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Abstract. Let H be a connected wild hereditary path algebra. We prove that if Z is
a quasi-simple regular brick, and [r]Z indecomposable regular of quasi-length r and with
quasi-top Z, then rad” Endg ([r]Z) = 0.

Let H be a finite-dimensional hereditary algebra over some algebraically
closed field K. We will assume that H is basic and connected, hence H
is isomorphic to the path algebra K Q of some finite connected quiver Q
without oriented cycles, and the category A-mod of finite-dimensional left
A-modules can be identified with the category repy Q of finite-dimensional
K-linear representations of the quiver Q. By n we always denote the number
of vertices of the quiver Q, which coincides with the number of isomorphism
classes of simple H-modules.

We additionally assume that H is wild hereditary. This means that the
quiver @ is neither of Dynkin nor of Euclidean type, or equivalently that ev-
ery finite-dimensional K-algebra B is isomorphic to the endomorphism ring
of some module X € H-mod. In particular each finite-dimensional local
K-algebra B is the endomorphism ring of some finite-dimensional indecom-
posable H-module X.

We denote by I'(H) the Auslander—Reiten quiver of H and by 7 = 7
the Auslander—Reiten translation in I'(H) as well as in H-mod. Since H
is hereditary, the functor 7 = D Ext};(—, H), with D = Homg(—, K), is
full and left exact on H-mod. Since H is wild hereditary, the Auslander—
Reiten quiver I'(H) contains besides the preprojective component P and
the preinjective component Z infinitely many regular components C, all of
them of type ZA.

If X is an indecomposable regular module, i.e. the isomorphism class
[X] of X is a vertex of some regular component C of I'(H), then X is called
quasi-simple if the Auslander—Reiten sequence starting or ending in X has

2000 Mathematics Subject Classification: 16G20, 16G60, 16G70.

[207]



208 O. KERNER

indecomposable middle term. Clearly X is quasi-simple if and only if 7¢X
is quasi-simple for each ¢ € Z. If X is an arbitrary indecomposable regular
module, then there exist a chain of irreducible monomorphisms

Y=Y(1)1YQ 3. . Dy =X

and a chain of irreducible epimorphisms
X=[rz"=pr-1z2"=2... 1z=2
where Y and Z are quasi-simple and are called the quasi-socle, respectively
the quasi-top, of X. Moreover Y = 777'Z, and the natural number r is
called the quasi-length of X.
Since dim Homp (Z, 7"~1Z) grows exponentially with r, and

Tp—1...T1 HOII]H(Z, TT71Z)€1 e Ep—q

is a subspace of Endy([r]Z), even of rad Endy([r]Z), it follows that also
dimrad End g ([r]Z) grows (at least) exponentially with r. We are concerned
with the structure of the endomorphism rings End g ([r]Z2).
For a finite-dimensional K-algebra B the radical rad B is nilpotent. De-
note by
e(rad B) = min{m € N | (rad B)"™ = 0}

the exponent (of nilpotency) of rad B.
For a quasi-simple regular H-module Z we will prove the following fact.

PROPOSITION. The set {e(rad Endy([r]Z)) | r € N} is unbounded.
Since 7 is an equivalence on the category of regular H-modules, we have
Endy([r]Z) & Endy (7'[r]Z)

for all integers i. Consequently, the function e(rad Endg(—)) is constant on
the 7-orbits of indecomposable regular H-modules.

It seems to be hopeless to find a close relation between the natural num-
bers r and e(rad Endg([r]Z)) for an arbitrary quasi-simple H-module Z,
as in the case of tame hereditary algebras A, since in that case the cate-
gory A-reg of regular A-modules is abelian and all indecomposable regular
modules are uniserial in A-reg. Indeed, if H is wild hereditary, for each
finite-dimensional local K-algebra B there even exists a quasi-simple mod-
ule Z(B) with B = Endg(Z(B)). Moreover, for each indecomposable regu-
lar H-module R the radical rad End g (R) is contained in the infinite radical
rad® (H-mod) of the category H-mod, whereas the Auslander-Reiten quiver
visualises the factor category H-mod/rad*®(H-mod).

