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Abstract. Let the special linear group G := SLg act regularly on a Q-factorial vari-
ety X. Consider a maximal torus 7' C G and its normalizer N C G. We prove: If U C X
is a maximal open N-invariant subset admitting a good quotient U — U /N with a divi-
sorial quotient space, then the intersection W (U) of all translates g - U is open in X and
admits a good quotient W (U) — W (U)//G with a divisorial quotient space. Conversely,
we show that every maximal open G-invariant subset W C X admitting a good quotient
W — W//G with a divisorial quotient space is of the form W = W (U) for some maximal
open N-invariant U as above.

Introduction. Given an action of a reductive group G on a variety X,
the task of Geometric Invariant Theory is the construction of open G-
invariant subsets W C X that admit reasonable quotients. We ask here
for good quotients, that is, G-invariant affine regular maps p: W — W/ G
of prevarieties such that the structure sheaf of W//G equals the sheaf of
invariants p.(Ow )% (cf. [9]). Note that we allow here nonseparated quotient
spaces.

The task of Hilbert—-Mumford Criteria is to reduce the construction of
quotients W — W/ G to the construction of quotients U — U /T for a max-
imal torus 7' C G. More precisely, one considers the following problem (cf.
[1]-[4]): Suppose that the open set U C X is invariant under the normalizer
N C G of T and admits a good quotient U — U //T. When is the intersection
W(U) of all translates g - U, g € G, open in X and when does it admit a
good quotient W(U) — W (U)/G?

In this note we continue the study of the case G = SLj started in [2]
and [3], where the above problem was solved for complete and for quasipro-
jective quotient spaces. Generalizing the latter setting, we focus on divisorial
quotient spaces, i.e., prevarieties Y such that each y € Y has an affine neigh-
bourhood of the form Y\ Supp(D) with an effective Cartier divisor D on Y
(cf. [6]).

We shall use the following notions of maximality for open subsets with
good quotient: Let H C G be any reductive subgroup. By an H-subset
we mean an H-invariant open subset U C X admitting a good quotient
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U — UJH. We say that an H-subset U C X is

o d-mazimal if U//H is divisorial, and U does not occur as a saturated
subset of a properly larger H-subset U’ C X with U’/ H divisorial;

e s-d-maximal if UJ/H is separated, divisorial, and U is not a saturated
subset of a properly larger H-subset U’ C X with U’/ H separated and
divisorial.

As before, fix a maximal torus T' C GG, and let N C G be its normalizer.
The aim of this note is to provide a recipe for constructing all d-maximal
and all s-d-maximal G-subsets of a GG-variety X from the collection of all d-
maximal N-subsets of X. The main result is the following (see Theorem 2.2):

THEOREM. Let G = SLy(K) act regularly on a Q-factorial variety X .
For any open subset U C X let W(U) be the intersection of all translates
g-U,ged.

(i) If U C X is a d-mazimal N-subset then W(U) is open in X and
admits a good quotient W(U) — W(U)/G with a divisorial prevariety
wW(U)/G.

(ii) Every d-mazimal G-subset W C X is of the form W = W (U) for
some d-maximal open N -subset U C X.

Let us turn to the s-d-maximal G-subsets. By an N -separated component
of a d-maximal N-subset U’ C X we mean the inverse image U C U’ of a
maximal separated open subset of U’/N under the quotient map U’ —
U'JN. To any such U C U’, we associate its G-kernel W (U)® (see 3.1).
This G-kernel admits a good quotient W (U)® — W (U)® /G with a separated
divisorial quotient space. As a consequence of the main result, we obtain:

COROLLARY. FEvery s-d-mazimal G-subset W C X is of the form W =
W(U)® with an N-separated component U C U’ of a d-mazimal N -subset
U cX.

Note that we always obtain algebraic (pre-)varieties as quotient spaces,
whereas in [2] and [3] sincere algebraic spaces can occur. So, our results may
also serve as algebraicity criteria for quotient spaces. The proof of the main
result relies on the generalization of Mumford’s Geometric Invariant Theory
developed in [7]; see Section 1 for a summary and some slight extensions.
The main result is proven in Section 2, and the proof of the Corollary is
given in Section 3.

