{*}\right)_{f(y)} Z, y \in Y$. The functor $\left(J^{r} T_{\text {hor }}^{*}\right)^{*}:$ $\mathcal{F M} \rightarrow \mathcal{V B}$ is a vector bundle functor.

Given an $\mathcal{F} \mathcal{M}_{m, n}$-object Y we have a canonical 1-form θ^{r} on $J^{r} T_{\text {hor }}^{*} Y$ such that

$$
\left\langle\theta_{w}^{r}, v\right\rangle=\left\langle\omega_{y}, T \pi(v)\right\rangle
$$

for $v \in T_{w}\left(J^{r} T_{\text {hor }}^{*} Y\right), w=j_{y}^{r} \omega, y \in Y, \omega \in \Omega_{\text {hor }}^{1}(Y)$, where $\pi: J^{r} T_{\text {hor }}^{*} Y \rightarrow Y$ is the bundle projection.

Corollary 7. Every natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(J^{r} T_{\text {hor }}^{*}\right)$ is a linear combination of the vertical lifting B^{V} and θ^{r} with real coefficients.

Proof. We observe that the subspace of elements from $\left(J^{r} T_{\text {hor }}^{*}\right)_{0}^{*} \mathbb{R}^{1,0}$ of weight 1 is 1 -dimensional.

Application 5. We can generalize Application 4 as follows. For any fibered manifold Y we have a vector bundle

$$
J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right) Y=\left\{j_{y}^{r} \omega \mid \omega \text { is a horizontal } k \text {-form on } Y, y \in Y\right\}
$$

over Y. Let $\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)^{*} Y=\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right) Y\right)^{*}$ be the dual bundle. Every $\mathcal{F} \mathcal{M}$-map $f: Y \rightarrow Z$ induces a vector bundle map $\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)^{*} f$: $\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)^{*} Y \rightarrow\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)^{*} Z$ covering f such that

$$
\left\langle\left(J^{r}\left(\wedge^{k} T_{\mathrm{hor}}^{*}\right)\right)^{*} f(\eta), j_{f(y)}^{r} \omega\right\rangle=\left\langle\eta, j_{y}^{r}\left(f^{*} \omega\right)\right\rangle
$$

for $\eta \in\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)_{y}^{*} Y, j_{f(y)}^{r} \omega \in\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)_{f(y)} Z, y \in Y$. Then $\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)^{*}: \mathcal{F} \mathcal{M} \rightarrow \mathcal{V B}$ is a vector bundle functor.

Corollary 8. Let $k \geq 2$. Every natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow$ $T^{*}\left(J^{r}\left(\wedge^{k} T_{\mathrm{hor}}^{*}\right)\right)$ is a constant multiple of the vertical lifting B^{V}.

Proof. We observe that the subspace of elements from $\left(J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right)\right)_{0}^{*} \mathbb{R}^{1,0}$ of weight 1 is 0 -dimensional.

Similar facts hold for
$J^{r}\left(\otimes^{k} T_{\text {hor }}^{*}\right) Y=\left\{j_{y}^{r} \tau \mid \tau\right.$ is a horizontal tensor field of type $(0, k)$ on $Y, y \in Y\}$,
$J^{r}\left(\odot^{k} T_{\text {hor }}^{*}\right) Y=\left\{j_{y}^{r} \tau \mid \tau\right.$ is a horizontal symmetric tensor field of type $(0, k)$ on $Y, y \in Y\}$
in place of $J^{r}\left(\wedge^{k} T_{\text {hor }}^{*}\right) Y$.
Application 6. We can also generalize Application 4 as follows. Let r and s be two integers with $s \geq r \geq 0$. For any fibered manifold Y we have a vector bundle

$$
J^{(r, s)} T_{\mathrm{hor}}^{*} Y=\left\{j_{y}^{(r, s)} \omega \mid \omega \text { is a horizontal 1-form on } Y, y \in Y\right\}
$$

