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Abstract. We define partial spectral integrals Sr on the Heisenberg group by means
of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V' con-
taining the joint spectrum of the partial sub-Laplacians and the central derivative. Under
the assumption that an L2-function f lies in the logarithmic Sobolev space given by
log(2 4+ Lo)f € L?, where L, is a suitable “generalized” sub-Laplacian associated to the
dilation structure, we show that Sgf(z) converges a.e. to f(z) as R — oo.

1. Introduction. Under the assumption that f belongs to the loga-
rithmic Sobolev space given by log(2 — A)f € L?*(R?), where A denotes
the Euclidean Laplacian, a short and simple proof of the almost everywhere
convergence as R — oo of the partial spectral integrals Sgf, associated to
the dilates RV of any bounded measurable region V star-shaped with re-
spect to the origin and containing the origin in its interior, has been given
in [CMP]. The proof was based on Rademacher-Men’shov’s theorem.

By choosing V' equal to the unit ball, the spherical partial integrals
studied in [CS] are obtained. The fact that the proof in [CMP] makes use
of only very basic properties allows for wide generalizations. In [MMP] e.g.
the above result has been extended to arbitrary connected Lie groups, the
partial spectral integrals being defined in terms of a sub-Laplacian as well
as the corresponding logarithmic Sobolev space.

More general partial integrals Sp can be defined by means of the group
Fourier transform, for specific groups. We shall demonstrate this in the
present article for the case of the Heisenberg group H,,, where such spectral
integrals can also be defined by means of the joint spectral resolution of
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the partial sub-Laplacians Lq,..., L, and the central derivative —iU. For
V' we choose suitable star-shaped subsets containing, as an interior point,
the origin of the ambient space R™*! which contains the joint spectrum
(the “Heisenberg fan” F},) of these operators. We shall work with arbitrary
isotropic or anisotropic dilations on R™*1.

As a simpler model case we shall first consider the Euclidean space RY,
whose dual is endowed with arbitrary isotropic or anisotropic dilations. We
remark that our results in this setting, being independent of the geometry
of V, do not fall under the scope of C. Fefferman’s method in [E] which
requires V to be a rectangular box.

As in [MMP], our approach to this problem on the Heisenberg group
makes use of an asymptotic estimate for R — oo of W(R) = || Kr||3, where
KR denotes the convolution kernel associated to our partial integrals Sg,
together with the right-continuity of W (R). To show this latter property of
W (R), in the case of anisotropic dilations, we furthermore assume V to be
closed. A counter-example is given to show that without some extra assump-
tion the right-continuity of W (R) may fail to be true. This is related to the
fact that anisotropic dilations will not leave the Heisenberg fan invariant.

Throughout the article, C' and ¢ will denote constants which may change
from line to line.

2. The Euclidean case. Before studying the Heisenberg group, we
shall consider the simpler case of R? endowed with an anisotropic dilation
structure. As in [CMP] a basic tool will be the classical

THEOREM 2.1 (Rademacher—-Men’shov). Suppose that (X, u) is a pos-
itive measure space. Then there is a positive constant ¢ with the following
property: For each orthogonal subset {f, : n € N} in L*(X, u) satisfying

oo

(2.1) > (log(n +2))?| full3 < oo,

n=0
the mazimal function F*(x) := supyey | Zﬁfzo fn(z)| is in L2(X, ), and

(2.2 157 < e logn + 21 £l13)

n=0
In particular, ([2.1]) implies that the series > ..° fn(x) converges almost
everywhere on X.

See [S] or Theorem XIII.10.21 from [Z] for a proof. Here log means the
logarithm to the base 2.

Let {0, },~0 be a fixed family of (usually) anisotropic dilations in R? given
by d,x = (r*1xy,...,r%xy) with a; > 0for j =1,...,d. Aset V C R? is
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said to be star-shaped with respect to these dilations if for every x € V,
brx eV forall0<r<l1.

