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ABSOLUTELY S-DOMAINS AND PSEUDO-POLYNOMIAL RINGS

BY

NOOMEN JARBOUI and IHSEN YENGUI (Sfax)

Abstract. A domain R is called an absolutely S-domain (for short, AS-domain) if
each domain T such that R C T C qgf(R) is an S-domain. We show that R is an AS-domain
if and only if for each valuation overring V of R and each height one prime ideal q of V,
the extension R/(¢ N R) C V/q is algebraic. A Noetherian domain R is an AS-domain
if and only if dim(R) < 1. In Section 2, we study a class of R-subalgebras of R[X]
which share many spectral properties with the polynomial ring R[X] and which we call
pseudo-polynomial rings. Section 3 is devoted to an affirmative answer to D. E. Dobbs’s
question of whether a survival pair must be a lying-over pair in the case of transcendental
extension.

0. Introduction. In this paper, all rings considered are commutative
with identity. An inclusion of rings signifies that the smaller ring is a subring
of the larger and has the same identity. Let R be a ring and n a positive
integer. We denote by R[n] the ring of polynomials in n indeterminates over
R and by R[X] the ring of polynomials in one indeterminate. We denote by
dim(R) the Krull dimension of R and by dim, (R) its valuative dimension,
that is, the limit of the sequence (dim(R[n]) —n, n € N). If p is a prime
ideal of R, we denote by ht(p) the height of p, and by ht, (p) the limit of the
sequence (ht(p[n]), n € N).

Given a finite-dimensional ring R, we say that R is a Jaffard ring if
dim(R) = dim, (R) [2]. This property is not local; we say that R is a locally
Jaffard ring if R, is a Jaffard ring for each prime ideal p of R. A domain R
is said to be an S-domain if for each height 1 prime ideal p of R, we have
ht(p[X]) = 1. A strong S-ring is a ring R such that for each prime ideal p of
R, R/p is an S-domain; equivalently for any consecutive primes p C ¢ in R,
p[X] C ¢q[X] are consecutive in R[X]. An overring of a domain R is a ring
contained between R and its quotient field gf(R).

For an extension of domains R C T, we denote by tr.deg[T : R] the
transcendence degree of qf(T') over qf(R). Recall that an extension R C T

2000 Mathematics Subject Classification: Primary 13B02; Secondary 13C15, 13A17,
13A18, 13B25, 13E05.

Key words and phrases: polynomial ring, Jaffard ring, strong S-ring, survival exten-
sion, lying-over extension.

(1]



2 N. JARBOUI AND I. YENGUI

is said to satisfy the altitude inequality (resp., the altitude formula) if for
any prime ideal ¢ of T over a prime ideal p of R, we have respectively

ht(q) + tr.deg[T/q : R/p] < ht(p) + tr.deg|T : R],
ht(q) + tr.deg[T'/q : R/p] = ht(p) + tr.deg|T : R].

A. Ayache and P.-J. Cahen in [4] studied the domains each of whose
overrings is Jaffard; these are domains R whose integral closure R’ is a Priifer
domain ([4, Théoreme 2.6]). They are called domains satisfying absolutely
the altitude inequality or absolutely Jaffard domains.

Our purpose in Section 1 is to complete this circle of ideas by dealing with
absolutely S-domains (for short AS-domains); that is, domains each of whose
overrings is an S-domain. The main result of this section is Theorem 1.5
which states that R is an AS-domain if and only if for each valuation overring
V of R and each height 1 prime ideal ¢ of V', the extension R/(¢gNR) C V/q s
algebraic. It is clear that absolutely Jaffard domains are AS-domains, but the
converse does not hold (see Corollary 1.18). On the other hand, Proposition
1.11 points out a relationship between these two classes of domains: R is
an absolutely Jaffard domain if and only if R/p is an AS-domain for each
prime ideal p of R. Among the several interesting consequences of Theorem
1.5, we just point out that R[X] is an AS-domain if and only if R is a field
(Proposition 1.14) and that a Noetherian domain R is absolutely S if and
only if dim(R) < 1 (Proposition 1.15). The last part of Section 1 is devoted
to the transfer of this notion to some pullback constructions.

