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ENDOMORPHISM RINGS OF REGULAR MODULES OVER
WILD HEREDITARY ALGEBRAS

BY

OTTO KERNER (Düsseldorf)

Dedicated to Raymundo Bautista on the occasion of his sixtieth birthday

Abstract. Let H be a connected wild hereditary path algebra. We prove that if Z is
a quasi-simple regular brick, and [r]Z indecomposable regular of quasi-length r and with
quasi-top Z, then radr EndH([r]Z) = 0.

Let H be a finite-dimensional hereditary algebra over some algebraically
closed field K. We will assume that H is basic and connected, hence H
is isomorphic to the path algebra KQ of some finite connected quiver Q
without oriented cycles, and the category A-mod of finite-dimensional left
A-modules can be identified with the category repK Q of finite-dimensional
K-linear representations of the quiver Q. By n we always denote the number
of vertices of the quiver Q, which coincides with the number of isomorphism
classes of simple H-modules.

We additionally assume that H is wild hereditary. This means that the
quiver Q is neither of Dynkin nor of Euclidean type, or equivalently that ev-
ery finite-dimensional K-algebra B is isomorphic to the endomorphism ring
of some module X ∈ H-mod. In particular each finite-dimensional local
K-algebra B is the endomorphism ring of some finite-dimensional indecom-
posable H-module X.

We denote by Γ (H) the Auslander–Reiten quiver of H and by τ = τH
the Auslander–Reiten translation in Γ (H) as well as in H-mod. Since H
is hereditary, the functor τ = D Ext1

H(−,H), with D = HomK(−,K), is
full and left exact on H-mod. Since H is wild hereditary, the Auslander–
Reiten quiver Γ (H) contains besides the preprojective component P and
the preinjective component I infinitely many regular components C, all of
them of type ZA∞.

If X is an indecomposable regular module, i.e. the isomorphism class
[X] of X is a vertex of some regular component C of Γ (H), then X is called
quasi-simple if the Auslander–Reiten sequence starting or ending in X has
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indecomposable middle term. Clearly X is quasi-simple if and only if τ iX
is quasi-simple for each i ∈ Z. If X is an arbitrary indecomposable regular
module, then there exist a chain of irreducible monomorphisms

Y = Y (1) ε1−→ Y (2) ε2−→ . . .
εr−1−→ Y (r) = X

and a chain of irreducible epimorphisms

X = [r]Z
πr−1−→ [r − 1]Z

πr−2−→ . . .
π1−→ [1]Z = Z

where Y and Z are quasi-simple and are called the quasi-socle, respectively
the quasi-top, of X. Moreover Y = τ r−1Z, and the natural number r is
called the quasi-length of X.

Since dim HomH(Z, τ r−1Z) grows exponentially with r, and

πr−1 . . . π1 HomH(Z, τ r−1Z)ε1 . . . εr−1

is a subspace of EndH([r]Z), even of rad EndH([r]Z), it follows that also
dim rad EndH([r]Z) grows (at least) exponentially with r. We are concerned
with the structure of the endomorphism rings EndH([r]Z).

For a finite-dimensional K-algebra B the radical radB is nilpotent. De-
note by

e(radB) = min{m ∈ N | (radB)m = 0}
the exponent (of nilpotency) of radB.

For a quasi-simple regular H-module Z we will prove the following fact.

Proposition. The set {e(rad EndH([r]Z)) | r ∈ N} is unbounded.

Since τ is an equivalence on the category of regular H-modules, we have

EndH([r]Z) ∼= EndH(τ i[r]Z)

for all integers i. Consequently, the function e(rad EndH(−)) is constant on
the τ -orbits of indecomposable regular H-modules.

It seems to be hopeless to find a close relation between the natural num-
bers r and e(rad EndH([r]Z)) for an arbitrary quasi-simple H-module Z,
as in the case of tame hereditary algebras A, since in that case the cate-
gory A-reg of regular A-modules is abelian and all indecomposable regular
modules are uniserial in A-reg. Indeed, if H is wild hereditary, for each
finite-dimensional local K-algebra B there even exists a quasi-simple mod-
ule Z(B) with B ∼= EndH(Z(B)). Moreover, for each indecomposable regu-
lar H-module R the radical rad EndH(R) is contained in the infinite radical
rad∞(H-mod) of the category H-mod, whereas the Auslander–Reiten quiver
visualises the factor category H-mod/rad∞(H-mod).

On the other hand, if the quasi-simple H-module Z is a brick, i.e.
EndH(Z) = K, then the irreducible epimorphisms πr−1: [r]Z → [r − 1]Z
as well as the irreducible monomorphisms εr−1: Z(r − 1) → Z(r) induce
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surjective ring homomorphisms

π̂r−1: EndH([r]Z)→ EndH([r − 1]Z),

respectively
ε̂r−1: EndH(Z(r))→ EndH(Z(r − 1)),

therefore inductive arguments apply. Besides this technical advantage, bricks
are of interest by themselves, for example for geometrical reasons.

