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NOTE ON ANALYTIC REGULARITY OF HEAT KERNELS
ON NILPOTENT LIE GROUPS

BY

JACEK ZIENKIEWICZ (Wrocław)

Abstract. Let G be the simplest nilpotent Lie group of step 3. We prove that the
densities of the semigroup generated by the sublaplacian on G are not real-analytic.

Introduction. Let G be a nilpotent Lie algebra generated byX1, . . . ,Xk

and let L = X2
1 + . . . + X2

k be the corresponding sublaplacian. Then L is
the infinitesimal generator of a semigroup of smooth convolution kernels pt,
t > 0, on G = expG. It has been noticed in [Hu] that the formula for pt when
G is a Heisenberg group (cf. also [Cy], [G]) implies that the kernels pt are
real-analytic functions. On the other hand, it follows from the general theory
of elliptic operators that the same holds for the kernels pt in the case when
L is elliptic, i.e. when X1, . . . ,Xk is a linear basis of G. The aim of this note
is to show that for the sublaplacian L on the simplest, step 3, nilpotent Lie
group the kernels pt are not real-analytic in the neighbourhood of zero. As
a consequence we get the same result for nilpotent Lie groups with algebras
generated by two elements with the one exception of the Heisenberg group.
Our method also works for some (higher order) Rockland operators on the
Heisenberg group. The idea of our approach is based on the results of M.
Christ (see [C1]–[C3]).

The author would like to thank M. Christ, W. Hebisch, A. Hulanicki,
and F. Ricci for helpful conversations concerning this and related problems.

Main result. Let G be the step three nilpotent Lie algebra with the
commutation relations

[X1,X2] = X3, [X1,X3] = X4.

We will identify G with the corresponding connected and simply con-
nected Lie group G = expG, defining the multiplication in G by the Camp-
bell–Hausdorff formula.
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Let L be the sublaplacian on G,

(1) L = X2
1 +X2

2 .

For r > 0, let δr be the linear operator in G defined by

δrXi = rd(i)Xi with d(1) = d(2) = 1, d(3) = 2, d(4) = 3.

Then the δr form a one-parameter group of automorphisms of G such that
the vector field Xi is homogeneous of degree d(i), and the sublaplacian L is
homogeneous of degree 2 with respect to δr.

We say that a smooth function f satisfies the Gevrey regularity condition
Gs,i at zero if there is a constant C such that

(2) |∂ni f(x)| ≤ C(Cn)sn

for all n ∈ N, and all x from a fixed small neighbourhood of zero.
Our aim is to prove the following

Theorem. Let s0 < 7/6 be fixed. Then for i ∈ {1, 2, 3, 4} the kernel p1

of the semigroup generated by L does not satisfy the condition Gs0,i at zero.
In fact , for a fixed i there is no constant C for which

(3) |∂2n
i p1(0)| ≤ C(Cn)2s0n for all n ∈ N.

Let τ denote a riemannian distance on G. To prove the theorem we will
need the following lemma.

Lemma. Assume that a function f satisfies

(4)
�
|Xn

i f |2 dx ≤ C(Cn)2sn for n ∈ N and fixed s > 1,

(5)
�
|f(x)|2 exp(2τ(x)) dx ≤ C.

Then

(6)
�
|Xn

i f(x)|2 exp(τ(x)) dx ≤ C(2Cn)2sn.

Proof. Let φ be a function satisfying

(i) C1 exp(τ(x)) ≤ φ(x) ≤ C2 exp(τ(x)) for some C1, C2 > 0,

(ii) |Xn
i φ(x)| ≤ C(Cn)(1+ε)n exp(τ(x))

for fixed sufficiently small ε > 0 and all n ≥ 0.