In [5], it is proved that if R is a Jaffard domain, then each domain
contained between R and R[n] is Jaffard. It is an open question whether
each domain between R and R[X] is a locally Jaffard (resp., an S-) domain
when R is a locally Jaffard (resp., an S-) domain. The difficulty in the study
of intermediate rings between R and R[X] is that the nature of R as well
as that of R[X] has a very subtle influence on intermediate rings. Because
of this, it appears to be too difficult to understand all domains between R
and R[X] except in case R has very simple structure.

In Section 2 we begin with a description of the valuative height of
p[X] N T, for any ring T between R and R[X]| and any prime ideal p of
R. Moreover, we note that if 7" is an intermediate ring between R and R[X]
and P is a prime ideal of 7', then the inclusion relation p|X|N7T C P with
p = P N R may not hold (Propositions 2.6 and 3.5). Our concern in that
section is with rings T" between R and R[X] satisfying the previous inclusion
for each prime P of T'; we call them R-pseudo-polynomial rings, or briefly
pseudo-polynomial rings. The name is justified by the fact that these rings
share many ideal-theoretic properties with polynomial rings in one variable
to which they are closely related. The motivation for studying this gener-
alization is diverse. To have an example of a pseudo-polynomial ring, one
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can consider an (R[X], I[X], D) construction ring T', where R is a ring, [ is
an ideal of R such that dim(R/I) = 0 and D is a ring contained between
R/I and (R/I)[X] (Proposition 2.3). Note that a pseudo-polynomial ring
need not be a polynomial ring. For instance, if K is a field, then the domain
K[X?, X3] is not a polynomial ring since it is not integrally closed, while it
is obviously a K-pseudo-polynomial ring.

Pseudo-polynomial rings are characterized in terms of lying-over exten-
sions (Proposition 2.6). We study the structure of the prime spectrum of T,
clarifying the relation between the spectrum of 7" and those of R and R[X].
We generalize some well-known results previously established for polyno-
mial rings [9]. The final aim of this section is to prove our promised results
which state that if R is a locally Jaffard (resp., an S-) domain, then each
pseudo-polynomial ring is locally Jaffard (resp., S). Section 3 is concluded
with a study of the relationship between pseudo-polynomial rings and lying-
over pairs. We give an affirmative answer to D. E. Dobbs’ question [13] of
whether a survival pair must be a lying-over pair in the case of transcen-
dental extension.

1. Absolutely S-domains. A domain R is said to be an S-domain if
for each prime ideal p of R such that ht(p) = 1, we have ht(p[X]) = 1. Now,
we recall some definitions given in the introduction.

DEFINITION 1.1. A domain R is said to be an absolutely S-domain (for
short, AS-domain) if each overring of R is an S-domain.

It follows immediately from this definition that each domain which sat-
isfies absolutely the altitude inequality [4, Lemme 2.1] is an AS-domain.
Moreover, this notion is stable under localization. We first give the follow-
ing straightforward result.

PROPOSITION 1.2. Let R be a domain. Then the following statements
are equivalent:
(i) R is an AS-domain;
(ii) Ry is an AS-domain for each prime ideal p of R;
(iii) Ry, is an AS-domain for each mazimal ideal m of R;
(iv) N7'R is an AS-domain for each multiplicative subset N of R.

Recall that a domain R is said to be going-down if for each overring T’
of R the extension R C T has the going-down property ([14]).

PROPOSITION 1.3. A going-down S-domain is an AS-domain.

Proof. Let R be a going-down S-domain, T a overring of R and ¢ a
height 1 prime ideal in 7. Since R is going-down, ht(p) = 1, where p = ¢N R.
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The domain R, is a one-dimensional Jaffard domain [8, Corollary 6.3], hence
so is T,. Therefore T' is an S-domain. =

In particular, a one-dimensional S-domain is an AS-domain. However,
an S-domain need not be an AS-domain. To see this, it suffices to consider
a ring of polynomials with coefficients in an integral domain which is not a
field (see Proposition 1.14).