Let D = Z?zl a; denote the homogeneous dimension of R? with respect
to the above dilations. For any measurable subset W C R? we denote by
Sw the Fourier multiplier operator given by S/V;f(f) = XW(ﬁ)f(f). By the
method developed in [CMP] we can easily prove the following

THEOREM 2.2. Let V C R be a bounded, measurable, star-shaped subset
containing the origin as an interior point, and set Sg = S5y . If

J 17(€)log(2+ €I dg < oo

R4
then Spf(z) — f(x) a.e. as R — oo. Moreover, if B is any set with finite
measure in R then

(2.3) 1M f1[72(5) < Cralf(&)log(2 + €] d,
where M denotes the mazimal function defined by M f(x) = supg~1|Srf(x)|.
Proof. We just give a brief sketch. Since |6zV| = RP|V|, by choosing
R, = nP we see that
|0r, V \Or, V| =|V| foreveryn=1,2,....
Then, as in [CMP], by the Rademacher-Men’shov Theorem it follows

that

Sg, f(z) converges a.e. in RY
and that the maximal function M f(x) = sup,, |Sg, f(x)| belongs to L?(B).
Since the origin is an interior point of V' it follows that (J,~; dr,V = R,
hence Sg, f — f in L?(R%) as n — oo and so Sy, f(z) — f(x) a.e.

Finally, for R,—1 < R < R, the error term Srf(z) — Sg,_,f(x) can
be shown to tend to zero for every z € R% as n — oo by Cauchy-Schwarz’
inequality, as in [CMP]. Then the estimate (2.3)) for M f easily follows. =

REMARK 2.3. If @ is the unit cube, say in R? for simplicity, then a
stronger result is known. For instance, if we use the parabolic dilations
8p(z1,20) = (ray,7%22), then

Sspof(z,y) — f(z,y) ae. as R— oo, for every f € L*(R?).

Indeed, one can derive this result easily from Carleson’s theorem follow-
ing C. Fefferman’s idea in [E] as follows: Notice first that dg( is the rectangle
{(&n) : €] < R, |n| £ R?}. We therefore decompose f = fi + f2, where
fi = fxp, with P = {(&,n) : |n| < €2}. Notice that yp is an L?-bounded
Fourier multiplier. Then it is easy to see that

sup [Sspo fi(z,y)| S (Cufi1)(z,y),
R>1
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where C, denotes Carleson’s maximal operator acting in the variable x.
Similarly

sup ‘SéRQfQ(J}:y)’ 5 (Cyf2)<337y)7
R>1

where () denotes Carleson’s maximal operator acting in the variable y.
Then the result follows by standard arguments.

The method just described does not work for dilations (isotropic or
anisotropic) of sets V' with curved boundary, and not even for anisotropic
dilations of general polygonal regions since the slope of the edges of the
dilated polygons might change under anisotropic dilations.

The advantage of our method, which however requires a stronger regu-
larity assumption on the function f, lies in the fact that it is independent
of the geometry of the set V.

3. The case of the Heisenberg group

3.1. Statement of the main result. Recall that the Heisenberg group
Hi,, can be defined as R™ x R” x R endowed with the product

2

We denote by b, its Lie algebra, which can again be identified with R™ x R"
x R. Then the exponential mapping exp : h,, — H, is the identity mapping.
Identifying as usual an element X € b, with its Lie derivative

1
(z,y,u) - (2, y,u) = <x+x’,y+y’,u+u’+(m-y’—y-x’))

d
(LXQD)(Q) i @ go(gexth) t:07 ge an

we shall consider the elements of the Lie algebra as left-invariant vector
fields. A natural basis of b, is then given by the vector fields

0 1 0 0 1 0
e, 2%ow YT oy T2 ow
and U = 9d/0u. They satisfy the “Heisenberg commutation relations”

(X, Yi] = 6;.U,

X; = 7=1,...,n,

all other brackets being zero. In particular, U spans the center of b,, and
B, is two-step nilpotent. Denote by u(h,) its universal enveloping algebra,
regarded as the associative algebra of all left-invariant differential operators
on H,,.

