A SPECTRAL GAP PROPERTY FOR SUBGROUPS OF FINITE COVOLUME IN LIE GROUPS

BY

BACHIR BEKKA and YVES CORNULIER (Rennes)

Dedicated to the memory of Andrzej Hulanicki

Abstract. Let \(G \) be a real Lie group and \(H \) a lattice or, more generally, a closed subgroup of finite covolume in \(G \). We show that the unitary representation \(\lambda_{G/H} \) of \(G \) on \(L^2(G/H) \) has a spectral gap, that is, the restriction of \(\lambda_{G/H} \) to the orthogonal complement of the constants in \(L^2(G/H) \) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

1. Introduction. Let \(G \) be a locally compact group. Recall that a unitary representation \((\pi, \mathcal{H})\) of \(G \) has almost invariant vectors if, for every compact subset \(Q \) of \(G \) and every \(\varepsilon > 0 \), there exists a unit vector \(\xi \in \mathcal{H} \) such that \(\sup_{x \in Q} \| \pi(x)\xi - \xi \| < \varepsilon \). If this holds, we also say that the trivial representation \(1_G \) is weakly contained in \(\pi \) and write \(1_G \trianglelefteq \pi \).

Let \(H \) be a closed subgroup of \(G \) for which there exists a non-zero \(G \)-invariant regular Borel measure \(\mu \) on \(G/H \) (see [BHV, Appendix B] for a criterion of the existence of such a measure). Denote by \(\lambda_{G/H} \) the unitary representation of \(G \) given by left translations on the Hilbert space \(L^2(G/H, \mu) \) of square integrable measurable functions on the homogeneous space \(G/H \). If \(\mu \) is finite, we say that \(H \) has finite covolume in \(G \). In this case, the space \(C^1_{G/H} \) of constant functions on \(G/H \) is contained in \(L^2(G/H, \mu) \) and is \(G \)-invariant, as also is its orthogonal complement

\[
L_0^2(G/H, \mu) = \left\{ \xi \in L^2(G/H, \mu) : \int_{G/H} \xi(x) \, d\mu(x) = 0 \right\}.
\]

In case \(\mu \) is infinite, we set \(L_0^2(G/H, \mu) = L^2(G/H, \mu) \).

Denote by \(\lambda_{G/H}^0 \) the restriction of \(\lambda_{G/H} \) to \(L_0^2(G/H, \mu) \) (in case \(\mu \) is infinite, \(\lambda_{G/H}^0 = \lambda_{G/H} \)). We say that \(\lambda_{G/H} \) (or \(L^2(G/H, \mu) \)) has a spectral gap if \(\lambda_{G/H} \) does not have almost invariant vectors.

2010 Mathematics Subject Classification: 22E40, 37A30, 43A85.

Key words and phrases: lattices in Lie groups, spectral gap property, spectral geometry of locally symmetric Riemannian manifolds.
gap if \(\lambda_{G/H}^0 \) has no almost invariant vectors. In the terminology of Chapter III, (1.8)], \(H \) is called weakly cocompact.

By a Lie group we mean a locally compact group \(G \) whose connected component of the identity \(G^0 \) is open in \(G \) and is a real Lie group. We prove
the following result which has been conjectured in Chapter III, Remark (1.12)].

Theorem 1. Let \(G \) be a Lie group and \(H \) a closed subgroup with finite covolume in \(G \). Then the unitary representation \(\lambda_{G/H} \) on \(L^2(G/H) \) has a spectral gap.

It is a standard fact that \(L^2(G/H) \) has a spectral gap when \(H \) is co-compact in \(G \) (see Chapter III, Corollary (1.10)]). When \(G \) is a semisimple Lie group, the conclusion of Theorem 1 is an easy consequence of Lemma 3 in [Bekk98]. Our proof is by reduction to these two cases. The crucial tool for this reduction is Proposition (1.11) from Chapter III in [Marg91] (see Proposition 5 below). From Theorem 1 and again from that proposition, we obtain the following corollary.

Corollary 2. Let \(G \) be a second countable Lie group, \(H \) a closed subgroup with finite covolume in \(G \), and \(\sigma \) a unitary representation of \(H \). Let \(\pi = \text{Ind}_{G}^{G} \sigma \) be the representation of \(G \) induced from \(\sigma \). If \(1_H \) is not weakly contained in \(\sigma \), then \(1_G \) is not weakly contained in \(\pi \).