For a quasi-simple brick Z, we have to distinguish two cases: either
Ext1

H(Z,Z) 6= 0 or Ext1
H(Z,Z) = 0. In the latter case, there exists a nat-

ural number t with 1 ≤ t ≤ n − 2 and Ext1
H([i]Z, [i]Z) = 0 for 1 ≤ i ≤ t,

but Ext1
H([t + 1]Z, [t + 1]Z) 6= 0 and EndH([t + 1]Z) = K. Conversely, if

for some t > 0 the module [t + 1]Z is a brick, then [t]Z is a brick with-
out self-extensions. In particular, Z is a brick without self-extensions in this
case.

Theorem. Let H be connected wild hereditary and Z be a quasi-simple
regular brick.

(a) If Z has self-extensions, then for r > 1,

e(rad EndH([r − 1]Z)) ≤ e(rad EndH([r]Z))

≤ min{r, 1 + e(rad EndH([r − 1]Z))}.

(b) If Ext1
H(Z,Z) = 0 and t ≥ 1 is maximal with Ext1

H([t]Z, [t]Z) = 0,
then for i ≥ 2 the following holds, where [−] denotes the Gauss bracket :

e(rad EndH([t+ i− 1]Z)) ≤ e(rad EndH([t+ i]Z))

≤ 1 + min{[i/2], e(rad EndH([t+ i− 2]Z))}.
(c) In both cases the dimensions of the left socle as well as the right socle

of EndH([r]Z) grow exponentially with r.

An indecomposable regular module E is called elementary if it has no
nontrivial filtrations with regular subquotients, or equivalently, if τmE has
no nontrivial regular factor modules for m � 0. Elementary modules are
quasi-simple bricks, therefore the Theorem applies. It will be shown in the
last section that the results of the Theorem can be improved for elementary
modules.

For unexplained terminology we refer to [1] and [13], for basic results on
wild hereditary algebras to [7]. Morphisms between modules will be written
opposite to the scalars. If Ui, 1 ≤ i ≤ 3, are modules in H-mod and fi: Ui →
Ui+1 are morphisms for i = 1, 2, the composition will be therefore written as
f1f2: U1 → U3. Compositions of ring homomorphisms will always be written
from right to left.
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1. Proof of the Proposition. Let H be connected wild hereditary
and M = [r]Z = X(r) an indecomposable regular H-module of quasi-length
r > 1. Basic for the considerations in this paper is the following result, due
to Ringel [12]:

Let X = X(1) ε1−→ . . .
εr−1−→ X(r) a chain of irreducible monomorphisms

and [r]Z
πr−1−→ . . .

π1−→ Z = [1]Z be a chain of irreducible epimorphisms.

Lemma 1.1. For 1 ≤ i < r one has:

(a) The cokernel of the map εi . . . εr−1: X(i) → X(r) is τ−iX(r − i) =
[r − i]Z. The kernel of the map πr−1 . . . πi: [r]Z → [i]Z is τ i[r − i]Z =
X(r − i).

(b) If Y1 is indecomposable with Y1 6∼= τ−iX(r− 1− i) for 0 ≤ i < r− 1,
then each morphism f : X(r − 1)→ Y1 factorises through εr−1.

If Y2 is indecomposable with Y2 6∼= τ i[r − 1− i]Z for 0 ≤ i < r − 1, then
each morphism g: Y2 → [r − 1]Z factorises through πr−1.

If Z is a quasi-simple regular H-module contained in the regular compo-
nent C and r is a natural number, the mesh-complete full subquiverW([r]Z)
of C defined by the vertices [τ i[j]Z] with i ≥ 0, j ≥ 1 and i + j ≤ r is
called the wing of length r and top [r]Z. The quasi-simple modules τ iZ
with 0 ≤ i ≤ r − 1 are called the basis of the wing W([r]Z). If one chooses
irreducible epimorphisms π0

i = πi: [i + 1]Z → [i]Z for 1 ≤ i ≤ r − 1, one
can always find a consistent choice for the irreducible maps inside the wing
W([r]Z). This means that there are irreducible monomorphisms

εij : τ
i[j]Z → τ i−1[j + 1]Z, i ≥ 1, i+ j ≤ r,

and irreducible epimorphisms

πij−1: τ i[j]Z → τ i[j − 1]Z, j > 1, i+ j ≤ r,
such that

εi1π
i−1
1 = 0, εijπ

i−1
j = πij−1ε

i
j−1 for j > 1.

We will always assume that the irreducible maps in a sufficiently large wing
are chosen consistently.

Let Z be a quasi-simple regular H-module, i, j, r ∈ N, and choose the
irreducible maps in the wing W([j + ri]Z) consistently.