1. Generalized semistability. In [7] we generalized Mumford’s con-
struction of good quotients [8] by replacing his G-linearized line bundle with
a certain group of Cartier divisors. The result is a theory producing all di-
visorial quotient spaces instead of only the quasiprojective ones. We recall
here the basic results and adapt them to our present purposes.
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Let X be an irreducible prevariety over an algebraically closed field K
of characteristic zero. Fix a finitely generated free subgroup A C CDiv(X)
of the group of Cartier divisors on X. Then one has an associated A-graded

Ox-algebra
A:=P Ap = P 0x(D).

DeA DeA

The Ox-algebra A gives rise to a prevariety X = Spec(.A) and a canon-
ical affine map ¢: X — X such that ¢.(Og) equals A. For a homogeneous
local section f € Ap(U), one defines its set of zeroes to be

Z(f) == Supp(D|y + div(f)).

We call the group A ample on an open subset U C X if every € U has
an affine neighbourhood of the form U \ Z(f) for a homogeneous f € A(U).
If A is ample on U, then U := ¢ 1 (U) is a quasiaffine variety. Note that there
exists a A4 C CDiv(X) which is ample on X if and only if X is divisorial in
the sense of [6].

Now, let G x X — X be a regular action of a reductive group on X.
As in [7], by a G-linearization of the group A we mean a graded G-sheaf
structure on the O x-algebra A such that for every G-invariant open U C X
the induced representation of G on A(U) is rational.

DEFINITION 1.1. Let A C CDiv(X) be G-linearized, and let U C X be
a G-invariant open subset. A point x € U is called U-semistable if z has an
affine neighbourhood U’ = U \ Z(f) with some G-invariant f € Ap(U) such
that the D’ € A admitting a G-invariant f’ € Ap/(U’) which is invertible in
A(U") form a subgroup of finite index in A.

For a given G-linearized A C CDiv(X) and a G-invariant open U C X,
the associated set of U-semistable points will be denoted by U%(A), or
UsS(A,G) if we want to specify the group G. Note that for U = X, the
above definition specializes to the notion of semistability introduced in [7].

Following the lines of [7, Section 2], we now show that every set of U-
semistable points admits a good quotient. First let us recall the precise
definition:

DEFINITION 1.2. A good quotient for the action of G on X is a G-
invariant affine regular map p: X — X//G of prevarieties such that the
canonical map Ox /g — p«(Ox)C is an isomorphism. A geometric quotient
is a good quotient that separates orbits. Geometric quotients are denoted
by p: X — X/G.

Suppose now that A C CDiv(X) is G-linearized, and let U C X be
any G-invariant open subset. We shall need a geometric interpretation of
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U-semistability similar to the case U = X treated in [7, Proposition 2.3].
For this we have to assume that A is ample on U. Let A and X := Spec(A)
be as before, and consider the canonical map g¢: X - X.

Recall from [7, Section 1] that g¢: X — X is a geometric quotient for
the action of the algebraic torus H := Spec(K[4]) on X defined by the
A-grading of A. Moreover, the G-representation on A(U) induces a regular
G-action on the quasiaffine variety U= ¢ '(U) such that the actions of H
and G commute and ¢: U — U becomes G-equivariant.

Let fi,...,fr € A(U) be homogeneous and G-invariant such that the
sets U \ Z(f;) are as in Definition 1.1 and cover U*(A). Choose a (G x H)-
equivariant affine closure U of U such that the functions f; € (9([7 ) extend
regularly to U, and Ufi = ﬁfi for each ¢ = 1,...,r. Then we have a good
quotient

7: U — U /G = Spec(O(0))“.

The quotient variety U //G inherits a regular action of the torus H such
that the map p: U — U /G becomes H-equivariant. Similarly to [7, Propo-
sition 2.3], we obtain:

LEMMA 1.3. Let Vg := UJG\P(U\U), and let Vi C UG be the union
of all H-orbits with finite isotropy. Then

¢ (UP(A) =7 (o nW).