On the other hand, if the quasi-simple H-module Z is a brick, i.e.
Endg(Z) = K, then the irreducible epimorphisms 7,_1: [r]Z — [r — 1]Z
as well as the irreducible monomorphisms ¢,_1: Z(r — 1) — Z(r) induce
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surjective ring homomorphisms
%T_lt EndH([r]Z) — EndH([r — 1]Z),

respectively
Er—1: Endy(Z(r)) — Endg(Z(r — 1)),

therefore inductive arguments apply. Besides this technical advantage, bricks
are of interest by themselves, for example for geometrical reasons.

For a quasi-simple brick Z, we have to distinguish two cases: either
Ext}(Z,Z) # 0 or Exty(Z, Z) = 0. In the latter case, there exists a nat-
ural number ¢t with 1 <t <n —2 and ExtL([i]Z,[i]Z) =0 for 1 <i < t,
but Exty, ([t + 1]Z,[t + 1]Z) # 0 and Endy([t + 1]Z) = K. Conversely, if
for some t > 0 the module [t + 1]Z is a brick, then [t]Z is a brick with-
out self-extensions. In particular, Z is a brick without self-extensions in this
case.

THEOREM. Let H be connected wild hereditary and Z be a quasi-simple
reqular brick.

(a) If Z has self-extensions, then forr > 1,

e(rad Endg([r — 1]2)) < e(rad Endg ([r]Z))
< min{r,1+ e(rad Endg([r — 1]2))}.

(b) If Ext};(Z,Z) = 0 and t > 1 is mazimal with Ext([t]Z,[t]Z) = 0,
then for i > 2 the following holds, where [—] denotes the Gauss bracket:

e(radEndy ([t +i—1]7)) < e(rad Endg ([t + 1] Z))
<1+ min{[i/2],e(rad Endg ([t + i — 2]2))}.

(c) In both cases the dimensions of the left socle as well as the right socle
of Endg([r]|Z) grow exponentially with r.

An indecomposable regular module F is called elementary if it has no
nontrivial filtrations with regular subquotients, or equivalently, if 7" F has
no nontrivial regular factor modules for m > 0. Elementary modules are
quasi-simple bricks, therefore the Theorem applies. It will be shown in the
last section that the results of the Theorem can be improved for elementary
modules.

For unexplained terminology we refer to [1] and [13], for basic results on
wild hereditary algebras to [7]. Morphisms between modules will be written
opposite to the scalars. If U;, 1 < i < 3, are modules in H-mod and f;: U; —
U;4+1 are morphisms for ¢ = 1, 2, the composition will be therefore written as
f1fa2: Up — Us. Compositions of ring homomorphisms will always be written
from right to left.
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1. Proof of the Proposition. Let H be connected wild hereditary
and M = [r]|Z = X (r) an indecomposable regular H-module of quasi-length
r > 1. Basic for the considerations in this paper is the following result, due
to Ringel [12]:

Let X = X(1) =% ... “= X(r) a chain of irreducible monomorphisms

r—1

and [r]Z == ... ™ Z = [1]Z be a chain of irreducible epimorphisms.

LEMMA 1.1. For1 <4 <r one has:

(a) The cokernel of the map ;. ..e,—1: X(i) — X(r) is 771X (r —i) =
[r —i]Z. The kernel of the map m_1...7;: [r|Z — [i|Z is Tir —i|Z =
X (r—1).

(b) If Y1 is indecomposable with Y1 £ 7' X(r —1—1i) for 0 <i <r—1,
then each morphism f: X(r — 1) — Y] factorises through ,_.

If Y3 is indecomposable with Yo % 7' r — 1 —i]Z for 0 <i <r — 1, then
each morphism g: Yo — [r — 1]Z factorises through m,_1.

If Z is a quasi-simple regular H-module contained in the regular compo-
nent C and r is a natural number, the mesh-complete full subquiver W([r|Z)
of C defined by the vertices [r[j]Z] with i > 0,5 > 1 and i +j < r is
called the wing of length » and top [r]Z. The quasi-simple modules 7¢Z
with 0 < ¢ <r — 1 are called the basis of the wing W([r]Z). If one chooses
irreducible epimorphisms 79 = m;: [i + 1]Z — [i]Z for 1 < i < r — 1, one
can always find a consistent choice for the irreducible maps inside the wing
W([r]Z). This means that there are irreducible monomorphisms

e T Z - i+ 12, i>1 i+ <,

and irreducible epimorphisms
mop TG Z =i -2, j>1, i<,

such that

1

i i1 i i i i :
em =0, em " =m_e;, forj>1

We will always assume that the irreducible maps in a sufficiently large wing

are chosen consistently.