For 1 ≤ t ≤ r denote by π(t): [j + (r − t + 1)i]Z → [j + (r − t)i]Z the
chain of irreducible epimorphisms, and by ε(t): τ i(r−t+1)[j + (t − 1)i]Z →
τ i(r−t)[j+ it]Z the corresponding chain of irreducible monomorphisms, both
at the borders of the wing W([j+ ri]Z). With these notations the following
holds.
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Lemma 1.2. Let αt: τ i(t−1)[j]Z → τ it[j]Z be morphisms for 1 ≤ t ≤ r.
Then there exist morphisms βt: [j+ (r− 1)i]Z → τ i[j+ (r− 1)i]Z such that

π(1) . . . π(r)α1 . . . αrε(1) . . . ε(r) =
r∏

t=1

(π(1)βtε(r)).

Proof. The proof is by induction on r; the case r = 1 is trivial. Assume
that the statement holds for r − 1 ≥ 1.

Let ε′(t): τ
i(r−t)[j+(t−1)i]Z → τ i(r−t−1)[j+it]Z be a chain of irreducible

monomorphisms for 1 ≤ t ≤ r − 1 and choose

γt: [j + (r − 2)i]Z → τ i[j + (r − 2)i]Z

such that π(2) . . . π(r)α1 . . . αr−1ε
′
(1) . . . ε

′
(r−1) =

∏r−1
t=1 (π(2)γtε

′
(r−1)). From

Lemma 1.1 we infer that there are morphisms

βt: [j + (r − 1)i]Z → τ i[j + (r − 1)i]Z

for 1 ≤ t ≤ r such that αrε(1) . . . ε(r−1) = ε′(1) . . . ε
′
(r−1)βr and π(2)γt = βtπ

′
(2)

for 1 ≤ t < r, where π′(2): τ
i[j + (r − 1)i]Z → τ i[j + (r − 2)i]Z is a chain of

irreducible epimorphisms.
Since π′(2)ε

′
(r−1) = ε(r)π(1) by the consistent choice of the irreducible

maps, we get

π(1) . . . π(r)α1 . . . αrε(1) . . . ε(r)

= π(1) . . . π(r)α1 . . . αr−1ε
′
(1) . . . ε

′
(r−1)βrε(r)

= π(1)

( r−1∏

t=1

π(2)γtε
′
(r−1)

)
βrε(r)

= π(1)

( r−1∏

t=1

βtε(r)π(1)

)
βrε(r) =

r∏

t=1

(π(1)βtε(r)).

We now prove the Proposition: Let C be a regular component in Γ (H)
and Z a quasi-simple module in C. By Lukas [11, 2.3] there exists a monomor-
phism α1: Z → τ iZ for some i > 0. Consequently, all the morphisms
αt = τ i(t−1)α1: τ i(t−1)Z → τ itZ are injective for t ≥ 0, since τ is a left
exact functor.

We apply Lemma 1.2 for j = 1 and i as above. For any r ∈ N the
map 0 6= π(1) . . . π(r)α1 . . . αrε(1) . . . ε(r) =

∏r
t=1(π(1)βtε(r)) is contained in

radr EndH([1 + ri]Z) \ {0}. Hence we have

e(rad EndH([1 + ri]Z)) > r.

2. Preliminaries. Let H = KQ be a connected wild hereditary alge-
bra and Z be a quasi-simple regular H-module. Then HomH(Z, τ iZ) 6= 0
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for i � 0 [2, 3.1]. Moreover, dim HomH(Z, τ iZ) grows exponentially (see
for example [7, 10.6]), whereas HomH(Z, τ−iZ) = 0 for i � 0 ([5]), but
frequently HomH(Z, τ−Z) 6= 0 [9, 3.1]. For regular components containing
bricks, the following lemma [6, 1.2] holds.

Lemma 2.1. If Z is a quasi-simple brick , then HomH(Z, τ−iZ) = 0 for
all i > 0.

Notice that there always exist infinitely many regular components in
Γ (H), containing quasi-simple bricks. If the number n of pairwise noniso-
morphic representatives of simple H-modules is greater than 2, there are
even infinitely many components containing quasi-simple regular modules
without self-extensions [14]. They are bricks by [3, 4.1], since H is hereditary.
As an immediate consequence of Lemma 2.1 we get the following:

Let Z be a quasi-simple regular brick. Then:

(a) HomH(Z, τ−iZ(j)) = 0 for all i, j ≥ 1.
(b) HomH(τ i[j]Z,Z) = 0 for all i, j ≥ 1.
(c) HomH(τ i[j]Z, τ−i

′
Z(j′)) = 0 for all i, j, i′, j′ ≥ 1.

For a quasi-simple brick Z, we consider the wingW([r]Z) and denote the
consistently chosen irreducible maps inside the wing as in Section 1. Then
one has:

Lemma 2.2. Let Z be a quasi-simple brick and r > 1. Then:

(a) HomH([r]Z,Z) = Kπr−1 . . . π1 and πr−1 . . . π1 6∈ radr([r]Z,Z).
(b) HomH(τ r−1Z, [r]Z) = Kεr−1

1 . . . ε1
r−1 and εr−1

1 . . . ε1
r−1 is not con-

tained in radr(τ r−1Z, [r]Z).