Proof. Set W := U%(A) and W= gt (W). We begin with the inclusion
“C”. By [7, Remark 1.6] the set q YU\ Z(f;)) equals Uy,. Since each of

the latter sets is p-saturated and W is covered by the U f,» We see that W is
p-saturated. In particular, we obtain p(W) c W.

To verify ﬁ(ﬁ/\) C Vi, let z € W. Take one of the f; with z € Uy, As it
is G-invariant, f; descends to an H-homogeneous function h € O(U J/G). By
the properties of f;, the function h satisfies the condition of [7, Lemma 2.4]
for the point p(z). Hence Hp,) is finite, which means p(z) € V4.

We turn to the inclusion “D” of the assertion. Let y € Vo N Vi. Then [7,
Lemma 2.4] provides an h € O(U//G), homogeneous with respect to some
xP € Char(H), such that y € V := (U//G); and the D' € A admitting an
invertible x?’'-homogeneous function on V form a subgroup of finite index
in A. Suitably modifying h, we additionally achieve V C V, N V7.

Now, consider a point z € p~!(y). Since y € Vo, we have z € U. We
have to show that ¢(z) is U-semistable. For this, consider the G-invariant
homogeneous section f := p*(h)|5 of Ap(U). By the choice of h, this f
satisfies the conditions of Deﬁmtlon 1.1 and thus the point ¢(z) is in fact
U-semistable. m
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As a consequence of this geometric description, we obtain the existence
of a good quotient for the set of U-semistable points for any G-invariant
open subset U C X. The result generalizes [7, Theorem 3.1]:

PROPOSITION 1.4. Let A C CDiv(X) be G-linearized, and let U C X be
an open G-invariant subset. Then there is a good quotient

p: UB(A) - US(A))G
and the quotient space U*(A) /|G is a divisorial prevariety. Moreover, for

every G-invariant homogeneous f € A(U%(A)), the zero set Z(f) is p-
saturated.

Proof. We may assume that U = U**(A). Then A is ample on U, and we
are in the setting of Lemma 1.3. Since the set U is saturated with respect
to the good quotient p: U — U J/G, restricting P to U yields a good quotient
p:U— ﬁ// G.

Moreover, Lemma 1.3 tells us that H acts with at most finite isotropy
groups on U//G. Thus, there is a geometric quotient UG — (U/JG)/H.
By [7, Lemma 3.3], the latter quotient space is a divisorial prevariety. Since
good quotients are categorical, we obtain a commutative diagram

i—2~0)a
/HL l/H
U—(U)G)/H

Now it is straightforward to check that the induced map U — (U /G)/H
is the desired good quotient for the action of G on U. This proves the first
part of the assertion.

For the supplement, consider a G-invariant homogeneous f € A(U%*(A)).
By [7, Remark 1.6], the set A of zeroes of f € U equals ¢~ *(Z(f)). Now, A
is p-saturated, and p(A) is saturated with respect to the geometric quotient
U JG — ((7 JG)/H. Thus the surjectivity of the maps involved gives the
result. m

Similarly to [8], we also have a converse of Proposition 1.4. Recall from [7,
Section 4] that a group A C CDiv(X) is said to be canonically G-linearized
if on every homogeneous component Ap the G-sheaf structure arises from
the action

(9-f)(@):=flg" - 2)

on the function field K(X). Now, assume that X is a Q-factorial G-variety,
and let U C X be an open G-invariant subset with a good quotient U —
U//G. The proof of [7, Theorem 4.1] gives:
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THEOREM 1.5. If U)/G is divisorial, then there exists a canonically G-
linearized A C CDiv(X) such that U is contained in X%(A) and is saturated
with respect to the quotient map X%(A) — X*(A)/G.

2. Proof of the main result. In this section, we prove our main result.
First we have to introduce the following notions of maximality for open sets
with good quotient (cf. also [1]):

DEFINITION 2.1. Let the reductive group H act regularly on a variety Y.
We say that V C Y is an H-subset if it is open, H-invariant and admits a
good quotient V' — V//H. We say that an H-subset V C Y is

(i) d-mazimal if VJH is divisorial, and V' does not occur as a saturated
subset of a properly larger H-subset V' C X with V’//H divisorial;

(ii) s-d-maximal if VJH is separated and divisorial, and V' is not a sat-
urated subset of a properly larger H-subset V' C X with V' H separated
and divisorial.