Observe that, by continuity of induction, the converse is also true: if \(1_H \prec \sigma \), then \(1_G \prec \pi \).

From the previous corollary we deduce a spectral gap result for some subgroups of \(G \) with infinite covolume.

Recall that a subgroup \(H \) of a topological group \(G \) is called co-amenable in \(G \) if there is a \(G \)-invariant mean on the space \(C^b(G/H) \) of bounded continuous functions on \(G/H \). When \(G \) is locally compact, this is equivalent to \(1_G \prec \lambda_{G/H} \); this property has been extensively studied by Eymard [Eyma72] who calls it the amenability of the homogeneous space \(G/H \). Observe that a normal subgroup \(H \) in \(G \) is co-amenable in \(G \) if and only if the quotient group \(G/H \) is amenable.

Corollary 3. Let \(G \) be a second countable Lie group and \(H \) a closed subgroup with finite covolume in \(G \). Assume that \(L \) is not co-amenable in \(H \). Then \(\lambda_{G/L} \) (which is defined as \(\text{Ind}_{L}^{G} 1_L \) in case \(G/L \) has no \(G \)-invariant measure) does not weakly contain \(1_G \).

Corollary 3 is a direct consequence of Corollary 2 since the representation \(\lambda_{G/L} \) on \(L^2(G/L) \) is equivalent to the induced representation \(\text{Ind}_{L}^{G} \lambda_{H/L} \).

Here is a reformulation of the previous corollary. Let \(G \) be a Lie group and \(H \) a closed subgroup with finite covolume in \(G \). If a subgroup \(L \) of \(H \) is co-amenable in \(G \), then \(L \) is co-amenable in \(H \). Observe that the finiteness
of the covolume of H is essential, as examples in [MoPo03] and [Pest03] show. Observe also that the converse (if L is co-amenable in H, then L is co-amenable in G) is true for any topological group G and any closed subgroup H which is co-amenable in G (see [Eyma72, p. 16]).

Using methods from [Leuz03] (see also [Broo86]), we obtain the following consequence for the spectral geometry of infinite coverings of locally symmetric Riemannian spaces of finite volume. Recall that a lattice in the locally compact group G is a discrete subgroup of G with finite covolume.

Corollary 4. Let G be a semisimple Lie group with finite centre and maximal compact subgroup K and let Γ be a torsion-free lattice in G. Let \tilde{V} be a covering of the locally symmetric space $V = K \backslash G/\Gamma$. Assume that the fundamental group of \tilde{V} is not co-amenable in Γ.

(i) We have $h(\tilde{V}) > 0$ for the Cheeger constant $h(\tilde{V})$ of \tilde{V}.

(ii) We have $\lambda_0(\tilde{V}) > 0$, where $\lambda_0(\tilde{V})$ is the bottom of the L^2-spectrum of the Laplace–Beltrami operator on \tilde{V}.

There is in general no uniform bound for $h(\tilde{V})$ or $\lambda_0(\tilde{V})$ for all coverings \tilde{V}. However, it was shown in [Leuz03] that, when G has Kazhdan’s Property (T), such a bound exists for every locally symmetric space $V = K \backslash G/\Gamma$. Observe also that if, in the previous corollary, the fundamental group of \tilde{V} is co-amenable in Γ and has infinite covolume, then $h(\tilde{V}) = \lambda_0(\tilde{V}) = 0$, as shown in [Broo81].

2. Proofs of Theorem 1 and Corollary 4. The following result of Margulis (Proposition (1.11) in Chapter III of [Marg91]) will be crucial.

Proposition 5 ([Marg91]). Let G be a second countable locally compact group, H a closed subgroup of G such that G/H has a G-invariant measure, and σ a unitary representation of H. Assume that $\lambda_{G/H}$ has a spectral gap and that 1_H is not weakly contained in σ. Then 1_G is not weakly contained in $\text{Ind}_H^G \sigma$.

In order to reduce the proof of Theorem 1 to the semisimple case, we will use the following proposition several times.