Proof. (a) Consider the short exact sequence

0→ τ [r − 1]Z
ε1r−1−→ [r]Z

πr−1...π1−→ Z → 0.

Since HomH(τ [r − 1]Z,Z) = 0, by Lemma 2.1, we get an isomorphism

(πr−1 . . . π1, Z): HomH([r]Z,Z)→ HomH(Z,Z) = K,

hence HomH([r]Z,Z) = Kπr−1 . . . π1. Since the maps πr−1, . . . , π1 are irre-
ducible maps on a sectional path, the composition πr−1 . . . π1 6∈ radr([r]Z,Z)
(see [4]).

Dually one shows part (b).

Lemma 2.3. Let Z be a quasi-simple regular brick , r > 1 an integer and
1 ≤ i < r. Then:

(a) The map π = πr−1 . . . πi: [r]Z → [i]Z induces an epimorphism of
rings

π̂: EndH([r]Z)→ EndH([i]Z)

such that ππ̂(f) = fπ for f ∈ EndH([r]Z).
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(b) The map ε = εr−ii . . . ε1
r−1: τ r−i[i]Z → [r]Z induces an epimorphism

of rings
ε̂: EndH([r]Z)→ EndH(τ r−i[i]Z)

with ε̂(f)ε = εf for f ∈ EndH([r]Z).
(c) rad EndH([r−1]Z) = {f | f = πr−1αε

1
r−1 for α: [r−1]Z → τ [r−1]Z}.

(d) For f = πr−1αε
1
r−1 ∈ rad EndH([r]Z) one has:

ε̂1
r−1(f) = ε1

r−1πr−1α ∈ rad EndH(τ r−1Z),

π̂r−1(f) = αε1
r−1πr−1 ∈ rad EndH([r − 1]Z).

Proof. (a,b) Let ε′ = εir−i . . . ε
1
r−1: τ i[r − i]Z → [r]Z and consider the

short exact sequence

0→ τ i[r − i]Z ε′−→ [r]Z π−→ [i]Z → 0.

Since HomH(τ i[r − i]Z, [i]Z) = 0 by Lemma 2.1, the maps ε′ and π induce
homomorphisms ε̂ ′: EndH([r]Z)→ EndH(τ i[r− i]Z) and π̂: EndH([r]Z)→
EndH([i]Z) such that ε ′f = ε̂ ′(f)ε ′, respectively fπ = ππ̂(f). It is easy to
check that ε̂ ′ and π̂ are ring homomorphisms. They are surjective by Lemma
1.1(b).

(c) If f = πr−1αε
1
r−1, then Ker f contains Kerπr−1 6= 0, hence f ∈

rad EndH([r]Z).
Let ε∗: τ r−1Z → [r]Z, respectively π∗: [r]Z → Z, be the canonical maps.

Since the ideal rad EndH([r]Z) is nilpotent and Z, respectively τ r−1Z, are
bricks, we get ε̂∗(f) = 0 and π̂∗(f) = 0 for f ∈ rad EndH([r]Z). But
ε̂∗(f) = 0 means that f factorises through πr−1. Since π̂∗(f) = 0, the
map f has a factorisation through ε1

r−1, hence f = πr−1αε
1
r−1 for some

α: [r − 1]Z → τ [r − 1]Z.
The proof of (d) is straightforward.

Remark. The surjectivity of π̂r−1 implies

e(rad EndH([s+ 1]Z)) ≥ e(rad EndH([s]Z))

for all s ≥ 1.

Lemma 2.4. Let Z be a quasi-simple regular brick and i > 1. For
α: [i]Z → τ [i]Z there exist unique morphisms β: τ [i − 1]Z → τ 2[i − 1]Z
and γ: [i− 1]Z → τ [i− 1]Z such that ε1

i−1α = βε2
i−1 and απ1

i−1 = πi−1γ.

Proof. Since α ∈ rad∞([i]Z, τ [i]Z), also the composition

ε1
i−1απ

1
i−1 . . . π

1
1 ∈ HomH(τ [i− 1]Z, τZ)

belongs to the infinite radical. But rad∞(τ [i − 1]Z, τZ) = 0 by Lemma
2.2. Hence ε1

i−1α factorises through ε2
i−1 = Kerπ1

i−1 . . . π
1
1, that is, ε1

i−1α =
βε2

i−1. The induced map β: τ [i − 1]Z → τ 2[i − 1]Z is unique, since ε2
i−1 is

injective. The existence of γ is shown dually.
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Lemma 2.5. Let Z be a quasi-simple brick and i > 1. If

0→ τ [i− 1]Z
(ε1i−1,π

1
i−2)−−−−−−→ [i]Z ⊕ τ [i− 2]Z

(πi−1,ε
1
i−2)t−−−−−−→ [i− 1]Z → 0

is the Auslander–Reiten sequence ending in [i− 1]Z, then

π̂1
i−2ε̂

1
i−1 = ε̂ 1

i−2π̂i−1: EndH([i]Z)→ EndH([i− 2]Z).