over Y. Let $\left(J^{(r, s)} T_{\text {hor }}^{*}\right)^{*} Y=\left(J^{(r, s)} T_{\text {hor }}^{*} Y\right)^{*}$ be the dual bundle. Every $\mathcal{F} \mathcal{M}$ $\operatorname{map} f: Y \rightarrow Z$ induces a vector bundle map $\left(J^{(r, s)} T_{\text {hor }}^{*}\right)^{*} f:\left(J^{(r, s)} T_{\text {hor }}^{*}\right)^{*} Y$ $\rightarrow\left(J^{(r, s)} T_{\text {hor }}^{*}\right)^{*} Z$ covering f such that

$$
\left\langle\left(J^{(r, s)} T_{\mathrm{hor}}^{*}\right)^{*} f(\eta), j_{f(y)}^{(r, s)} \omega\right\rangle=\left\langle\eta, j_{y}^{(r, s)}\left(f^{*} \omega\right)\right\rangle
$$

for $\eta \in\left(J^{(r, s)} T_{\text {hor }}^{*}\right)_{y}^{*} Y, j_{f(y)}^{(r, s)} \omega \in\left(J^{(r, s)} T_{\text {hor }}^{*}\right)_{f(y)} Z, y \in Y$. Then $\left(J^{(r, s)} T_{\text {hor }}^{*}\right)^{*}$: $\mathcal{F M} \rightarrow \mathcal{V B}$ is a vector bundle functor.

Given an $\mathcal{F} \mathcal{M}_{m, n}$-object Y we have a canonical 1-form $\Theta^{(r, s)}$ on $J^{(r, s)} T_{\text {hor }}^{*} Y$ such that

$$
\left\langle\Theta_{w}^{(r, s)}, v\right\rangle=\left\langle\omega_{y}, T \pi(v)\right\rangle
$$

for $v \in T_{w}\left(J^{(r, s)} T_{\text {hor }}^{*} Y\right), w=j_{y}^{(r, s)} \omega, y \in Y, \omega \in \Omega_{\text {hor }}^{1}(Y)$, where π : $J^{(r, s)} T_{\text {hor }}^{*} Y \rightarrow Y$ is the bundle projection.

Corollary 9. Every natural operator $B: T_{\text {hor } \mid \mathcal{F} \mathcal{M}_{m, n}}^{*} \rightsquigarrow T^{*}\left(J^{(r, s)} T_{\text {hor }}^{*}\right)$ is a linear combination of the vertical lifting B^{V} and $\Theta^{(r, s)}$ with real coefficients.

Proof. We observe that the subspace of elements from $\left(J^{(r, s)} T_{\text {hor }}^{*}\right)_{0}^{*} \mathbb{R}^{1,0}$ of weight 1 is 1 -dimensional.

Of course, other applications are also possible. For example we can study liftings to $J^{(r, s)}\left(\wedge^{k} T_{\text {hor }}^{*}\right), J^{(r, s)}\left(\otimes^{k} T_{\text {hor }}^{*}\right), J^{(r, s)}\left(\odot^{k} T_{\text {hor }}^{*}\right), J^{r}\left(T^{*}\right), J^{(r, s)}\left(T^{*}\right)$, etc.

REFERENCES

[1] M. Doupovec and J. Kurek, Liftings of tensor fields to the cotangent bundle, in: Differential Geometry and Applications, (Brno, 1995), Masaryk Univ., Brno, 1996, 141-150.
[2] D. B. A. Epstein, Natural vector bundles, in: Category Theory, Homology Theory and Their Applications III, Lecture Notes in Math. 99, Springer, 1969, 171-195.
[3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
[4] J. Kurek and W. M. Mikulski, The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, in: Differential Geometry and Its Application Opava (2001), Math. Publ. 3, Silesian Univ. Opava, Opava, 2001, 215-227.
[5] -, 一, The natural operators lifting 1 -forms to some vector bundle functors, Colloq. Math. 93 (2002), 259-265.

Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: kurek@golem.umcs.lublin.pl

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: bundle functor, natural operator.