The partial sub-Laplacians L; € u(h,) are defined by

Li=—(X;+Y}), j=1,....n

These play a basic role within u(h,) because of the following well-known
facts:
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Identify (x,y) € R" x R™ with z = (21,...,2,) = (x1+ Y1, ..., Tpn +iYn)
€ C", and call a function f on H, polyradial if f(z,u) = f(|z1],...,|zal, )
for some function f on R x R. Under this identification of the underlying
manifold of H,, with C" xR, the n-torus T"™ = {(e"?1,...,e""") : p; € [0, 27[}
acts by (symplectic) automorphisms (z1, . .., 2p, u) — (%121, ..., e 2, u)
on H,, and f is polyradial if and only if fo7 = f for every 7 € T™. The pair
(H,,, T™) is then known to be a Gelfand pair in the sense that the algebra

Ly (Hy) == {f € L'(H,) : f is polyradial}

is a commutative subalgebra of L'(H,), whose Gelfand spectrum has been
identified by A. Hulanicki and F. Ricci in [HR].

The counterpart of this algebra within u(h,) is the subalgebra up,(bhy,)
of all T™-invariant elements (notice here that the subgroup T™ of the auto-
morphism group of H,, acts in a natural way by automorphisms on u(hy,)).
This subalgebra is then generated by the partial sub-Laplacians Li,..., Ly,
and U, so that the harmonic analysis for polyradial functions can be viewed
as the joint spectral theory of these operators.

A bi-invariant Haar measure on H, is given by the Lebesgue measure
dg = dx dydu, and we shall denote by L?(H,) the L2-space with respect
to this measure. The operators L; and U, initially defined on C§°(H,), are
known to be essentially self-adjoint on L?(H,), and their closures will again
be denoted by the same symbols.

By our previous remarks these operators form a commutative set of self-
adjoint operators on L?(H,) so that, for every Borel measurable function
¢ on R™1 the joint spectral multiplier operator Ty = (L1, ..., Ly, —iU)
can be defined as a (possibly unbounded) operator on L?(H,,) by means of
the spectral theorem. This functional calculus will be made explicit later by
means of the representation theory of the Heisenberg group. In particular, for
any Borel measurable subset W C R"*! we denote by Sy the joint spectral
multiplier operator corresponding to the characteristic function of W, i.e.

SW = TXW = Xw(Ll, ce ,Ln, —ZU)

Notice that R™*! contains the joint spectrum of the operators Ly, ..., Ly,
—iU, the so-called Heisenberg fan (see Subsection . In analogy with the
dilations considered in the Euclidean setting, which were acting on the dual
space, let us fix a one-parameter family of dilations on the space R*"*! =
R™ x R, with coordinates & = (A, ) = (A1, ..., An, ), of the form

08 = (r*t A, ... ,Ta")\n,rﬁ,u),

with aj > 0for j =1,...,n and 8 > 0. Notice that these dilations leave the
subspace R"\ {0} invariant, which we identify with R™. We shall denote the
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corresponding dilations of R™ again by §,. We set

n
Omin = min «;, D= g a;.
7j=1,..,n ]

Notice that D is the homogeneous dimension of R™ with respect to these
dilations.

Next assume that V' C R"*! is a measurable, star-shaped subset con-
taining the origin as an interior point. Because of the special role played by
the operator —iU compared to the L;, we now distinguish two cases:

CAsE 1. If 8 < amin we assume that V' is a bounded set and define
(3.1) L=LV" 4.4 LYo o |Ul/8,

CASE 2. If 8 > amin we only assume that the projection of V' onto the
space R™ of A-variables is a bounded set and define

(3.2) L=LY 4. 4l

Notice that the corresponding joint spectral multipliers 1,,(§) = /\i/ My

Ao respectively 1, (§) = )\i/al oA |11)'/? are homogeneous
of degree one with respect to our dilations. A particular case of such an
operator L is the sub-Laplacian L = Ly + --- + L,, (Case 2) and the full
Laplacian L — U?. We can now state our main result.