Proof. (i) Take first f ∈ rad EndH([i]Z). By Lemma 2.3 there exists a
unique morphism α ∈ HomH([i− 1]Z, τ [i− 1]Z) with f = πi−1αε

1
i−1 and

ε̂ 1
i−1(f) = ε1

i−1πi−1α = π1
i−2ε

1
i−2α = πi−2βε

2
i−2

for some β: τ [i− 2]Z → τ 2[i− 2]Z. Hence π̂1
i−2(ε̂ 1

i−1(f)) = βε2
i−2π

1
i−2. Sim-

ilarly there exists a morphism γ: [i − 2]Z → τ [i − 2]Z with π̂i−1(f) =
απ1

i−2ε
1
i−2 = πi−2γε

1
i−2. Therefore ε̂ 1

i−2(π̂i−1(f)) = ε1
i−2πi−2γ.

Since ε1
i−2(πi−2γ) = ε1

i−2(απ1
i−2) = βε2

i−2π
1
i−2, the maps π̂1

i−2ε̂
1
i−1 and

ε̂ 1
i−2π̂i−1 coincide on rad EndH([i]Z).

(ii) For any g ∈ EndH([i]Z) there exist x ∈ K and f ∈ rad EndH([i]Z)
with g = x1[i]Z + f . Since π̂1

i−2ε̂
1
i−1(1[i]Z) = ε̂ 1

i−2π̂i−1(1[i]Z) = 1τ [i−2]Z , we
get π̂1

i−2ε̂
1
i−1(g) = ε̂ 1

i−2π̂i−1(g) for all g ∈ EndH([i]Z), by (i).
Let Z be a quasi-simple brick, r > 1, and W([r]Z) the wing with top

[r]Z and a consistent choice of the irreducible maps in the wing. If [X(i)]
is one of the vertices of the wing W([r]Z), all the possible surjective ring
homomorphisms

EndH([r]Z)→ EndH(X(i))

which are compositions of ε̂ ’s and π̂’s, where the ε’s and π’s are irreducible
maps, coincide by Lemma 2.5. We denote this epimorphism by

%
[r]Z
X(i): EndH([r]Z)→ EndH(X(i)).

If [U(j)] is a vertex in W(X(i)), then clearly %X(i)
U(j)%

[r]Z
X(i) = %

[r]Z
U(j).

If C is a regular component in Γ (H), containing (quasi-simple) bricks,
something like the converse of Lemma 1.2 holds, which is an explicit de-
scription of radt EndH([r]Z).

Proposition 2.6. Let Z be a quasi-simple regular brick , r > 1 and
1 ≤ t < r. Then radt EndH([r]Z) is generated as a vector space by the set

{f ∈ EndH([r]Z) | f = πr−1 . . . πr−tβ1 . . . βtε
t
r−t . . . ε

1
r−1},

where βi: τ i−1[r − t]Z → τ i[r − t]Z. Moreover , if f = f1 . . . ft with fi ∈
rad EndH([r]Z), then %

[r]Z
τ i−1[r−t+1]Z(fi) = πi−1

r−tβiε
i
r−t.
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Proof. By Lemma 1.2 there exist morphisms αi: [r − 1]Z → τ [r − 1]Z
such that

πr−1 . . . πr−tβ1 . . . βtε
t
r−t . . . ε

1
r−1 =

t∏

i=1

(πr−1αiε
1
r−1) ∈ radt EndH([r]Z).

Conversely, let fi = πr−1αiε
1
r−1 ∈ rad EndH([r]Z) for 1 ≤ i ≤ t and

define βi by %[r]Z
τ i−1[r−t+1]Z(fi) = πi−1

r−tβiε
i
r−t. We will show by induction on t

that
f1 . . . ft = πr−1 . . . πr−tβ1 . . . βtε

t
r−t . . . ε

1
r−1.

The statement is trivial for t = 1. By induction, we can assume that∏t−1
i=1 π̂r−1(fi) = πr−2 . . . πr−tβ1 . . . βt−1ε

t−1
r−t . . . ε

1
r−2.

Since (
∏t−1
i=1 fi)πr−1 = πr−1

∏t−1
i=1 π̂r−1(fi), we get

t∏

i=1

fi =
( t−1∏

i=1

fi

)
πr−1αtε

1
r−1

= πr−1(πr−2 . . . πr−tβ1 . . . βt−1ε
t−1
r−t . . . ε

1
r−2)αtε1

r−1.