Proposition 6. Let G be a separable locally compact group, and H_1 and H_2 be closed subgroups of G with $H_1 \subset H_2$ and such that G/H_2 and H_2/H_1 have non-zero G-invariant and H_2-invariant regular Borel measures, respectively. Assume that the H_2-representation λ_{H_2/H_1} on $L^2(H_2/H_1)$ and the G-representation λ_{G/H_2} on $L^2(G/H_2)$ both have spectral gaps. Then the G-representation λ_{G/H_1} on $L^2(G/H_1)$ has a spectral gap.

Proof. Recall that, for any closed subgroup H of G, the representation $\lambda_{G/H}$ is equivalent to the representation $\text{Ind}_H^G 1_H$ induced by the identity.
representation 1_H of H. Hence, by transitivity of induction,
\[\lambda_{G/H_1} = \text{Ind}^G_{H_1} 1_{H_1} = \text{Ind}^G_{H_2} (\text{Ind}^{H_2}_{H_1} 1_{H_1}) = \text{Ind}^G_{H_2} \lambda_{H_2/H_1}. \]

We have to consider three cases:

- **First case:** H_1 has finite covolume in G, that is, H_1 has finite covolume in H_2, and H_2 has finite covolume in G. Then
 \[\lambda^0_{G/H_1} = \lambda^0_{G/H_2} \oplus \text{Ind}^G_{H_2} \lambda^0_{H_2/H_1}. \]
 By assumption, $\lambda^0_{H_2/H_1}$ and λ^0_{G/H_2} do not weakly contain 1_{H_2} and 1_G, respectively. It follows from Proposition 5 that $\text{Ind}^G_{H_2} \lambda^0_{H_2/H_1}$ does not weakly contain 1_G. Hence, λ^0_{G/H_1} does not weakly contain 1_G.

- **Second case:** H_1 has finite covolume in H_2, and H_2 has infinite covolume in G. Then
 \[\lambda_{G/H_1} = \lambda_{G/H_2} \oplus \text{Ind}^G_{H_2} \lambda^0_{H_2/H_1}. \]
 By assumption, $\lambda^0_{H_2/H_1}$ and λ_{G/H_2} do not weakly contain 1_{H_2} and 1_G. As above, using Proposition 5, we see that λ_{G/H_1} does not weakly contain 1_G.

- **Third case:** H_1 has infinite covolume in H_2. By assumption, λ_{H_2/H_1} does not weakly contain 1_{H_2}. By Proposition 5 again, it follows that $\lambda_{G/H_1} = \text{Ind}^G_{H_2} \lambda_{H_2/H_1}$ does not weakly contain 1_G.

For the reduction of the proof of Theorem 1 to the case where G is second countable, we will need the following lemma.

Lemma 7. Let G be a locally compact group and H a closed subgroup with finite covolume. The homogeneous space G/H is σ-compact.

Proof. Let μ be the G-invariant regular probability measure on the Borel subsets of G/H. Choose an increasing sequence of compact subsets K_n of G/H with $\lim_n \mu(K_n) = 1$. The set $K = \bigcup_n K_n$ has μ-measure 1 and is therefore dense in G/H. Let U be a compact neighbourhood of e in G. Then $UK = G/H$ and $UK = \bigcup_n UK_n$ is σ-compact.

Proof of Theorem 1. Through several steps the proof will be reduced to the case where H is a lattice in G, and G is a connected semisimple Lie group with trivial centre and without compact factors.

- **First step:** we can assume that G is σ-compact and hence second-countable. Indeed, let $p : G \to G/H$ be the canonical projection. Since every compact subset of G/H is the image under p of some compact subset of G (see [BHvL] Lemma B.1.1), it follows from Lemma 7 that there exists a σ-compact subset K of G such that $p(K) = G/H$. Let L be the subgroup of G generated by $K \cup U$ for a neighbourhood U of e in G. Then L is a σ-compact open subgroup of G. We show that $L \cap H$ has a finite covolume in L, and that $\lambda_{G/H}$ has a spectral gap if $\lambda_{L/L\cap H}$ has a spectral gap.
Since \(LH \) is open in \(G \), the homogeneous space \(L/L \cap H \) can be identified as an \(L \)-space with \(LH/H \). Therefore \(L \cap H \) has finite covolume in \(L \). On the other hand, the restriction of \(\lambda_{G/H} \) to \(L \) is equivalent to the \(L \)-representation \(\lambda_{L/L \cap H} \), since \(LH/H = p(L) = G/H \). Hence, if \(\lambda_{L/L \cap H} \) has a spectral gap, then \(\lambda_{G/H} \) has a spectral gap.