We begin by presenting some terminology. Let B be a ring, I an ideal of B
and D a subring of B/I. Consider the pullback construction of commutative
rings:

R — D
! !
B — BJI

Following [10], we say that R is the ring of the (B, I, D) construction and
we write R = (B, I, D). Next we consider the case where I is assumed to
be maximal. Denote by M the ideal I, by T the domain B, by K the field
T/M, and by ¢ : T'— K the natural epimorphism.

We recall a few well-known properties of pullbacks. First, M is a common
ideal of both Rand T, M = (R:T) = {x € T | 2T C R} (if D # K),
and R/M ~ D. For each p € Spec(R) with M C p, there is a (unique) g €
Spec(D) such that ¢~!(q) = p; and ¢~ '(D,) = R,. If T is local, then each
prime ideal of R compares with M, and thus dim(R) = dim(D) + dim(7).
Also R is local if and only if both D and T are local (cf. [16, Theorem 1.4
and Proposition 2.1]).

Before stating Theorem 1.5, we establish a proposition which serves both
to motivate this theorem and to dispatch the difficult implication in its proof.

PROPOSITION 1.4. Let T be a domain, M a maximal ideal of T, D
a subring of the residue field K = T/M, k the quotient field of D and
R:=(T,M,D).

(a) If htp(M) > 2, then the following statements are equivalent:

(i) R is an S-domain;
(ii) T is an S-domain.

(b) If htp(M) =1, then the following statements are equivalent:

(i) R is an S-domain;
(ii) T is an S-domain and K is algebraic over k.

Proof. (a) (i)=-(ii). Let ¢ be a height 1 prime ideal of T". Then ¢ does
not contain M. Thus T, = R,, where p = ¢ N R. Hence ht(p) = 1 and so
ht(p[X]) = 1 since R is an S-domain. Thus ht(¢[X]) = ht(p[X]) = 1.

(ii)=(i). Let p be a height 1 prime ideal of R. Then p does not con-
tain M. Thus there exists a unique prime ideal ¢ of T" such that T, = R,.
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Hence ht(q ) = and as T is an S-domain, we have ht(¢[X]) = 1. Thus
ht(p[X]) = ht(q[X]) =

(b) (1)=(ii). Flrst notice that Ry = (T, MTa, k). Since Ry is a one-
dimensional S-domain, it is a Jaffard domain. Thus K is algebraic over k
([2, Theorem 2.6]). Now our task is to show that 7" is an S-domain. Let ¢
be a height 1 prime ideal of T. If ¢ = M, then since Ry = (Tar, MTn, k)
is a Jaffard domain, it follows readily from [2, Theorem 2.6] that T is a
Jaffard domain. Thus htyx1(¢[X]) = 1. Now if ¢ # M, then T, = R,,, where
p = ¢ N R. Hence ht(p) = 1 and so ht(p[X]) = 1 since R is an S-domain.
Thus ht(¢[X]) = ht(p[X]) = 1.

(ii)=(i). Let p be a height 1 prime ideal of R. If p = M, then since Ry =
(Thi, MTh, k), K is algebraic over k and Ty, is a Jaffard domain it follows
from [2, Theorem 2.6] that Ry is a Jaffard domain. Thus ht g x)(p[X]) = 1.
Now assume that p # M. Then there exists a unique prime ideal ¢ of T
such that T, = R,. Hence ht(q) = 1 and as T is an S-domain, we have
ht(¢[X]) = 1. Thus ht(p[X]) = ht(¢[X]) =1. =

Recall that an extension R C T of domains is said to be residually
algebraic if R/(¢q N R) C T/q is algebraic for each prime ideal g of T
([7] and [17]).

Now, we establish the main result of this section.