Let Z be a quasi-simple regular H-module, i, j,7 € N, and choose the
irreducible maps in the wing W([j + ri]Z) consistently.

For 1 <t < r denote by m): [j + (r —t + 1)i]Z — [j + (r — t)i]Z the
chain of irreducible epimorphisms, and by &: =t 4 (t — 1)i]Z —
7Ur=t)[j 4it] Z the corresponding chain of irreducible monomorphisms, both
at the borders of the wing W([j + ri]Z). With these notations the following
holds.
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LEMMA 1.2. Let ay: 70 V[4]Z — 7%[5]Z be morphisms for 1 <t <r.
Then there exist morphisms By: [j+ (r —1)i|Z — 7'[j + (r — 1)i]|Z such that
T
7r(1) PN 7T(T)Oz1 PN 04,«6(1) ce €(r) = H(ﬂ—(l)ﬁtg(r))-
t=1
Proof. The proof is by induction on r; the case r = 1 is trivial. Assume
that the statement holds for r — 1 > 1.
Let 5’(t): 7D+ (t—1)i]Z — 70 7t"D[j+it] Z be a chain of irreducible
monomorphisms for 1 <t < r — 1 and choose
Ve [j + (r—2)ilZ — Ti[j + (r—2)ilz
such that 7 ... m a1 ... Oér—1€/(1)- = [I,Z 1( 2)%5(T 1)) From
Lemma 1.1 we infer that there are morphlsms
B [+ (r = Vi) Z — 7'[j + (r = 1)i]Z
for 1 <t < rsuch that a,.e(yy...e0-1) = ’( ) 'lel(r—l)ﬁT and ()Yt = ﬁﬂré)
for 1 <t <r, where mjy: 7 T+ (r 1)i|Z — 7'[j + (r — 2)i]Z is a chain of
irreducible epimorphisms.
Since 7722)5’(1_1) = g()T(1) by the consistent choice of the irreducible
maps, we get
Ty -0 - ars(l) .. '5(1")

= 7T(1) e W(r)al e 047«_18,(1) e EI(Til)ﬁré“(r)

r—1
=Tq) ( H W(Q)Vte?'(r_l))ﬂr&?(r)
t=1
r—1
=T() ( H ﬁtE(r)Wu))ﬁrE(r) = H(W(Uﬁtff(r))-
t=1

t=1

We now prove the Proposition: Let C be a regular component in I'(H)
and Z a quasi-simple module in C. By Lukas [11, 2.3] there exists a monomor-
phism oq: Z — 7'Z for some i > 0. Consequently, all the morphisms
ap = 7tV 707 s 77 are injective for t > 0, since 7 is a left
exact functor.

We apply Lemma 1.2 for j = 1 and i as above. For any r € N the
map 0 # (1) . T(Q1 ... ey - £y = [[1—1 (T(1)Bte(r)) s contained in
rad” Endg ([1 + ri]Z) \ {0}. Hence we have

e(rad Endg ([1 4 ri]Z)) > r.

2. Preliminaries. Let H = KQ be a connected wild hereditary alge-
bra and Z be a quasi-simple regular H-module. Then Homp (Z,7'Z) # 0
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for i > 0 [2, 3.1]. Moreover, dim Hompy(Z,7°Z) grows exponentially (see
for example [7, 10.6]), whereas Homy (Z,77?Z) = 0 for i > 0 ([5]), but
frequently Hompy (Z,7-Z) # 0 [9, 3.1]. For regular components containing
bricks, the following lemma [6, 1.2] holds.

LEMMA 2.1. If Z is a quasi-simple brick, then Hompy(Z,77'Z) = 0 for
all i > 0.

Notice that there always exist infinitely many regular components in
I'(H), containing quasi-simple bricks. If the number n of pairwise noniso-
morphic representatives of simple H-modules is greater than 2, there are
even infinitely many components containing quasi-simple regular modules
without self-extensions [14]. They are bricks by [3, 4.1], since H is hereditary.
As an immediate consequence of Lemma 2.1 we get the following:

Let Z be a quasi-simple regular brick. Then:

(a) Hompy(Z,77'Z(5)) = 0 for all 4,5 > 1.