THEOREM 3.1. Let V.C R™! be a measurable, star-shaped subset con-
taining the origin as an interior point, which furthermore has the properties
as described in Case 1, respectively Case 2. In case the dilations &, are
anisotropic, assume in addition that V is closed. Choose L as in re-
spectively and let Sg = Ss,v-

If log(2+ L) f € L*(H,,) then Sgf(z) — f(x) a.e. as R — oo. Moreover,
if B is any subset with finite measure of Hy, then

(3.3) 1M f12205) < Cralllog(@ + £)f 12,

where M denotes the mazximal function defined by

Mf(x) = ]S%Ei’st(x)"

3.2. Concrete realization of joint spectral multiplier operators.
Let us first recall some well-known facts about the Heisenberg group and
its representation theory (see e.g. [Fol, [St], [T], and the original papers by
D. Geller [GI], [G2]).

The group Fourier transform on the Heisenberg group H, is defined in
terms of the Schrodinger representations, i.e. the irreducible unitary repre-
sentations of infinite dimension: For every u € R* := R\ {0} the Schrdidinger
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representation m,, acting on L*(R"), is given by
[mu( . w))(8) = O G( ), 6 € AR,
One checks that 7, : H, — U(L*(R")) is a strongly continuous homo-
morphism from H, into the group U (L?(R™)) of unitary operators on the
representation space L2(R™).
The Fourier transform of a function f € L'(H,) is the operator-valued
mapping f : R — B(L?(R")) given (in the strong operator sense) by

f(u) = S [z, w)my(z,u)dzdu, pe R,
Hy,

One also writes 7, (f) instead of f(1). Then

fux falw) = i) Falw) - V1, fo € L' (Hy),
where the convolution of f; and fo on H, is defined by

f1#* fag) == S fi(h) fa(h™1g) dh.
Hp,

For sufficiently “nice” functions, such as Schwartz functions, one then has
the following Fourier inversion formula:

(3.4) Flzu) = @m0 | e, ) F ()l di

RX
Here tr(T") denotes the trace of the operator T. Equivalently, one has Plan-
cherel’s formula: If f € L' N L?(H,,), then

(3.5) 12112 = 2m) 77§ 1A () Ifis el di
RX
where || - ||gs denotes the Hilbert-Schmidt norm. Denote by dr, the derived
representation of the Lie algebra §,,. Then
dm(Xj) = 0y,  dmu(Y;) =ipty,  dm(U) = ip,
so that
dr,(Lj) = —8%_ —i—,u?t?, j=1,...,n.

These are rescaled Hermite operators, acting on the jth coordinate only. The
joint eigenfunctions of dr,(L1),...,dr,(Ly,) (and dr,(—iU)) are therefore
given by
n
hp(8) = | TT ('),

j=1
where k = (ki,...,k,) € N* and h,,(s) is the L:-normalized Hermite func-
tion given by

hin(8) 1= (2™ /am!) " V2H,, (s)e™*"/2.
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Here H,,(s) denotes the Hermite polynomial of degree m, i.e.

52 dm 2

Hon(s) := (—1)™e ().

ds™
Then
(3.6) dry(Lj)hy = |pl(2k; + 1)hy,  j=1,...,n,
(3.7) dm, (—iU)hl = phi.

Therefore if ¢ is any Borel measurable joint spectral multiplier on R"*!,
say of moderate growth, we can explicitly define the (possibly unbounded)

operator Ty, = (L1, ..., Ly, —iU) by means of its Fourier transform given
by
(3.8) Tu(Ty )by = p(|pl(2ky + 1), .. [ul 2k + 1), p)mu(f) Ry,

and the Fourier inversion formula (3.4)). This makes sense for instance for
Schwartz functions f € S(H,,).
Denote by F;, the Heisenberg fan, i.e. the closure of the set

{(pl2ky+1), . |l 2k +1), 1) : 1 € R k= (ka,... kn) € N} C RPTL

Then clearly the operator T; depends only on the restriction of ¢ to F),.
Moreover, if 1 is bounded on the Heisenberg fan then, by Plancherel’s the-
orem, T, is bounded on L*(H,,) with norm

(3.9) 1Tyl = [19]F [l oo-

Also by the Schwartz kernel theorem and left-invariance there exists a unique
convolution kernel K, € S'(H,,) such that

(3.10) Tyf=f*xKy, forevery feS(H,).
We shall use the abbreviation
k= 2k +1,...,2k,+1) for ke N"
We also define a spectral measure o supported in F),, by
(3.11) (&) do€) =cn | D h(lplk, w)lul™ dp,
RX keNn

for suitable Borel measurable functions h on R"*1 where ¢, = (27r)™ L.
The following identity follows then easily from (3.5)) and (3.8]):

(3.12) 1K l13 = {1 ()* do(€).