- **Second step:** we can assume that \(G \) is connected. Indeed, let \(G^0 \) be the connected component of the identity of \(G \). We show that \(G^0 \cap H \) has a finite covolume in \(G^0 \), and that \(\lambda_{G/H} \) has a spectral gap if \(\lambda_{G^0/G^0 \cap H} \) has a spectral gap.

 The subgroup \(G^0H \) is open in \(G \) and has finite covolume in \(G \) as it contains \(H \). It follows that \(G^0H \) has finite index in \(G \) since \(G/G^0H \) is discrete. Hence \(\lambda_{G/G^0H} \) has a spectral gap.

 On the other hand, since \(G^0H \) is closed in \(G \), the homogeneous space \(G^0/G^0 \cap H \) can be identified as a \(G^0 \)-space with \(G^0H/H \). Therefore \(G^0 \cap H \) has finite covolume in \(G^0 \). The restriction of \(\lambda_{G^0H/H} \) to \(G^0 \) is equivalent to the \(G^0 \)-representation \(\lambda_{G^0/G^0 \cap H} \). Suppose now that \(\lambda_{G^0/G^0 \cap H} \) has a spectral gap. Then the \(G^0H/H \)-representation \(\lambda_{G^0H/H} \) has a spectral gap, since \(L^2(G^0H/H) \cong L^2(G^0/G^0 \cap H) \) as \(G^0 \)-representations. An application of Proposition 6 with \(H_1 = H \) and \(H_2 = G^0H \) shows that \(\lambda_{G/H} \) has a spectral gap. Hence, we can assume that \(G \) is connected.

- **Third step:** we can assume that \(H \) is a lattice in \(G \). Indeed, let \(H^0 \) be the connected component of the identity of \(H \) and let \(N_G(H^0) \) be the normalizer of \(H^0 \) in \(G \). Observe that \(N_G(H^0) \) contains \(H \). By [Wang 76, Theorem 3.8], \(N_G(H^0) \) is cocompact in \(G \). Hence, \(\lambda_{G/N_G(H^0)} \) has a spectral gap. It follows from the previous proposition that \(\lambda_{G/H} \) has a spectral gap if \(\lambda_{N_G(H^0)/H} \) has a spectral gap.

 The second step applied to the Lie group \(N/H \) shows that \(\lambda_{N/H} \) has a spectral gap if \(\lambda_{N^0/N^0 \cap H} \) has a spectral gap. Observe that \(N^0 \cap H \) is a lattice in the connected Lie group \(N^0 \), since \(H \) is discrete and \(H \) has finite covolume in \(N_G(H^0) \).

 This shows that we can assume that \(H \) is a lattice in the connected Lie group \(G \).
• Fourth step: we can assume that G is a connected semisimple Lie group with no compact factors. Indeed, let $G = SR$ be a Levi decomposition of G, with R the solvable radical of G, and S a semisimple subgroup. Let C be the maximal compact normal subgroup of S. It is proved in \cite[Theorem B, p. 21]{Wang70} that HCR is closed in G and that HCR/H is compact. Hence, by the previous proposition, $\lambda_{G/H}$ has a spectral gap if $\lambda_{G/HCR}$ has a spectral gap.

The quotient $\overline{G} = G/CR$ is a connected semisimple Lie group with no compact factors. Moreover, $\overline{\Pi} = HCR/CR$ is a lattice in \overline{G} since $HCR/CR \cong H/H \cap CR$ is discrete and since HCR has finite covolume in G. Observe that $\lambda_{G/HCR}$ is equivalent to $\lambda_{\overline{G}/\overline{\Pi}}$ as a G-representation.

• Fifth step: we can assume that G has trivial centre. Indeed, let Z be the centre of G. It is known that ZH is discrete (and hence closed) in G (see \cite[Chapter V, Corollary 5.17]{Ragh72}). Hence, ZH/H is finite and $\lambda_{ZH/H}$ has a spectral gap.