(b) Homp (7512, Z) = 0 for all 4,5 > 1.

(c) Homp (7'[]1Z, 7" Z(j)) = 0 for all 4, j,i',j > 1.

For a quasi-simple brick Z, we consider the wing W([r]Z) and denote the

consistently chosen irreducible maps inside the wing as in Section 1. Then
one has:

LEMMA 2.2. Let Z be a quasi-simple brick and r > 1. Then:

(a) Homg([r]Z,Z) = Kmp—y...m and wp—1 ... 71 € vad"([r]Z, Z).
(b) Homy(7"71Z,[r)Z) = K&t .. el | and ;7' ... e} | is not con-
tained in rad” (171 Z, [r] Z).

Proof. (a) Consider the short exact sequence

Tp—1...T1

1
0—>7’[7“—1]ZET—_1> r|Z "5 Z — 0.
Since Homp (7[r — 1]Z, Z) = 0, by Lemma 2.1, we get an isomorphism
(mp—1...m,Z): Homg([r|Z,Z) — Hompy(Z,Z) = K,

hence Hompy ([r]Z,Z) = Kmp—1 ... . Since the maps m,_1,...,m are irre-
ducible maps on a sectional path, the composition 7,1 ... 7 ¢ rad"([r]Z, Z)
(see [4]).

Dually one shows part (b).

LEMMA 2.3. Let Z be a quasi-simple reqular brick, r > 1 an integer and
1 <i<r. Then:
(a) The map # = mp—1...m: [r]Z — [i|Z induces an epimorphism of
Tngs
7: Endy([r]Z) — Endg([i]Z)
such that 77 (f) = fr for f € Endg([r]2).
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(b) The map e = e, "...el_: 7"7[i|]Z — [r]Z induces an epimorphism
of rings
& Endy([r]Z) — Endy (7" [i] Z)
with €(f)e =¢ef for f € Endg([r]Z).
(c)rad Endy ([r—12) = {f | f = mp—1ae}_; for a: [r—1]Z — 7[r—1]Z}.
(d) For f = my—1ael_; € radEndy([r]Z) one has:

g%ﬂ(f) = 511_17%_104 € rad EndH(T’"*lz%
Fr1(f) = agl_ym,—1 € rad Endy ([r — 1)2).

Proof. (a,b) Let ¢/ = ¢ ,...el_,: 7i[r —i]Z — [r]Z and consider the

short exact sequence

0—7'lr—i1Z2 < 12 2 []Z — 0.
Since Homp (7%[r — i]Z, [i]Z) = 0 by Lemma 2.1, the maps &’ and 7 induce
homomorphisms ”: Endy ([r]Z) — Endg (ri[r —i]Z) and 7: Endy([r]Z) —
Endg([¢)Z) such that e’ f = &'(f)e’, respectively fr = n7(f). It is easy to
check that €’ and 7 are ring homomorphisms. They are surjective by Lemma
1.1(b).

(c) If f = m_1agl_4, then Ker f contains Kerm,_1 # 0, hence f €
rad End gy ([r]Z).

Let ¢*: 7771Z — [r]Z, respectively 7*: [r]Z — Z, be the canonical maps.
Since the ideal rad Endy ([r]Z) is nilpotent and Z, respectively 7"~1Z, are
bricks, we get £€*(f) = 0 and 7*(f) = 0 for f € rad Endg([r]Z). But
£*(f) =0 means that f factorises through m,_;. Since 7*(f) = 0, the
map f has a factorisation through el ;, hence f = m,_1ael | for some
a: [r—11Z — 7[r — 1]Z.

The proof of (d) is straightforward.

REMARK. The surjectivity of 7,1 implies
e(rad Endg([s + 1]Z)) > e(rad End g ([s]Z))
for all s > 1.

LEMMA 2.4. Let Z be a quasi-simple reqular brick and ¢ > 1. For
a: [i]Z — 71[i]Z there exist unique morphisms 3: 7li — 11Z — 12[i — 1]Z
and v: [i — 1]Z — 7[i — 1]Z such that e} ja = Be? | and an} | = mi_17.