3.3. Proof of Theorem Let V C R™™! be as in the theorem, and
let again Sg = Ss5,1. We set K = KXSR so that by (3.10)),

Srf=f+xKgr forevery f € S(H,).

We distinguish the cases: 8 < omin = minj—i,_, «; (Case 1), and S > oumin
(Case 2). In Case 1 we introduce a homogeneous norm | - | on R"*1 in the
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sense of [FS], as follows:
[0 )] = max((A Vo, a0 [ P).
In Case 2 we work with the homogenous seminorm
|0 )] = max(|A V1, A om)

instead. Then in particular |6,&| = r||. Notice that an equivalent homoge-
neous norm, respectively seminorm, is given by

[ )] = A0 e (A [V 5
and
IO = Aa[/o8 o [,
Hence in both Case 1 and Case 2 we have, in the sense of functional calculus,

Then our assumptions on V imply that there exists a constant M > 1
such that, in both cases, for every R > M we have

(3.14) || < MR for every & € dRV/;
(3.15) €€ orV for every £ € F, with [{| < R/M.

Indeed, in Case 1, V is bounded so that there is a constant M such that
€| < M for every ¢ € V. Similarly, in Case 2, the projection of V onto R™ is
bounded so that the same conclusion holds. Thus follows by scaling.

As for , in Case 1, we can use a similar scaling argument making
use of the fact that V contains 0 as an interior point. Statement then
even holds for any ¢ € R"*!. The reasoning in Case 2 is a bit more subtle:

Assume & = (|ulk,p) € F, satisfies |¢| < R/M. Then (2k; 4+ 1)|u| <
(R/M)% for j =1,...,n and in particular |u| < (R/M)%;,. Since in Case 2,
B> Qumin, We get |u] < (R/M)P. Therefore 6z-1& = 1, where 7 lies in the set
U given by |n;| < (1/M)%, j =1,...,n, and |n,41] < (1/M)P. By choosing
M sufficiently large we may assume that U C V and then £ € dgV.

Our strategy to prove Theoremwill be to adapt the method of [MMP]
by means of the following two lemmas.

LEMMA 3.2. Kgr € L*(H,,) for every R > 0. Moreover, if we set W(R) =
| KR||3 then W is an increasing function and there is a constant C > 1 such
that for R>> 1,

1
5RD+V S W(R) g CRD+V,

where v = min{amin, 8} = min{ay, ..., a,, 5}.
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Proof. By Plancherel’s formula (3.12)) for spectral multipliers and ([3.11))

we have
W(R) = |Kel} =o@aV)=ci § (> 1)Iul"du.
RX keN™, (|ulkp)€srV

This function is clearly increasing in R. We shall prove that the right-hand
side in this display is finite and of order O(RP*"). Indeed, (|u|k, 1) € SgrV

implies by (3.14) that
2k + Dl < (MBYS,  j=1,...n,
ul < (MR)”,

since v = ( in Case 1, and v = amui, in Case 2. Notice that, in Case 2, the
last inequality is a consequence of the first n inequalities. Therefore

wwee | I( X U)krde

Wl <(MR)Y 5=1 2k;+1<(MR)%3 /|u|
< C(MR)™*tton | dp < CRP.
lnl<(MR)”

The lower bound is derived in a similar way by using (3.15) in place of
(3.14). Indeed, by (3.15)), in Case 2, (|ulk, 1) € rV whenever
(3.16) (2k; + 1)|pu| < (R/M)* for every j=1...,n,
and, in Case 1, if in addition || < (R/M)P. In particular, in both cases, we
see that (|u|k, ) € 0rV whenever |u| < (R/M)" and (3.16|) holds. Notice

also that for such p and R > M we have (R/M)% /|u| > 1 for every j.
Therefore

wwze | I Y Dkt

[ <(R/M)Y §=1 2k;+1<(R/M)T /||
> C(R/M)al+m+an S d,u > CRD+V,
|nl<(R/M)Y

for positive constants ¢ > 0 which may change from line to line. m

LEMMA 3.3. Under the assumptions on V of Theorem [3.1] the function
W (R) is right-continuous.

