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Abstract. We give a simple proof of a result of R. Rochberg and M. H. Taibleson that
various maximal operators on a homogeneous tree, including the Hardy–Littlewood and
spherical maximal operators, are of weak type (1, 1). This result extends to corresponding
maximal operators on a transitive group of isometries of the tree, and in particular for
(nonabelian finitely generated) free groups.

1. Introduction. A homogeneous tree X of degree q + 1 is defined to
be a connected graph with no loops, in which every vertex is adjacent to
q+ 1 other vertices. It carries a natural distance function d, namely, d(x, y)
is the number of edges between vertices x and y, and a natural measure,
the counting measure. The usual Lebesgue space Lp(X) is thus the set of all
complex-valued functions f on X such that ‖f‖p <∞, where

‖f‖p =
{

[
∑

x∈X |f(x)|p]1/p if 1 ≤ p <∞,
supx∈X |f(x)| if p =∞.

Any weak-star continuous linear operator K from L1(X) to L∞(X) has an
associated kernel K : X× X→ C such that

Kf(x) =
∑
y∈X

K(x, y) f(y) ∀x ∈ X ∀f ∈ L1(X),

which determines and is determined by K. We shall be particularly interested
in the invariant operators, i.e., those which commute with the action of the
isometry group G of X. It is easy to see that the condition K(f ◦g) = (Kf)◦g
for all g in G is equivalent to the condition that K(g · x, g · y) = K(x, y) for
all x and y in X and g in G, or the condition that K(x, y) depends only on
d(x, y).
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Fix an arbitrary reference point o in X, and denote by Go the stabiliser
of o in the isometry group G. The map g 7→ g · o identifies X with the coset
space G/Go; thus a function f on X gives rise to a Go-invariant function
f ′ on G by the formula f ′(g) = f(g · o), and every Go-invariant function
arises in this way. A function f on X is called radial if f(x) depends only
on d(x, o), or equivalently if f is Go-invariant, or if f ′ is Go-bi-invariant. We
endow the totally disconnected group G with the Haar measure such that
the mass of the open subgroup Go is 1. Thus�

G

f ′(g · o) dg =
∑
x∈X

f(x)

for all finitely supported functions on X. The reader can find much more on
the group G in the book of A. Figà-Talamanca and C. Nebbia [5].

Suppose that K is an invariant continuous linear operator from L1(X) to
L∞(X). We write k′ for the function on G such that

k′(g) = K(g · o, o) ∀g ∈ G.
Then k′(g1gg2) = k′(g) for all g in G and g1, g2 in Go, and so there exists a
radial function k on X such that k′(g) = k(g · o). Further, for f in L1(X),

(Kf)′(g) = Kf(g · o) =
∑
y∈X

K(g · o, y)f(y)(1.1)

=
�

G

K(g · o, h · o)f(h · o) dh =
�

G

K(h−1g · o, o)f(h · o) dh

=
�

G

f ′(h)k′(h−1g) dh = f ′ ∗ k′(g) ∀g ∈ G.

The study of invariant operators on X is thus essentially a part of the
harmonic analysis of G, namely the study of operators from Lp(G/Go) to
Lr(G/Go) given by convolution on the right by Go-bi-invariant functions.

If Γ is any subgroup of G which acts transitively on X, then the argument
of (1.1) shows also that

(Kf)′|Γ = (f ′|Γ ) ∗Γ (k′|Γ ),

where ∗Γ denotes convolution in the group Γ . Thus our work also includes,
for example, the study of convolution of Go-invariant functions and Go-bi-
invariant functions on PGL(2,F), where F is a local field, or the study of
convolution of arbitrary functions and “radial” functions on a free group.
Since the identifications of Go-right-invariant and Go-bi-invariant functions
on G with functions and with radial functions on X are standard, we shall
henceforth usually not distinguish between these, and omit primes.

Our main result is a weak type (1, 1) estimate for radial convolutors k
satisfying an estimate of the form k(x) = O(q−|x|) for all x in X. A cor-
responding result in the case of symmetric spaces of the noncompact type
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was obtained by J.-O. Strömberg [8]. Our proof is based on the discussion of
Strömberg’s work by J.-Ph. Anker, E. Damek and Ch. Yacoub [2]. For an-
other version of Strömberg’s proof, and more information about free groups,
see [1].