Here a saturated subset of an H-subset V' is a subset that is saturated
with respect to the quotient map V' — V' H.

Now, consider the special linear group G := SLy(K). Fix a maximal torus
T C G, and denote by N its normalizer in G. For example:

t 0 X _ : (0 -1
T.-{(O t_1>’tEK}’ N =TUnT, w1thn.—<1 O).

The main result of this note generalizes and enhances [3, Theorem 9]. In
the above notation, it reads:

THEOREM 2.2. Let G = SLy(K) act regularly on a Q-factorial variety X .
For any open subset U C X let W(U) be the intersection of all translates
g-U,geaG.

(i) If U C X is a d-mazimal N-subset then W (U) is open and saturated
in U, and there is a good quotient W(U) — W (U)/G with a divisorial
prevariety W(U) J/G.

(ii) Every d-mazimal G-subset W C X s of the form W = W (U) with
a d-mazimal N-subset U C X.

In the proof we shall use the techniques presented in Section 1. Let
A C CDiv(X) be a G-linearized group. Then A is also linearized with respect
to every subgroup of G. In particular, we obtain a set U (A, H) of semistable
points for G-invariant open U C X and every reductive subgroup H C G.

REMARK 2.3. Let U C X be a G-invariant open subset, let H C G be

a reductive subgroup, and let ¢ € GG. Then a point x € U is U-semistable

with respect to H if and only if g- 2 is U-semistable with respect to gHg~!.
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The crucial step in the proof of Theorem 2.2 is to express generalized
semistability in terms of maximal tori. For this, let MT(G) denote the set
of maximal tori of the group G, and fix an element 7" € MT(G).

LEMMA 2.4. Let G = SLo(K) act regularly on a variety X, let A C
CDiv(X) be a G-linearized group, and let U C X be any G-invariant subset
such that A is ample on U. Then

US(A,G) = [ U*AS)=()g USAT).
SeMT(G) geG
Moreover, the set U*(A, G) is saturated in U*(A,T) with respect to the
quotient map US (A, T) — US(A,T))T.

Proof. The supplement is due to Proposition 1.4. The second equality is
clear by Remark 2.3. Moreover, the inclusion “C” of the first equality holds
by the definition of semistability. Thus we are left with proving the inclusion
“D” of the first equality. R

For this, let A be the graded O x-algebra associated to A, and set X :=
Spec(A). Moreover, let g: X — X be the canonical map and denote by
H := Spec(K[A]) the algebraic torus acting on X. Finally, let U := ¢~ (U).

Choose G-invariant homogeneous f1,. .., f, € A(U) and T-invariant ho-
mogeneous hq,...,hs € A(U) such that the complements U \ Z(f;) and
U\ Z(h;) satisfy the conditions of Definition 1.1 and

UP(A,G) = (U\NZ(A)) V... U U\ Z(fr),
UP(A,T)=U\Z(h))U...U U\ Z(hy)).
Since A is ample on U, there is a (G x H)-equivariant affine closure U

of U such that the fi and h; extend to regular functions on U satisfying

U = Uf and U h; = Uh Moreover, we obtain a commutative diagram of
H-equivariant maps:

— Pa —
U /G yie
/T

U)T

In the further proof, we shall apply to this diagram the geometric char-
acterization of semistability given in Lemma 1.3. A first step is to verify

N ¢ '(U=(A,9) cU\pg' BT\ D).
SeMT(G)

Let x € U%(A,S) for all maximal tori S C G, and let z € ¢~ (z ) Set
y :=Pe(2). Suppose y € o (U \ U) Let G - 2’ be the closed orbit in P, Ly).
Then G - 2’ is contained in U \ U. Moreover, the Hilbert-Mumford-Birkes
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Lemma [5] provides a maximal torus S C G such that the closure of S - z
intersects G - 2/

Let ¢ € G with ¢Sg~' = T. Then the closure of T - g - 2 contains a
point 2 € G - 2. Surely, pr(g - z) equals py(2”). Thus, since 2 € U\ U,
Lemma 1.3 tells us that g-z = ¢(g-2) is not semistable with respect to T'. By
Remark 2.3, the point z is not semistable with respect to .S, a contradiction.
So the first step is done.