Proof. We shall prove that W is continuous from the right at R = 1. For
general values of R the proof is similar.
We have seen that

W(R) = o(35V).
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Let {R;}; be a decreasing sequence such that lim; .., R; = 1. We have to
prove that W (R;) — W(1) as j — oo. To this end we first observe that

o
(3.17) VC()orVCV.

j=1
Indeed, if x € V then §,z € V for all » < 1 since V is star-shaped. Write
x = 0p;(01/r,;x) to see that x € dg;V. Hence the first inclusion is clear. To
prove the second inclusion let y € ﬂjoil Or;V. Then there are z; € V such

that y = dg, z;. Trivially y =1im d; /g, y, hence y = lim z; € V.

First case: anisotropic dilations. In this case we assume that V is closed
so that V' = (172, 0r;V by (3-17). Since 65,V D g,V D -+ DO V and
0(0r, V) < oo the dominated convergence theorem implies that o(V) =
lim; o 0(6g; V). Hence W(1) = lim; o W(R;).

Second case: isotropic dilations dpr = Rx. Set V = ﬂ;’il Or;V. Then

our reasoning above shows that o(dr;V) — o(V) as j — oo. Therefore it
will suffice to prove that ¢(V \ V) = 0.
Fix any ray

I = {((2ky + Dlpl, -, (2 + 1)l 1) : 1> 0}

in the Heisenberg fan F, and take € V. Then we may write z = Rjx;
with z; = (1/Rj)x € V. Clearly z; — x.

Since V' is star-shaped, Rz € V for 0 < R < 1. Therefore F,;t N(V\V)
contains at most one point. So o (7 ki N (V\V)) = 0 since the measure o
is absolutely continuous with respect to the Lebesgue measure along such a
ray. Our claim now follows since there are only a countable number of rays
within F;,. =

REMARK 3.4. If V' is not closed and if the dilations are anisotropic then
the set V defined in the previous proof may satisfy o(V \ V) > 0, so that
W (R) is not right-continuous.

ExAMPLE. For the Heisenberg group H; we choose on R? parabolic di-
lations d,(x1,22) = (ray1,7?x2) and consider the star-shaped set V given
by

V =AUB = {(z1,20) € R? : 23+ 22 < 1JU{0,(t,1): 0 <t <2,0<r < 1}.
Observe that B = {(x1,22) : 22/2 < x5 < 71,0 < 21 < 2}. Next we

consider V. Notice that the boundary of V' contains the segment v = {(t, ) :
1 <t < 2}. Then, for R > 1, the boundary of dgrV contains the line
segment {(Rt, R*) : 1 <t < 2} which has slope R > 1. We thus see that

v C 6gV for every R > 1. Hence V = ﬂ]oil dr;V D, whereas v and V are
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disjoint. Therefore v C V' \ V. Now o(7) = Swud,u > 0. So we proved that
a(V \ V) > 0 since v lies on the ray I;7 of the Heisenberg fan F.

To complete the proof of Theorem we define a sequence 0 = Ry <
Ry < Ry < --- recursively as in [MMP] by setting

Ryy1 =sup{R> R, : W(R) < W(R,,) + 1}, m>0.

Then by Lemma Lemma and arguing as in [MMP], the above re-
cursion leads to an infinite sequence { R, },, tending to infinity and we have
(compare [MMP], (4.1), (4.2)])

(3.18) m < W(Rpy) < CRP™  m >0,
(3.19) log(34+m) < Clog(2+ Ry,), m > 1.