To see that such a function φ exists, we take a nonzero, nonnegative function
ψ ∈ C∞c (G) which belongs to the Gevrey class of order 1 + ε and we put
φ(x) = exp(τ) ∗ ψ(x). Then φ satisfies (ii) because the vector fields Xi are
real-analytic and so

|Xn
i ψ(x)| ≤ C(Cn)(1+ε)n, Xn

i φ = exp(τ) ∗ (Xn
i ψ)
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(we omit a simple inductive proof that |∂kXn
i ψ(x)| ≤C(C(n+k))(1+ε)(n+k)).

Now for 1 + ε ≤ s we have

C1

�
|Xn

i f(x)|2 exp(τ(x)) dx ≤
�
|Xn

i f(x)|2φ(x) dx

= (−1)n
�
f(x)Xn

i (Xn
i f(x)φ(x)) dx

= (−1)n
n∑

k=0

(
n

k

) �
f(x)Xn+k

i f(x)Xn−k
i φ(x) dx

≤ 2n
n∑

k=0

( �
|f(x)|2(Xn−k

i φ)2(x) dx
)1/2( �

|Xn+k
i f(x)|2 dx

)1/2

≤ 2n
n∑

k=0

(n− k)(1+ε)(n−k)
( �
|f(x)|2φ(x)2 dx

)1/2( �
|Xn+k

i f(x)|2 dx
)1/2

≤ C2n
n∑

k=0

(n− k)(1+ε)(n−k)(C(n+ k))s(n+k) ≤ (2Cn)2sn,

which completes the proof of the lemma.

Proof of the Theorem. Assume that (3) holds. By the identification of G
and G, and the symmetry of p1/2(x), for fixed i we have

(7) (−1)n∂2n
i p1(0) = (−1)nX2n

i p1(0) =
�
|Xn

i p1/2(x)|2 dx ≤ C(Cn)2sn.

By (7) and the following (well-known, cf. [V]) easy estimate for the kernel
p1/2:

(8) p1/2(x) ≤ C exp(−4τ(x))

and the lemma, we obtain

(9)
�
|Xn

i p1/2(x)|2 exp(τ(x)) dx ≤ C(Cn)2sn.

Hence

(10) |Xn
i p1(x)| exp(τ(x)) ≤ p1/2 ∗Xn

i p1/2(x) exp(τ(x))

≤
( �
|Xn

i p1/2(x)|2 exp(τ(x)) dx
)1/2
·
( �
p1/2(x)2 exp(τ(x)

)
dx)1/2 ≤ C(Cn)sn

with a different constant C. Let R be a convolution kernel of (Id−L)−k−1,

(11) R(x) = (k!)−1
∞�

0

tkpt(x)e−t dt.

By the homogeneity of L and Xi we have

(12) X2n
i (Id−L)−nd(i)−1f(x) = f ∗K(x)
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for f ∈ S(G), where

K(x) = ((nd(i))!)−1
∞�

0

(X2n
i p1)(δt−1/2x)t−Q/2e−t dt.

This together with (10) implies

(13)
�
|K(x)| dx ≤ C(Cn)(2s−d(i))n,

and consequently,

(14)
�
|X2n

i f(x)|2 dx

≤ C(Cn)2(2s−d(i))n
�
|(Id−L)d(i)n+1f(x)|2 dx for f ∈ S(G).

We are going to show that for our group G, estimate (13) fails for large n.
Observe that (13) implies the same operator norm estimate for the unitary
representation image πK of K. Let π be the unitary representation of G such
that the corresponding representation dπ of the Lie algebra G is defined for
f ∈ C∞c (R) by the formulas

dπ(X1)f(t) =
d

dt
f(t),(15)

dπ(X2)f(t) = it2f(t),(16)

dπ(X3)f(t) = 2itf(t),(17)

dπ(X4)f(t) = 2if(t).

Let φ be a first eigenfunction of dπ(L),

(18) dπ(L)φ =
(
− d2

dt2
+ t4

)
φ = λφ,

and λ the corresponding eigenvalue. Then φ ∈ S(R). The theory of ODE
(see [CL]) yields

∣∣∣∣
d

dt
φ(t)

∣∣∣∣+ |φ(t)| ≥ C1 exp(−C2|t|3) for sufficiently large |t|.