Proof. Since a € rad*([i]Z, T[i]Z), also the composition

er_jam}q...m € Homy(7[i —1)Z,72)

belongs to the infinite radical. But rad*(r[i — 1]Z,7Z) = 0 by Lemma
2.2. Hence eil_loz factorises through 5?_1 = Ker 7Tl-1_1 c. w%, that is, 51-1_1oz =
Be? . The induced map 3: 7[i — 1]Z — 72[i — 1]Z is unique, since €7 | is
injective. The existence of v is shown dually.
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LEMMA 2.5. Let Z be a quasi-simple brick and i > 1. If

(511—177%'1_2) (Wi—lvgzl—z)t
_—

0—rli—1]2 [Z@®rli—217 2L [ —1]Z -0

is the Auslander—Reiten sequence ending in [i — 1]Z, then
7 ,el =&l 71 Endy([i)Z) — Endy([i — 2]2).

Proof. (i) Take first f € rad Endg([i]Z). By Lemma 2.3 there exists a
unique morphism o € Hompg ([i — 1]Z, 7[i — 1]Z) with f = m;_jae} | and

51‘1—1<f> = 5%—17%—10‘ = 7%1—2511—204 = 7Tz'—2ﬁ€z2—2
for some B: 7[i — 2|Z — 72[i — 2]Z. Hence 7 (L ,(f)) = Be? ,m} ,. Sim-
ilarly there exists a morphism v: [i — 2]Z — 7[i — 2]Z with 7;,_1(f) =
aﬂ3_26%_2 = m_g’y&?}_Q. Therefore &?21_2(%1_1@‘)) = 5}_27@-_27.

Since e} ,(mi—2y) = el o(am}t ;) = Be? ,ml ,, the maps 7L 4l ; and
@{2%¢,1 coincide on rad End g ([1]Z).

(ii) For any g € Endg([i]Z) there exist x € K and f € rad Endg([i]2)
with g = azl[i]Z + f. Since 5‘('\1-1_25\1-1_1(1[2-}2) = al_g%i—l(l[i]Z) = 17.[1'_212, we
get T2 1 () = Bl gFi-1(g) for all g € Endy ([12), by (i)

Let Z be a quasi-simple brick, r > 1, and W([r]Z) the wing with top
[r]Z and a consistent choice of the irreducible maps in the wing. If [X (7)]
is one of the vertices of the wing W([r|Z), all the possible surjective ring
homomorphisms

Endy ([r]Z) — Endg (X (i)

which are compositions of £’s and 7’s, where the &’s and 7’s are irreducible
maps, coincide by Lemma 2.5. We denote this epimorphism by

oy Bndy ([r]Z) — End g (X (i)).

If [U(j)] is a vertex in W(X ()), then clearly 95839[)@]5) = ggg).

If C is a regular component in I'(H), containing (quasi-simple) bricks,
something like the converse of Lemma 1.2 holds, which is an explicit de-
scription of rad’ Endy ([r]2).

PROPOSITION 2.6. Let Z be a quasi-simple regular brick, r > 1 and
1 <t <r. Then rad' Endy([r]Z) is generated as a vector space by the set

{feBndy([r)2) | f=mr1...TrtBr...Brel ;... €5 1},
where B;: T r — )2 — Tir — t|Z. Moreover, if f = fi...f with f; €

rad Endgy ([r]Z), then Q[T?_ZI[T%H]Z(]%) = T 1 Biel .
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Proof. By Lemma 1.2 there exist morphisms «;: [r — 1]Z — 7[r — 1]Z
such that

t
ﬂ—r—l---ﬂ_r—tﬁl ﬁt&“r - H Tr—104E r 1 c rad EndH([ ] )
i=1
Conversely, let f; = m,— 10@5}0 1 € rad Endg([r]Z) for 1 < i < t and
define (3; by QTTZ]Zl[T t+1]Z(f2) = 7”1 Biel_,. We will show by induction on ¢
that

1
f1 .. -ft = Tpr—1.. .ﬁrftﬁl .. ‘ﬁt‘gi—t e Epq-

The statement is trivial for ¢ = 1. By induction, we can assume that
Hzii %r l(fz) =Tpr—2...Tpr— tﬂl ,3,5_16;271 .. -571«_2-
Since (HZ 1 fl)m 1= Tp_ 1]_[17% Tr—1(fi), we get

H Ji= < ]_:[ fi)ﬂ'r—lat&l«_l
=1 =1

-1
= 7T7«_1(7l'7«_2 . -Wr—tﬁl e ﬁt—lgfn_t NS _z)ata,ln_l.