This result also follows from a theorem of Rochberg and Taibleson [7],
who proved the weak (1, 1) boundedness of the Green’s operator (the inverse
of the Laplacian) for a strongly reversible, not necessarily isotropic, random
walk on a tree of bounded degree. Indeed, it is easy to verify that the convo-
lution kernel of the Green’s operator on a homogeneous tree of degree q+ 1
is given by

k(x) =
q

q − 1
q−|x|.

However, the proof of Rochberg and Taibleson uses probabilistic methods,
and is based on decomposition formulae for the Laplace and Green’s oper-
ators, and is more difficult than our proof, which is geometric, direct and
elementary, yields explicit constants, and emphasises the analogy with real
hyperbolic space. Further, by making clear the connections between oper-
ators on a tree and operators on a group of isometries of a tree above, we
show that the result also holds for groups that act transitively on the tree,
such as PGL(2,F) and the free group.

The main result is proved in Section 3, after we describe the geometry
of a homogeneous tree in Section 2.

2. The geometry and boundary of a homogeneous tree. We re-
view here some general facts about the geometry of the tree and two pictures
of its boundary.

By X we denote a homogeneous tree of degree q + 1, where q ≥ 2, with
a chosen reference point o. We write |x| for d(x, o), where d is the natural
distance on X. A geodesic γ in X is a doubly infinite sequence {xn : n ∈ Z}
of points of X such that d(xi, xj) = |i − j| for all integers i and j. We say
that x lies on γ, and write x ∈ γ, if x = xn for some n in Z. The boundary
Ω of X is the set of equivalence classes of geodesics, where {xn : n ∈ Z} and
{yn : n ∈ Z} are identified if there exist integers i and j such that xn = yn+i

for all n greater than j. If ω ∈ Ω, we write ω = limn→∞ xn if {xn : n ∈ Z}
lies in the equivalence class of ω, and ω = limn→−∞ xn if {x−n : n ∈ Z} ∈ ω.
We use interval notation: [x, y] denotes the geodesic interval between x and
y in X, including the endpoints, [x, ω) denotes the set of points {xn : n ≥ 0},
where {xn : n ∈ Z} is a geodesic such that x0 = x and limn→∞ xn = ω, and
so on. The boundary gives rise to a natural compactification of the discrete
topological space X. A basis for the topology of X∪Ω is given by the point
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Fig. 1. The tree and a geodesic

sets {x}, where x ∈ X, together with the sets Tx given by the rule

Tx =
⋃
ω∈Ω
x∈[o,ω]

[x, ω].

It is possible to endow Ω with a natural probability measure σ such that
σ(Ω ∩ Tx) = (q − 1)1−|x|q−1 for all x in X \ {o}.

We fix an arbitrary infinite geodesic {. . . , w−2, w−1, w0, w1, w2, . . . } such
that w0 = o, so that |wj | = |j|. We denote this geodesic by γ0, and by ω0

the boundary point limn→∞wn. A radial function f on X is determined by
its restriction to γ0.

The height function h on X is defined by the formula

h(x) = lim
m→∞

(d(o, wm)− d(x,wm)) ∀x ∈ X.

Define the horocycle Hn to be the set {x ∈ X : h(x) = n}; then X is the
disjoint union of the horocycles Hn, for n in Z.

For ω in Ω \ {ω0}, denote by γω the unique geodesic {xn : n ∈ Z} such
that

lim
n→∞

d(xn, wn) = 0, lim
n→−∞

xn = ω.

The horocycle decomposition is the analogue of the upper half space reali-
sation of hyperbolic space. Pushing this analogy one step further, we define
a second measure ρ on Ω, adapted to the horocyclical decomposition of Ω.
Given x in X, we define Ωx to be the compact open subset of Ω of points ω
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Fig. 2. The rooted tree and some horocycles

such that γω passes through x, i.e.,

Ωx = {ω ∈ Ω : x ∈ (ω0, ω)}.
Note that, for every integer n,⋃

x∈Hn

Ωx = Ω \ {ω0}.

Define ρ({ω0}) = 0 and ρ(Ωx) = qh(x); then it is simple to check that ρ
extends uniquely to a Borel measure, still denoted by ρ, on Ω with the
property that ρ({ω}) = 0 for all ω in Ω.