Hence, using (18) and an integral Taylor formula, one gets

(19)
�

t≤x≤t+1

|φ(x)| dx ≥ C3 exp(−C4|t|3) for sufficiently large |t|.

Consequently,
�
|dπ(X2)2nφ(t)|2 dt =

�
|t4nφ(t)|2 dt ≥ (Cn)8n/3,(20)

�
|dπ(X3)2nφ(t)|2 dt =

�
|t2nφ(t)|2 dt ≥ (Cn)4n/3.

On the other hand we have ‖dπ((Id−L)nd(i)+1)φ‖2 = (1 + λ)nd(i)+1. This
contradicts (13) for s < 7/6 for i = 2 and s < 4/3 for i = 3.
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In order to show that the hypothesis (13) fails for i = 1 we observe that
the Fourier transform Φ of φ satisfies the equation

(21)
(
d4

dt4
+ t2

)
Φ(t) = λΦ(t).

By standard theory of ODE (see [CL]) we have

|Φ(t)|+
∣∣∣∣
d

dt
Φ(t)

∣∣∣∣+
∣∣∣∣
d2

dt2
Φ(t)

∣∣∣∣+
∣∣∣∣
d3

dt3
Φ(t)

∣∣∣∣ ≥ C3 exp(−C4|t|3/2) for large |t|,

and consequently (using (21))

(22)
�

t<x<t+1

|Φ(x)| dx ≥ C3 exp(−C4|t|3/2) for large |t|,

Hence
�
|dπ(X1)2nφ(t)|2 dt =

� ∣∣∣∣
d2n

dt2n
φ(t)

∣∣∣∣
2

dt =
�
|t2nΦ(t)|2 dt ≥ (Cn)8n/3,

which contradicts (13) for i = 1 and s < 4/3.
In order to disprove (13) for i = 4 and s < 3/2 we will use (18). It suffices

to observe that the estimate
�
|φ(t)|2 dt ≤ (Cn)2(2s−d(4))n

∥∥∥∥
(
− d2

dt2
+ t4

)nd(4)+1

φ(t)
∥∥∥∥

2

L2

= (Cn)−δn(1 + λ)6n+2

is false for δ = 2(3 − 2s) > 0 and n → ∞. This finishes the proof of the
theorem.

Remark. Assume that for some s > 0 the subelliptic estimate (14)
holds for all n ∈ N. Then as an immediate consequence of analyticity of pt
on L2 we get pt ∈ Gs,i.

Corollary 1. Let H be a nilpotent stratified Lie group whose Lie alge-
bra is generated by two vectors X and Y of degree 1. Then the densities of
the semigroup generated by X2 + Y 2 are not real-analytic at zero.

Proof. The only fact about the group G used in the proof of the main
theorem was the existence of the representation satisfying (15), (16), (17).
Since G is a homomorphic image of H, such a representation of H exists and
the corollary follows.

Corollary 2. The densities kt of the semigroup generated by X2−Y 4,
where X and Y generate the Heisenberg Lie algebra, are not analytic at
zero. (On the contrary the densities of the semigroup generated by ∂2

1 − ∂4
2

are real-analytic on R2.)
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Sketch of the proof. Assume that |X2nkt(0)| ≤ (Cn)2sn. Then by (13)
with d = 1 we get
(∗) ‖X2n(Id−L)−n−1‖L1 ≤ (Cn)(2s−1)n.

Now we choose the unitary representation of the Heisenberg Lie algebra
defined by dπ(X)f(t) = itf(t), dπ(Y )f(t) = d

dtf(t) and we consider the
image of (∗) in π. In order to disprove analyticity of k1 it suffices to observe
that by (21) and (22) the estimate

‖dπ(X2n)dπ((Id−L)−n−1)‖L2→L2 ≤ (Cn)(2s−1)n

is false for s < 7/6 and n→∞.
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