By Lemma 2.4 there exists ﬁt' 'y — )7 — 7tr — t]Z with

1
r

t—1 2
Er—t- r 20 = ﬂtgr tee-Ep_2:
Moreover, it can be checked easily that Wr:lﬂtgfn_t = Q[ﬁ L t+1]Z(ft)
which shows the inductive step.

LEMMA 2.7. Let Z be a regular quasi-simple brick, s € N, and assume
that, for some m € N, we have

m—1

HHomH(Ti[s]Z *1512) =0

i=0
Then each morphism f = [[iv, B such that B; € Hompy (" '[s + 1]Z,
7i[s + 1]Z) has a factorisation f = ms...myel"T . ™ for some

v Z — Tt 7.

Proof. By Lemma 2.4 there exist morphisms ~;: Ti_l[S]Z — 74[s]Z with

61-7[2 = ﬂ§'*17i. Hence we get B1...08nm0" = B1... P17y fym = ... =

TsY1---Ym = 0. Therefore (3 ...03,, factorises through €m+s . sm“ =

Ker 77*. Similarly one shows eiﬁl .Bm = 0. Consequently, 0B1...0m also

factorises through Coker 5§ =TMs...T1.

ProrosSITION 2.8. If Z is a quasi-simple brick, then
e(radEndg([r]Z)) < e(rad Endy([r +1]2)) < 1+ e(rad End g ([r] 2)).
Proof. Let e = e(rad Endg([r]Z)) and take

fi,-- oy fer1 € rad Endg([r + 1)2).
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Since g = f5... fer1 € rad® Endy ([r +1]2), we get £ (g) = 0. Therefore we
have the following commutative diagram, since Z is a brick:

1

0 TIr|Z —>r+11Z—2Z—0

P,k

0 T Z —>[r+1|Z*—7—>0

£

where 7 = 7, ... 7. Consequently, there exists 3: Z — 7[r]Z with g = we!.
But f; = m.aiel for some a: [r]Z — 7[r]Z. Hence f1g = m.aieinfBel = 0,

since elm = 0.

3. Proof of the Theorem. Let C be a regular component in the
Auslander—Reiten quiver I'(H) and assume Z is a quasi-simple brick in C.

(a) Suppose that Ext}(Z,Z) = DHompg(Z,7Z) # 0. In this case
Hompy(Z,7Z) — rad Endy([2]Z), given by a +— miaei, defines an isomor-
phism. Since elm; = 0, we get e(rad Endg([2]Z)) = 2. The proof of part (a)
of the Theorem now follows from Proposition 2.8.

(b) Suppose that Ext};([i]Z, [i]Z) = 0 for 1 <i < t, but

Exth ([t +1]Z, [t + 1]Z) = D Hompg ([t + 1] Z, 7t + 1) Z) # 0.

We know that [t + 1]Z is a brick [6]. By Lemma 2.7, Homp(Z, 7712) —
Hompy ([t + 1)Z, [t + 1]Z) given by

r+1 2
Y T TYE L6

is an isomorphism. Moreover rad End p ([t+2]2) = Homp ([t +1]Z, 7[t+1]Z),
by Lemma 2.3(c).

Let ¢([j]Z) = min{r € N | [[/Z; Hompy (r*[j]Z, 7"[j]Z) = 0} if this set
in nonempty, and ¢([j]Z) = oo otherwise.

For j <t one has ¢([j]Z) = 1, whereas ¢([t+1]Z) > 2. We will first show
that

c(ft+i—12) <clft+i)2) <min{i + 1,1+ c(jt +i —1]2)}

for i > 0, where we define ¢([0]Z) = 1. Since Hompy (7™Z, 71 Z) = 0 for
all integers m, Lemma 2.4 implies that Br} | ...7f =0=¢]"1...el ;3 for
any r > 1 and 8 € Hompg ([r]Z, 7[r]Z).

From this and Lemma 2.7, the proof of the first inequality follows.

The second inequality is shown by induction. It is clear for ¢ = 0. Let
1 > 0 and assume inductively that

1<c=c([t+iZ) <min{i+ 1,1+ c([t+i—1]2)}.

Take Bj: 79t +i+1]Z — 7|t +i+1]Z for 1 < j < c+1. By Lemma 2.7
we get [[5_, 8; = 7Tt+i...7rl'yz—:‘1"+t“...5§ii1 with v € Homp(Z, 76Tt 7).
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Consequently, H;’i% Bj = mpyi.. . myestiL .egiilﬁcﬂ = 0, which shows

the inductive step.