3. Weak (1, 1) estimates and multipliers. We denote by #E the
cardinality of a subset E of X.

Theorem 3.1. Suppose that the function k : X → C is radial and also
that |k(x)| ≤ Aq−|x| for all x in X. Then the operator K of right convolution
with k is of strong type (p, p) for all p in (1,∞), and of weak type (1, 1).
More precisely,

#{x ∈ X : |Kf(x)| > λ} ≤ 4A
q + 1
q − 1

‖f‖1
λ

∀f ∈ L1(X) ∀λ ∈ R+.

Proof. Since k is in Lr(X) when r > 1, the radial form of the Kunze–Stein
phenomenon, proved by C. Nebbia [6] for isometry groups of trees, implies
that K is of strong type (p, p) for all p in (1,∞) (a sharper version of this,
involving Lorentz spaces, is proved in another paper of the authors [3]).

The hard part of the proof is to show that K is of weak type (1, 1). Since
Kf ≤ AK]|f |, where K] is the operator corresponding to the kernel k], given
by q−|·|, we may assume that k = k] and K = K].
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We use the horocyclic decomposition of X and the measure ρ on the
boundary Ω, described in Section 2. Since ω ∈ Ωx if and only if x lies on γω,
given f in L1(X) we may use Fubini’s theorem to write∑

x∈X

f(x) =
∑
x∈X

�

Ωx

ρ(Ωx)−1f(x) dρ(ω)(3.1)

=
�

Ω

∑
x∈γω

q−h(x)f(x) dρ(ω).

In particular,
∑

x∈γω q
−h(x)|f(x)| is finite for ρ-almost every ω if f is in

L1(X).
We now define operators G and B on L1(X) by the rule

Gf(x) =
∑
y∈X

h(y)≤h(x)

q−d(x,y)f(y) and Bf(x) =
∑
y∈X

h(y)>h(x)

q−d(x,y)f(y)

for all x in X. Then

Kf(x) =
∑
y∈X

q−d(x,y)f(y) = Gf(x) + Bf(x) ∀x ∈ X.

We claim that G is bounded on L1(X) with norm at most q+1
q−1 . Indeed,

‖Gf‖1 ≤
∑
x∈X

∑
y∈X

h(y)≤h(x)

q−d(x,y)|f(y)| =
∑
y∈X

∑
x∈X

h(x)≥h(y)

q−d(x,y)|f(y)|.

To compute the inner sum, we write∑
x∈X

h(x)≥h(y)

q−d(x,y) =
∑
H∈N

∑
x∈X

h(x)=h(y)+H

q−d(x,y).

It is easy to verify, for every nonnegative integer H and y in X, that if
h(x) = h(y) +H, then d(x, y)−H ∈ {0, 2, 4, . . .}, and

#{x ∈ X : h(x) = h(y) +H, d(x, y) = 2j +H} = 1

if j = 0, while if j ∈ Z+, then

#{x ∈ X : h(x) = h(y) +H, d(x, y) = 2j +H} = (q − 1)qj−1.

Therefore∑
H∈N

∑
x∈X

h(x)=h(y)+H

q−d(x,y) =
∑
H∈N

q−H
(

1 +
∑
j∈Z+

(q − 1) q−j−1
)

=
q + 1
q − 1

,

and

‖Gf‖1 ≤
q + 1
q − 1

‖f‖1,
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thus proving our claim. We remark for future use that the calculation above
also shows that the operator G0, defined by

G0f(x) =
∑
y∈X

h(y)=h(x)

q−d(x,y)f(y),

is bounded on L1(X) with norm at most (q + 1)/q.
The heart of the argument consists in proving that B satisfies a weak

(1, 1) estimate. Fix λ in R+, and denote by E the set {x ∈ X : |Bf(x)| > λ}.
It follows from (3.1) that

#E =
∑
x∈X

χE(x) =
∑
x∈X

�

Ωx

q−h(x)χE(x) dρ(ω) =
�

Ω

∑
x∈γω

q−h(x)χE(x) dρ(ω).

We claim that for all ω in Ω \ {ω0},∑
x∈γω

q−h(x)χE(x) ≤ q

q − 1
1
λ

∑
x∈γω

q−h(x)|G0f(x)|.

This claim implies that

#E ≤ q

q − 1
1
λ

�

Ω

∑
x∈γω

q−h(x)|G0f(x)| dρ(ω)

=
q

q − 1
‖G0f‖1
λ

≤ q + 1
q − 1

‖f‖1
λ

,

by (3.1) and our estimate for the operator norm of G0, which establishes the
weak (1, 1) boundedness of B.