Next we define pairwise orthogonal projections P, on L?(H,) by setting
Py = So = X103 (L1, -+, Ln, —iU) = 0,
P, = Sr,, —Sr,,_, = xm(L1,..., Ly, —iU),
with xm = X(8pv)\(@r,, V) T2 1. Then

J
Sp, = Z P,..
m=0
By Plancherel’s theorem, (3.19) and since x2, = Xm, we have

log(2 +m)?|| P f113

= cn |57 log(3 + m — VPl ) I (FORL3 il™ dp
RX keNm

<C | Y 082 + R )PP Xan (|l )l (RGN o] dpe.
RX keNn™

By (3.18) we know that [¢] > Ry, —1/M if & = (|ulk, 1) € F 0 (0g,, V) \
(0R,, ., V), hence

10g(2 + Ry—1) < log(2 + M|(|ulk, 1)]) < Clog(2 + ||(|lk, w)]))-
Therefore, by (3.13)),
log(2 +m)]?|| P f3

<O § > log(2+ [[(ulk, ) 1) xom (il B, o)l (RGNS el ™ e
RX keN™

=C | Y lImulog(2 + L) )15 xm (|l ) 1] dpe.
RX keNm
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Summing over all m we then obtain, by Plancherel’s formula,

> log2+m)PIPrfls < C | Y llmu(log(2 + L) M43 1™ dps
meN RX keNn

— Clog(2 + £)f[3-

We can thus apply Rademacher—Men’shov’s theorem to conclude that

(3.20) 1M fll2 < Clllog(2 + L) f2,
where M denotes the discrete maximal operator given by
J
NEf = sup| 3 P fle)| = sup |Sk, £ (@),
J>01 =, J=20

We finally dominate the maximal function over arbitrary R > 1 as fol-
lows:

Mf(z) = sup |Srf(x)] < Mf(z)+sup  sup  |S.f(z) = Sg,, f(x)]

m>0 R <r< Rm+1

To control the remainder term, observe that by our definition of the
sequence R,, we have W(r) < W(R,,) + 1. Moreover, S, f — Sg,.f = Tp, f,
where 7 = X(5,v)\(6,,v)- Then S, f — Sg,, [ = f * K;, and since n? =n we
have

1K l15 = \ D n(lplk, p) ()™ dps
RX keNn?

=cn | D (Xo,v = Xog,,v) ([ulk, ) [l dps
RX k€N
= K13 = 1KR, I3 =W(r) = W(Rn) < 1.
Notice that f * K, = (Pmn+1f) * K. Then, as in [MMP], we may conclude
by Cauchy—Schwarz’ inequality that for = € H,,

10f(2) = Sry f (@) < § (P /) () Ko (5™ )] dy
< 1Pnrifll2An(z) < ([Pt fll2,
where
Ag(@)* = V1K (y™ )P dy = 1K ()P dy = | K13 < 1
since Hl,, is unimodular. As in [MMP] this implies

sup( sup |5, f(2) = Sk, f(2)]) < C|fll2;

m2>0 Ry <r<Rm41
hence )
Mf(x) < Mf(x) + C[ fll2.

Therefore (3.3) is proved. The remaining statement about a.e. convergence
in Theorem follows now by standard arguments.
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REMARKS 3.5. (a) Our theorem applies for instance to pseudo-differen-
tial operators on Hl, of the form £ = L{* + --- + L + |U|* and their
“subelliptic” variants £ = chl + -+ L with ay,...,a,,b > 0, and the
spectrally defined partial sum operators Sp = S(If dE., where L = Sgo TdE-
denotes the spectral resolution of £. The associated sets V are here given
by Vo= {(A1,. s Ay ) 1 A% A+ -+ A% + |p]® < 1}, respectively by
Vo= {1, A, 1) 0 [M]™ 4+ - 4+ |Ap|* < 1}, and the dilations have
weights a; = 1/a; and § = 1/b for the first case (in the second case,
must satisfy § > min; 1/a;). Notice that V' is unbounded with respect to
the variable p in the second case.

(b) Extensions of Theorem to more general two-step nilpotent Lie
groups seem possible.

(c) We take the opportunity to correct a minor error in [MMP] which
however has no effect on the proofs in that paper: the exponent « in display
(1.2) of [MMP] is not the local homogeneous dimension, but half of it.
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