From rad Endg ([t+1]Z) = 0 one gets rad” End g ([t+7]Z) = 0, by Propo-
sition 2.8. Let 1 < r < . Proposition 2.6 implies rad” Endg ([t +i]Z) = 0 if
and only if ¢([t +i — r]Z) < r. Consequently,

e(rad Endg ([t +]2)) = min{r | c([t+i—r]Z) <r}.

Since ¢([t+i—r|Z) < min{l+4+i—r, 14+c([t+i—r—1]Z)}, the assertion follows.
Indeed, if e(rad Endg ([t +i]Z)) = €/, then ¢([t+ i — €' +1]Z) € {¢/, €' + 1}.
For ¢([t+i— €' +1]Z) = €/, one gets e(rad Endy ([t + i + 1]Z)) = €/, hence
e(radEndgy ([t +i+2]2)) < e 4+ 1. Fromc([t+i—¢€ +1]Z) =€ + 1 we
immediately deduce e(rad Endg ([t +i+2]Z)) = e(rad Endg ([t +i+1]2)) =
e + 1.

The condition e(rad Endg ([t +i]Z)) < [i/2] + 1 is shown similarly.

(¢) From rad Endy ([r]Z) = mr—1 Hompy ([r —1)Z, 7[r—1]Z)el_; it follows
that the left socle of Endg([r]Z), which is

{f € Endg([r]Z) | rad Endg([r]Z)f = 0},

contains m,_1 ...m Homp (Z, 7[r — 1]Z)el_; = Ker&! ;.

Since dim Homy (Z, 7771 Z) and dim[r]Z grow exponentially with 7, so
does dim Homp (Z, 7[r — 1]Z) and hence dim soc gnq, ((r)z) Endu ([r]Z). The
conclusion for the right socle is obtained analogously.

4. Elementary modules. A quasi-simple regular H-module Z is called
elementary if it satisfies the following equivalent conditions [9]:

(a) 7™ Z has no nontrivial regular factor modules for m > 0.

(b) 77™Z has no nontrivial regular submodule for m > 0.

(c) If R is regular and f: Z — R is nonzero, then Ker f is preprojective.
(d) If R is regular and g: R — Z is nonzero, then Coker g is preinjective.

It follows from the definition that elementary modules are bricks. There-
fore the Theorem holds for elementary modules. For elementary modules
with self-extensions one gets:

PRrROPOSITION 4.1. Let Z be an elementary H-module with self-exten-
stons. Then, for all r > 1:

(a) e(rad Endg([r]Z)) =r.
(b) s0C Endy, ((r)2) Endu ([r]Z) = Ker gl | andsoc Endy ([7]Z)Endy (1) 2) =
Ker?r}_l.

Proof. (a) Take 0 # o; € Hompy (77 1Z,7Z) for 1 <i < r—1. By (c) and
(d) above we get [[/—| a; # 0, and consequently rad" ! Endg ([r]Z) # 0, by

Proposition 2.6. Hence r — 1 < e(rad End g ([r]Z)) < r.
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(b) It was already shown in Section 3 that soc gnq ((r)z) Endu([r]Z) D
Kerg! ;.

For r > 1, take g € soCgnay ([rz) Endu([r]Z) C rad Endg([r]Z). Then
el 1(g) =ml_gye2_, for some v: T[r — 2|Z — 72[r — 2] Z, by Lemma 2.3(c).
By Proposition 2.6, fg = 0 for all f € rad Endy([r]Z) is equivalent to
B~ = 0 for all morphisms § € Hompg([r — 2|2, 7[r — 2|2).

So assume [y = 0 for all § € Hompy([r—2]Z,7[r—2]Z). Let i <r — 2 be
maximal with (77771[i]Z)e[ "1 ... e2_; C Kery and suppose i < r — 2.
Then 8;:{'—2.”812_37 is nonzero and has kernel (77 ~"![{]Z)e/"""t @ P,
where P is preprojective, since

iy 7'7"7%2[@' + 1]Z/(T’"7i71[z’}Z)57_i_1

7

is elementary and €£_Z_1 is irreducible.