By Lemma 2.4 there exists βt: τ t−1[r − t]Z → τ t[r − t]Z with

εt−1
r−t . . . ε

1
r−2αt = βtε

t
r−t . . . ε

2
r−2.

Moreover, it can be checked easily that πt−1
r−1βtε

t
r−t = %

[r]Z
τ t−1[r−t+1]Z(ft),

which shows the inductive step.

Lemma 2.7. Let Z be a regular quasi-simple brick , s ∈ N, and assume
that , for some m ∈ N, we have

m−1∏

i=0

HomH(τ i[s]Z, τ i+1[s]Z) = 0.

Then each morphism f =
∏m
i=1 βi such that βi ∈ HomH(τ i−1[s + 1]Z,

τ i[s + 1]Z) has a factorisation f = πs . . . π1γε
m+s
1 . . . εm+1

s for some
γ: Z → τm+sZ.

Proof. By Lemma 2.4 there exist morphisms γi: τ i−1[s]Z → τ i[s]Z with
βiπ

i
s = πi−1

s γi. Hence we get β1 . . . βmπ
m
s = β1 . . . βm−1π

m−1
s γm = . . . =

πsγ1 . . . γm = 0. Therefore β1 . . . βm factorises through εm+s
1 . . . εm+1

s =
Kerπms . Similarly one shows ε1

sβ1 . . . βm = 0. Consequently, β1 . . . βm also
factorises through Coker ε1

s = πs . . . π1.

Proposition 2.8. If Z is a quasi-simple brick , then

e(rad EndH([r]Z)) ≤ e(rad EndH([r + 1]Z)) ≤ 1 + e(rad EndH([r]Z)).

Proof. Let e = e(rad EndH([r]Z)) and take

f1, . . . , fe+1 ∈ rad EndH([r + 1]Z).
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Since g = f2 . . . fe+1 ∈ rade EndH([r+ 1]Z), we get ε̂ 1
r (g) = 0. Therefore we

have the following commutative diagram, since Z is a brick:

0 τ [r]Z [r + 1]Z Z 0

0 τ [r]Z [r + 1]Z Z 0

// ε1r //

0
��

π //

g

��

//

0
��

// ε1r // π // //

where π = πr . . . π1. Consequently, there exists β: Z → τ [r]Z with g = πβε1
r.

But f1 = πrα1ε
1
r for some α: [r]Z → τ [r]Z. Hence f1g = πrα1ε

1
rπβε

1
r = 0,

since ε1
rπ = 0.

3. Proof of the Theorem. Let C be a regular component in the
Auslander–Reiten quiver Γ (H) and assume Z is a quasi-simple brick in C.

(a) Suppose that Ext1
H(Z,Z) ∼= D HomH(Z, τZ) 6= 0. In this case

HomH(Z, τZ) → rad EndH([2]Z), given by α 7→ π1αε
1
1, defines an isomor-

phism. Since ε1
1π1 = 0, we get e(rad EndH([2]Z)) = 2. The proof of part (a)

of the Theorem now follows from Proposition 2.8.
(b) Suppose that Ext1

H([i]Z, [i]Z) = 0 for 1 ≤ i ≤ t, but

Ext1
H([t+ 1]Z, [t+ 1]Z) ∼= D HomH([t+ 1]Z, τ [t+ 1]Z) 6= 0.

We know that [t + 1]Z is a brick [6]. By Lemma 2.7, HomH(Z, τ t+1Z) →
HomH([t+ 1]Z, τ [t+ 1]Z) given by

γ 7→ πr . . . π1γε
r+1
1 . . . ε2

r

is an isomorphism. Moreover rad EndH([t+2]Z) ∼= HomH([t+1]Z, τ [t+1]Z),
by Lemma 2.3(c).

Let c([j]Z) = min{r ∈ N | ∏r−1
i=0 HomH(τ i[j]Z, τ i+1[j]Z) = 0} if this set

in nonempty, and c([j]Z) =∞ otherwise.
For j ≤ t one has c([j]Z) = 1, whereas c([t+1]Z) ≥ 2. We will first show

that

c([t+ i− 1]Z) ≤ c([t+ i]Z) ≤ min{i+ 1, 1 + c([t+ i− 1]Z)}
for i ≥ 0, where we define c([0]Z) = 1. Since HomH(τmZ, τm+1Z) = 0 for
all integers m, Lemma 2.4 implies that βπ1

r−1 . . . π
1
1 = 0 = εr−1

1 . . . ε1
r−1β for

any r > 1 and β ∈ HomH([r]Z, τ [r]Z).
From this and Lemma 2.7, the proof of the first inequality follows.
The second inequality is shown by induction. It is clear for i = 0. Let

i > 0 and assume inductively that

1 ≤ c = c([t+ i]Z) ≤ min{i+ 1, 1 + c([t+ i− 1]Z)}.
Take βj : τ j−1[t+ i+ 1]Z → τ j [t+ i+ 1]Z for 1 ≤ j ≤ c+ 1. By Lemma 2.7
we get

∏c
j=1 βj = πt+i . . . π1γε

c+t+i
1 . . . εc+1

t+i with γ ∈ HomH(Z, τ c+t+iZ).
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Consequently,
∏c+1
j=1 βj = πt+i . . . π1γε

c+t+i
1 . . . εc+1

t+i βc+1 = 0, which shows
the inductive step.