Now assume that there is a point x € X that is semistable with respect
to all maximal tori of G but not with respect to G itself. By the above
inclusion, we have = = ¢(z) for some z € U \ g Pe(T \ U)). Lemma 1.3
tells us that for y :=pg(2) the isotropy group H, is infinite. Let Hy be the
connected component of the neutral element of Hy, and let G - zg be the
closed G-orbit in the fibre pg' ().

Then Hy acts freely on the fibre ﬁ&l (y) C U. Since G - 2 is the only
closed G-orbit in this fibre, it is invariant under the action of Hy. Let Gy
denote the stabilizer of Hy - zg. We claim that Gg - zg = Hy - zp. Indeed, let
h € Hy. Since Hy - 29 C G - zp, there is a g € G with g - zg = h - z9. We have
g € G because

g'(HO'ZO):HO‘(g‘ZO):HO‘(h‘ZO):HO'ZO-

Denoting by u: Gg — G-z and 7: Hy — Hg-z the orbit maps, we obtain
an epimorphism Gy — Ho, g — 7 1(u(g)), of algebraic groups. In particular,
for every maximal torus Sy C Gy we have Sy-z9 = Hy - zg9. Consequently, the
maximal tori of Gy are nontrivial, and hence of dimension one. So, applying
Lemma 1.3 to a maximal torus of Gy yields

a0 () USAS).

SEMT(G)

By the choice of z, this implies that G-z # G- zy. Hence G- zg is of smaller
dimension than G- z. In other words, the isotropy group G, is infinite. Note
that G,, C Gop. Since G - z is affine, G, is reductive and hence contains
a nontrivial torus Sy of Gy. Since by dimensional reasons Sy is already a
maximal torus of Gy, this contradicts Sy -z9 = Hg - 20. m

Proof of Theorem 2.2. We begin with (i). By Theorem 1.5, there is a
canonically N-linearized group A C CDiv(X) such that U = X®%(A, N).
We show that on a subgroup A” C A of finite index, the canonical N-
linearization of A” extends to a G-linearization of A” (compare also [7, Proof
of Theorem 5.1]).

Using Sumihiro’s Equivariant Completion Theorem [10, Theorem 3] and
equivariant normalization, we find a complete normal G-variety Y which
contains X as a G-invariant open subset. Consider the set of singular points
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Ysing C Y, and remove the closed G-invariant set Ying \ X from Y. Then YV
is possibly no longer complete, but by normality, we still have O(Y) = K.

By construction, every Cartier divisor D on X extends to a Cartier
divisor E on Y: just replace the components of D with their closures in Y.
The resulting Weil divisor F on Y is Cartier, because so is its restriction X,
and any point of Y\ X is smooth. Proceeding this way, we can extend the
group A C CDiv(X) to a canonically N-linearized group I' C CDiv(Y).

On the other hand, some subgroup IV C I of finite index admits a G-
linearization. Since we have O(Y) = K, we can apply [7, Proposition 1.5] to
see that on some further subgroup I C I' of finite index the N-linearization
inherited from the G-linearization and the canonical N-linearization coin-
cide. Thus, restricting I'” to X gives the desired subgroup A” C A.

We replace A with the above A”. Note that this does not affect U =
X%(A, N). Let A denote the graded O x-algebra defined by A, and let V' C X
consist of all points admitting an affine neighbourhood X \ Z(f) with a
homogeneous section f € A(X). Then V is open and G-invariant, and the
group A is ample on V.

By the definition of semistability, we have U C V*(A, N). Moreover,
since U is defined by removing zero sets of global N-invariant homogeneous
sections, the supplement of Proposition 1.4 tells us that U is even saturated
with respect to the quotient map V*(A, N) — V*(A, N)/N. Since U is a
d-maximal N-set, we have U = V*(A, N). So, Lemma 2.4 yields

W(U)=(Vg-U=[)g-VAN)C (g VFAT) =V*(4,0).
geG geG geqG

Since V*5(A,G) is contained in V*(A,N), we have in fact equality.
In particular, W(U) is open, and Proposition 1.4 yields a good quotient
W(U) — W(U) /G with a divisorial quotient space W (U)/G. Moreover, we
see that W (U) is saturated with respect to the quotient map U — U//N.