Take any nonzero morphism h': Z — 7727 Consider the composition
0#£h*=m_3...mh: [r—2]Z — 77727 and let
hi[r—21Z — 777 2[i+1]Z
be the lifting of h*, due to Lemma 1.1. Since the image of h is regular
and not contained in (77 7"1[i]Z)e} ", we get (hagﬂ_z L EL )Y # 0, a
contradiction.
Consequently, i = r—2, which means v = 0, hence £ ;(g) = 0. Therefore
SOcC Endg ([r]Z) EndH([r}Z) = Ker é\rl_l.
Analogously one proves the assertion for the right socle of Endg([r]Z).
REMARK. Since
Endg([i +1)2)/Ker &} = Endy(7[i])2),
Endy([i +1)2)/Kerm; =2 Endy([i]Z2),
Endy([i|Z) = Endy (7[i]2)
for all 4, we see that the algebras Endy([r]Z)/soc gndy, (rz) Endu([7]Z)

and Endg ([r]Z)/soc Endg ([r]Z)gnay, (] 2) are isomorphic, for an elementary
module with self-extensions.

ExaMpLES. Consider the following quivers:

—
° ° ° o«—o
e E— -~
1 2 1 2 3
Q Qo

For numerical data about modules in K Q'-mod see [12].

(a) Let H = KQ' and Z the indecomposable regular H'-module with
dim Z = (1,1,0). Clearly Z is elementary with dim Ext};,(Z, Z) = 1, hence
e(rad Endg([r]Z)) = r for r > 1, by Proposition 4.1.
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Since dim Hompy/(Z,7Z) = 1, and each nonzero morphism f: Z — 77
is a monomorphism, Proposition 2.6 implies

dimrad"~! Endg ([r]Z) = 1.

(b) Let X be the quasi-simple regular H'-module with dim X = (15, 10, 4).
The projective generator in the right perpendicular category X+ is P(3) @
772P(3), and X+ = H-mod, where H = KQ. The H'-module [2]X = Z'
is in X+, and dim;; Z’ = (4,2). The module T' = P(3) @ 7 2P(3) ® X is a
tilting module in H'-mod and Endy/(T) = H|[Z'|, where H[Z'] denotes the
one-point extension of H by the module Z’. As an H-module, Z’ is elemen-
tary [10, 3.1]. It even satisfies a stronger condition of being orbital elementary
in the sense of [8]. Consequently, by [8, Section 5] for all » > 1 we get

r—1
dim (H HomH(Ti_lZ',TiZ’)> = (dim Homg (Z’, TZ,))T_l.
i=1

Since dim Hompy (Z',72') =1 — qg(dim Z’) = 5, where gy denotes the Tits
form of the algebra H, we have dim([[/—{ Hompy(r"~'2Z',7°Z")) = 5"~L.
Consequenty, in H-mod we have

dimrad"~ ' Endg([r]Z') = 5" 1.

Clearly, again e(rad Endg([r]Z")) = r.

Since dim 7» X = (5,4,0), all proper submodules of 7z X are prepro-
jective in H'-mod. Consequently, 77X and hence all TE,X are elementary
H'-modules without self-extensions. The module [2]X is a brick with self-
extensions.

If Z is an elementary H-module without self-extensions and ¢t < n — 2 is
maximal such that Ext} ([t]Z,[t]Z) = 0, then Hompg (Z, 71 Z) # 0.

Let 0 # o 7DD 7 7+ 7 for 4 > 1. Since Z is elementary, for
all » > 1 the composition oy ...q,: Z — 77(t+1) 7 is also nonzero. It follows
from Lemma 1.2 that then e(rad Endg([1 + r(t + 1)]Z)) > r + 1. In the
special case t = 1 we therefore get

COROLLARY 4.2 Let Z be an elementary H-module with Ext},(Z, Z) =0
but BExt}; (127, [21Z) # 0. Then e(rad Endg ([144]2)) = [i/2] + 1.

Proof. Let first i = 2r be even. From the formula above and the Theorem
we get r+1 < e(rad Endg ([1+2r]Z)) < r+1, hence e(rad Endg ([1+1]2)) =
[i/2]+1 for i even. If i = 2r+1is odd, then r+1 = e(rad End g ([1+2r]Z)) <
e(rad Endy ([14+2r+1]2)) < [(2r + 1)/2]+1 = r+1, hence the claim follows.
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