To prove the claim, we fix ω in Ω\{ω0}, and recall that the points yn of γω
are indexed so that h(yn) = n. We also note that d(yn, y) = d(yn+H , y) +H
whenever yn ∈ γω, h(y) = n+H, and H ∈ N. Therefore

Bf(yn) =
∑
H∈Z+

∑
y∈X

h(y)=n+H

q−d(x,y)f(y)

=
∑
H∈Z+

q−HG0f(yn+H) =
∑
H∈Z+

q−HFω(n+H),

where Fω(n) = G0f(yn).
Thus, denoting by W (Z) the L1-space constructed relative to the mea-

sure m on Z given by

m(E) =
∑
n∈E

q−n ∀E ⊂ Z,

and by B̃ the operator on W (Z) defined by

B̃F (n) =
∑
H∈Z+

q−HF (n+H) ∀F ∈W (Z),
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our claim is equivalent to showing that, for all F in W (Z),

m({n ∈ Z : |B̃F (n)| > λ}) ≤ q

q − 1
‖F‖W
λ

.

Now

|B̃F (n)| =
∣∣∣ ∑
H∈Z+

q−H F (n+H)
∣∣∣ = qn

∣∣∣ ∑
H∈Z+

q−(n+H)F (n+H)
∣∣∣ ≤ qn‖F‖W ,

which yields

{n ∈ Z : |B̃F (n)| > λ} ⊆ {n ∈ Z : n ≥ logq(λ/‖F‖W )},
and therefore

m({n ∈ Z : |B̃F (n)| > λ}) ≤
∑

n≥logq(λ/‖F‖W )

q−n

= q−n0
q

q − 1
≤ q

q − 1
‖F‖W
λ

,

where n0 = min{n ∈ Z : n ≥ logq(λ/‖F‖W )}, and the proof of the claim is
complete.

Summing up, we have

#{x ∈ X : |Kf(x)| > λ}
≤ #{x ∈ X : |Gf(x)| > λ/2}+ #{x ∈ X : |Bf(x)| > λ/2}

≤ 4
q + 1
q − 1

‖f‖1
λ

,

as required.

This result depends crucially on the fact that the tree has exponential
volume growth, and therefore that the degree is greater than or equal to
three, or equivalently, q ≥ 2. The constant in our proof becomes infinite
when q = 1, and it is easy to verify that the analogous operator on Z,
defined by convolution with (1 + | · |)−1, is not of strong type (p, p) for any p
in (1,∞), nor of weak type (1, 1).

To conclude, we need more notation. We write Sn and Bn for the subsets
{x ∈ X : |x| = n} and {x ∈ X : |x| ≤ n} of X. Clearly #S0 = 1, while
#Sn = (q + 1)qn−1 when n ∈ Z+, so #Sn ≥ qn for all n in N. We also
denote by M the class of all radial probability measures on X.

Corollary 3.2. The operator MG, defined by

MGf(x) = sup
ν∈M
|f | ∗ ν(x) ∀x ∈ X,

is of strong type (p, p) for every p in (1,∞), and of weak type (1, 1). In
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particular, the same holds for the operators M0, MHL, and MS, defined by

M0f(x) = sup
n∈N
|f | ∗ ν(∗n)

1 ,

MHLf(x) = sup
n∈N

1
#Bn

∑
y∈X

d(x,y)≤n

|f(y)|,

MSf(x) = sup
n∈N

1
#Sn

∑
y∈X

d(x,y)=n

|f(y)|,

where ν1 is the radial probability measure concentrated on S1, and ν
(∗n)
1

denotes the nth convolution power of ν1.

Proof. Take ν in M and f in L1(X). Write ν as
∑

d∈N adχd, where ad ≥ 0.
Then

∑
d∈N ad#Sd = 1, whence ad#Sd ≤ 1 and so ad ≤ q−d for all d ∈ N.

It follows that

|f | ∗ ν(x) =
∑
d∈N

ad (|f | ∗ χd)(x) ≤
∑
d∈N

q−d
∑
y∈X

d(x,y)=d

|f |(y)

= K|f |(x).

Taking the supremum over ν in M, we see that

MGf(x) ≤ sup
ν∈M
|f | ∗ ν(x) ≤ K|f |(x),

and the corollary follows.

An application of Theorem 3.1 above to multipliers for the spherical
Fourier transform may be found in [4, Theorem 2.2(iii)].
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