By the previous proposition, $\lambda_{G/H}$ has a spectral gap if $\lambda_{G/ZH}$ has a spectral gap. Now, $\overline{G} = G/Z$ is a connected semisimple Lie group with no compact factors and with trivial centre, $\overline{\Pi} = ZH/Z$ is a lattice in \overline{G}, and $\lambda_{G/ZH}$ is equivalent to $\lambda_{\overline{G}/\overline{\Pi}}$.

• Sixth step: by the previous steps, we can assume that H is a lattice in a connected semisimple Lie group G with no compact factors and with trivial centre. In this case, the claim was proved in Lemma 3 of \cite{Bekk98}. This completes the proof of Theorem 1.

Proof of Corollary 4.

The proof is identical with the proof of Theorems 3 and 4 in \cite{Leuz03}; we give a brief outline of the arguments. Let Λ be the fundamental group of \tilde{V}. First, it suffices to prove claims (i) and (ii) for G/Γ instead of $K \backslash G/\Gamma$ (see Section 4 in \cite{Leuz03}). So we assume that $\tilde{V} = G/\Lambda$.

Equip G with a right invariant Riemannian metric and G/Λ with the induced Riemannian metric. Observe that G/Λ has infinite volume, since Λ is of infinite index in Γ. Claim (ii) is a consequence of (i), by Cheeger’s inequality $\frac{1}{4} h(G/\Lambda)^2 \leq \lambda_0(G/\Lambda)$. Recall that the Cheeger constant $h(G/\Lambda)$ of G/Λ is the infimum over all numbers $A(\partial \Omega)/V(\Omega)$, where Ω is an open submanifold of G/Λ with compact closure and smooth boundary $\partial \Omega$, and where $V(\Omega)$ and $A(\partial \Omega)$ are the Lebesgue measures of Ω and $\partial \Omega$.

To prove claim (i), we proceed exactly as in \cite{Leuz03}. By Corollary 3, there exists a compact neighbourhood H of the identity in G and a constant $\varepsilon > 0$ such that

$$
(*) \quad \varepsilon \| \xi \| \leq \sup_{h \in H} \| \lambda_{G/\Lambda}(h) \xi - \xi \| \quad \text{for all } \xi \in L^2(G/\Lambda).
$$
Let Ω be an open submanifold of G/Λ with compact closure and smooth boundary $\partial \Omega$. By [Leuz03, Proposition 1], we can find an open subset $\tilde{\Omega}$ of G/Λ with compact closure and smooth boundary such that, for all $h \in H$,

$$(**)
V(U_{|h|}(\partial \Omega)) \leq CV(\tilde{\Omega}) \frac{A(\partial \Omega)}{V(\Omega)},$$

where the constant $C > 0$ only depends on H. Here, $|h|$ denotes the distance $d_G(e,g)$ of h to the group unit and, for a subset S of G/Λ, $U_r(S)$ is the tubular neighbourhood

$$U_r(S) = \{ x \in G/\Lambda : d_G(x,S) \leq r \}.$$

Inequality (*) applied to the characteristic function $\chi_{\tilde{\Omega}}$ of $\tilde{\Omega}$ shows that there exists $h \in H$ such that

$$\varepsilon^2 V(\tilde{\Omega}) \leq \| \lambda_{G/\Lambda}(h) \chi_{\tilde{\Omega}} - \chi_{\tilde{\Omega}} \|^2 = V(X),$$

where

$$X = \{ x \in G/\Lambda : x \in \tilde{\Omega}, hx \notin \partial \tilde{\Omega} \} \cup \{ x \in G/\Lambda : x \notin \tilde{\Omega}, hx \in \partial \tilde{\Omega} \}.$$

One checks that $X \subset U_{|h|}(\partial \Omega)$. It follows from (*) and (**) that

$$\frac{\varepsilon^2}{C} \leq \frac{A(\partial \Omega)}{V(\Omega)}.$$

Hence, $0 < \varepsilon^2/C \leq h(G/\Lambda).$

REFERENCES

Bachir Bekka, Yves Cornulier
IRMAR, UMR 6625 du CNRS
Université de Rennes 1
Campus Beaulieu
F-35042 Rennes Cedex, France
E-mail: bachir.bekka@univ-rennes1.fr
yves.decornulier@univ-rennes1.fr

Received 27 March 2009