From rad EndH([t+1]Z) = 0 one gets radr EndH([t+r]Z) = 0, by Propo-
sition 2.8. Let 1 ≤ r ≤ i. Proposition 2.6 implies radr EndH([t+ i]Z) = 0 if
and only if c([t+ i− r]Z) ≤ r. Consequently,

e(rad EndH([t+ i]Z)) = min{r | c([t+ i− r]Z) ≤ r}.
Since c([t+i−r]Z) ≤ min{1+i−r, 1+c([t+i−r−1]Z)}, the assertion follows.
Indeed, if e(rad EndH([t+ i]Z)) = e′, then c([t+ i− e′ + 1]Z) ∈ {e′, e′ + 1}.
For c([t+ i− e′ + 1]Z) = e′, one gets e(rad EndH([t+ i+ 1]Z)) = e′, hence
e(rad EndH([t + i + 2]Z)) ≤ e′ + 1. From c([t + i − e′ + 1]Z) = e′ + 1 we
immediately deduce e(rad EndH([t+ i+2]Z)) = e(rad EndH([t+ i+1]Z)) =
e′ + 1.

The condition e(rad EndH([t+ i]Z)) ≤ [i/2] + 1 is shown similarly.

(c) From rad EndH([r]Z) = πr−1 HomH([r−1]Z, τ [r−1]Z)ε1
r−1 it follows

that the left socle of EndH([r]Z), which is

{f ∈ EndH([r]Z) | rad EndH([r]Z)f = 0},
contains πr−1 . . . π1 HomH(Z, τ [r − 1]Z)ε1

r−1 = Ker ε̂ 1
r−1.

Since dim HomH(Z, τ r−1Z) and dimK [r]Z grow exponentially with r, so
does dim HomH(Z, τ [r− 1]Z) and hence dim soc EndH([r]Z) EndH([r]Z). The
conclusion for the right socle is obtained analogously.

4. Elementary modules. A quasi-simple regular H-module Z is called
elementary if it satisfies the following equivalent conditions [9]:

(a) τmZ has no nontrivial regular factor modules for m� 0.
(b) τ−mZ has no nontrivial regular submodule for m� 0.
(c) If R is regular and f : Z → R is nonzero, then Ker f is preprojective.
(d) If R is regular and g: R→ Z is nonzero, then Coker g is preinjective.

It follows from the definition that elementary modules are bricks. There-
fore the Theorem holds for elementary modules. For elementary modules
with self-extensions one gets:

Proposition 4.1. Let Z be an elementary H-module with self-exten-
sions. Then, for all r ≥ 1:

(a) e(rad EndH([r]Z)) = r.
(b) soc EndH([r]Z) EndH([r]Z) = Ker ε̂ 1

r−1 and soc EndH([r]Z)EndH([r]Z) =
Ker π̂r−1.

Proof. (a) Take 0 6= αi ∈ HomH(τ i−1Z, τ iZ) for 1 ≤ i ≤ r−1. By (c) and
(d) above we get

∏r−1
i=1 αi 6= 0, and consequently radr−1 EndH([r]Z) 6= 0, by

Proposition 2.6. Hence r − 1 < e(rad EndH([r]Z)) ≤ r.
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(b) It was already shown in Section 3 that soc EndH([r]Z) EndH([r]Z) ⊃
Ker ε̂ 1

r−1.
For r > 1, take g ∈ soc EndH([r]Z) EndH([r]Z) ⊂ rad EndH([r]Z). Then

ε̂ 1
r−1(g) = π1

r−2γε
2
r−2 for some γ: τ [r− 2]Z → τ 2[r − 2]Z, by Lemma 2.3(c).

By Proposition 2.6, fg = 0 for all f ∈ rad EndH([r]Z) is equivalent to
βγ = 0 for all morphisms β ∈ HomH([r − 2]Z, τ [r − 2]Z).

So assume βγ = 0 for all β ∈ HomH([r−2]Z, τ [r−2]Z). Let i ≤ r − 2 be
maximal with (τ r−i−1[i]Z)εr−i−1

i . . . ε2
r−3 ⊂ Ker γ and suppose i < r − 2.

Then εr−i−2
i+1 . . . ε2

r−3γ is nonzero and has kernel (τ r−i−1[i]Z)εr−i−1
i ⊕ P ,

where P is preprojective, since

τ r−i−2Z ∼= τ r−i−2[i+ 1]Z/(τ r−i−1[i]Z)εr−i−1
i

is elementary and εr−i−1
i is irreducible.