We prove (ii). If W C X is a d-maximal G-set, then Proposition 1.5
tells us that W = X%(A, G) for some G-linearized group A C CDiv(X). Let
U C X be any d-maximal N-set U C X containing X**(A4, N) as a saturated
open subset. By assertion (i), the set W (U) admits a good quotient by the
action of G with a divisorial quotient space W (U)/G.

Surely, we have W C W (U). Moreover, W is saturated in U, and W (U) is
saturated in U. Thus we conclude that W is saturated in W (U) with respect
to the quotient map W(U) — W(U)/N. The classical Hilbert-Mumford
Lemma [5] shows that W is even saturated with respect to W(U)—W (U) /G
(see also [4, Proposition 2.6]). By d-maximality of W, this means W =
W({U). m
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3. Proof of the Corollary. As in the previous section, G = SLy acts
on a Q-factorial variety X, and N C G denotes the normalizer of a maximal
torus T' C G. Let us give a precise definition of the G-kernel:

Let U’ € X be a d-maximal N-subset. Then we have good quotients
s: U = U'JJN and p: W(U') — W (U") /G, where the latter exists by Theo-
rem 2.2. By an N-separated component U C U’ we mean the inverse image
U = s~ (V) of a maximal separated open subset V C U’//N.

DEFINITION 3.1. The G-kernel W (U)® of an N-separated component
U C U’ is defined as follows: Let Wy consist of all z € W (U) with p~!(p(z)) C
W(U). Then W(U)® is the inverse image p~1(Vj) of the set Vj of interior
points of p(Wp).

Note that a G-kernel is always G-invariant, but it can be empty. As an
application of Theorem 2.2 we now show that every s-d-maximal G-subset
of X is a G-kernel:

COROLLARY 3.2. (i) Let U C U’ be an N-separated component of a
d-maximal N-subset U' C X. Then there is a good quotient W(U)® —
W(U)®)G with a separated divisorial quotient space.

(ii) Every s-d-mazimal G-subset W C X is of the form W = W (U)®
with an N-separated component U C U’ of a d-mazimal N-subset U' C X.

Proof. In order to prove (i), note first that the G-kernel W (U)® is by con-
struction saturated with respect to the quotient map W(U') — W(U")JG.
Hence W (U)® is also saturated with respect to the quotient map W (U') —
W(U'")JN. Since W(U') C U" and U C U’ are saturated inclusions of N-
subsets, we deduce that W (U)® is saturated in the N-subset U.

Consequently, W (U)® admits a good quotient W(U)® — W (U)® /N with
a separated divisorial quotient space. Thus we may use for example [7, The-
orem 5.1] to infer the existence of a good quotient W(U)® — W (U)®/G
with a separated divisorial quotient space.

We prove (ii). Let W C X be an s-d-maximal G-subset. Then W is a
saturated subset of some d-maximal G-subset W’ C X. We consider the
following commutative diagram:

w! P W' )G

NS

W' N

Note that Z := p(W) is a maximal separated open subset of W’/G. Since
7 is an affine map, the inverse image r~!(Z7) is contained in some maximal
separated open subset Y C W’ /N.
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By Theorem 2.2, we have W’ = W (U’) with some d-maximal N-subset
U’ € X.Moreover, W' is saturated with respect to the quotient map s: U’ —
U'JN. So, we may view ¢ as the restriction of s. Then Y is of the form
s(U) N s(W') with some N-separated component U C U’. We have

W) =WU)NW =W UNW')=W(g(Y)).
Consequently, W = p~1(Z) is contained in W(U), and hence in the
G-kernel W(U)®. According to (i), there is a good quotient W(U)® —
W(U)? /G with a separated divisorial quotient space. Moreover, W C W’

and W(U)® C W' are saturated inclusions of G-sets. Thus W C W(U)® is
saturated, and, by s-d-maximality, we have W = W (U)°. =
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