Take any nonzero morphism h′: Z → τ r−i−2Z. Consider the composition
0 6= h∗ = πr−3 . . . π1h

′: [r − 2]Z → τ r−i−2Z and let

h: [r − 2]Z → τ r−i−2[i+ 1]Z

be the lifting of h∗, due to Lemma 1.1. Since the image of h is regular
and not contained in (τ r−i−1[i]Z)εr−i−1

i , we get (hεr−i−2
i+1 . . . ε1

r−3)γ 6= 0, a
contradiction.

Consequently, i = r−2, which means γ = 0, hence ε̂ 1
r−1(g) = 0. Therefore

soc EndH([r]Z) EndH([r]Z) = Ker ε̂ 1
r−1.

Analogously one proves the assertion for the right socle of EndH([r]Z).

Remark. Since
EndH([i+ 1]Z)/Ker ε̂ 1

i
∼= EndH(τ [i]Z),

EndH([i+ 1]Z)/Ker π̂i ∼= EndH([i]Z),

EndH([i]Z) ∼= EndH(τ [i]Z)

for all i, we see that the algebras EndH([r]Z)/soc EndH([r]Z) EndH([r]Z)
and EndH([r]Z)/soc EndH([r]Z)EndH([r]Z) are isomorphic, for an elementary
module with self-extensions.

Examples. Consider the following quivers:

• •��
�

1 2

Q

• • •��
�

1 2 3

Q′

For numerical data about modules in KQ′-mod see [12].

(a) Let H ′ = KQ′ and Z the indecomposable regular H ′-module with
dimZ = (1, 1, 0). Clearly Z is elementary with dim Ext1

H′(Z,Z) = 1, hence
e(rad EndH′([r]Z)) = r for r > 1, by Proposition 4.1.
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Since dim HomH′(Z, τZ) = 1, and each nonzero morphism f : Z → τZ
is a monomorphism, Proposition 2.6 implies

dim radr−1 EndH′([r]Z) = 1.

(b) LetX be the quasi-simple regularH ′-module with dimX=(15, 10, 4).
The projective generator in the right perpendicular category X⊥ is P (3)⊕
τ−2P (3), and X⊥ ∼= H-mod, where H = KQ. The H ′-module [2]X = Z ′

is in X⊥, and dimH Z
′ = (4, 2). The module T = P (3)⊕ τ−2P (3)⊕X is a

tilting module in H ′-mod and EndH′(T ) ∼= H[Z ′], where H[Z ′] denotes the
one-point extension of H by the module Z ′. As an H-module, Z ′ is elemen-
tary [10, 3.1]. It even satisfies a stronger condition of being orbital elementary
in the sense of [8]. Consequently, by [8, Section 5] for all r ≥ 1 we get

dim
( r−1∏

i=1

HomH(τ i−1Z ′, τ iZ ′)
)

= (dim HomH(Z ′, τZ ′))r−1.

Since dim HomH(Z ′, τZ ′) = 1− qH(dimZ ′) = 5, where qH denotes the Tits
form of the algebra H, we have dim(

∏r−1
i=1 HomH(τ i−1Z ′, τ iZ ′)) = 5r−1.

Consequenty, in H-mod we have

dim radr−1 EndH([r]Z ′) = 5r−1.

Clearly, again e(rad EndH([r]Z ′)) = r.
Since dim τH′X = (5, 4, 0), all proper submodules of τH′X are prepro-

jective in H ′-mod. Consequently, τH′X and hence all τ iH′X are elementary
H ′-modules without self-extensions. The module [2]X is a brick with self-
extensions.

If Z is an elementary H-module without self-extensions and t ≤ n− 2 is
maximal such that Ext1

H([t]Z, [t]Z) = 0, then HomH(Z, τ t+1Z) 6= 0.
Let 0 6= αi: τ (i−1)(t+1)Z → τ i(t+1)Z for i ≥ 1. Since Z is elementary, for

all r ≥ 1 the composition α1 . . . αr: Z → τ r(t+1)Z is also nonzero. It follows
from Lemma 1.2 that then e(rad EndH([1 + r(t + 1)]Z)) ≥ r + 1. In the
special case t = 1 we therefore get

Corollary 4.2 Let Z be an elementary H-module with Ext1
H(Z,Z) = 0

but Ext1
H([2]Z, [2]Z) 6= 0. Then e(rad EndH([1 + i]Z)) = [i/2] + 1.

Proof. Let first i = 2r be even. From the formula above and the Theorem
we get r+1 ≤ e(rad EndH([1+2r]Z)) ≤ r+1, hence e(rad EndH([1+i]Z)) =
[i/2]+1 for i even. If i = 2r+1 is odd, then r+1 = e(rad EndH([1+2r]Z)) ≤
e(rad EndH([1+2r+1]Z)) ≤ [(2r + 1)/2]+1 = r+1, hence the claim follows.
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