THEOREM 1.5. Let R be a domain. Then the following statements are
equivalent:

(1) R is an AS-domain;

(2) for each overring T of R and primes ¢ Cqr in T, if g"R=qg NR
and ht(q) = 1, then q = q;

(3) for each waluation overring V of R and primes ¢ C q1 in V, if
gNR =g NR and ht(q) =1, then q = q1;

(4) for each overring T of R and each height 1 prime ideal q of T, we
have tr.deg[T/q : R/(¢ N R)] = 0;

(5) for each one-dimensional overring T of R, the extension R C T is
residually algebraic;

(6) for each valuation overring V of R and each height 1 prime ideal q
of V., we have tr.deg[V/q: R/(¢gNR)] =0

(7) for each one-dimensional valuation overring V of R, the extension
R CV is residually algebraic.

Proof. The equivalences (4)<(5) and (6)<(7) as well as the implica-
tions (2)=(3) and (5)=(7) are clear. The implication (3)=(2) is due to
[18, Corollary 19.7].
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(1)=(4). Let T be an overring of R, and ¢ a height 1 prime in 7". Since
R + ¢T, obtained by the (1y,¢T,, R/(¢ N R)) construction is an S-domain,
Proposition 1.4 implies that tr.deg[T/q : R/(¢ N R)] = 0.

We prove that if (1) fails, then (6) fails. Assume that 7" is an overring of
R containing a prime ideal g of height 1 such that ht(¢[X]) = 2. Then there
is a nonzero prime ideal @ of T[X] contained in ¢[X] such that @ N T = (0).
Thus T is a subring of 77 = T'[X]/Q which is isomorphic to T'[u], where u
is an algebraic element over T'. By [18, Corollary 19.7], there is a valuation
overring W of T containing a prime ideal J of height 1 such that J N T}
= ¢[X]/Q. Set V.= W N qf(R). Then V is a valuation overring of R con-
taining a height 1 prime ideal J N qf(R) ([18, Theorem 19.16]) such that
(JNaf(R))NR=¢NR. Now, tr.deg[W/J : V/(JNqf(R))] =0 ([18, Theo-
rem 19.16]). Hence

tr.deg[V/(JNqaf(R)) : R/(¢gN R)] = tr.deg[W/J : R/(qgN R)]
> tr.deg[T1/(q[X]/Q) : T/q) = tr.deg[(T[X]/Q)/(¢[X]/Q) : T/q]
= tr.deg[T'[X]/q[X] : T/q] = 1.

We prove that if (3) fails, then (6) fails. Assume that V is a valuation
overring of R containing primes ¢ C M lying over p and such that ht(q) = 1.
If x € M\ q, we show that T is transcendental over R/p in V/q. Let aga* +
...+ @z +ay = 0, where ag,a,...,a; are elements of R. Then apz® +
...+ar+ayg € q Now,ap € MNR =p, x(apz* ' 4 ... +a1) € q and
arz® ' 4+ ...+ a1 € ¢. By induction, we conclude that @ = Gp_1 = ... =
a; = ap = 0, and consequently tr.deg[V/q : R/p] > 1.

We prove that if (1) fails, then (3) fails. Assume that 7" is an overring of
R containing a prime ideal ¢ of height 1 such that ht(¢[X]) = 2. Then there
is a nonzero prime ideal @ of T[X] contained in ¢[X] such that @QNT = (0).
Thus, T is a subring of 77 = T'[X]/Q which is isomorphic to T[u], where u
is an algebraic element over 7. We can assume that T is local with maxi-
mal ideal g. The ideal py = ¢[X]/Q is prime in T, but not maximal (since
Ty /po = (T/q)[X], which is not a field). Therefore if M is a maximal ideal
of T1 containing pg, then py and M are prime ideals of 17 lying over q.
By [18, Corollary 19.7], there is a valuation overring W of T} containing
prime ideals p’ C M’ such that ht(p’) =1, p’ " Ty = pg and M' NTy = M.
Set V.= W Nqf(R). Then V is a valuation overring of R containing dis-
tinct prime ideals p’ N qf(R) € M’ N qf(R) such that ht(p’ N qf(R)) = 1
and

P Naf(R)NR=pNR=gqNR=MNR=(MNgf(R)NR. =

Among the several interesting consequences of Theorem 1.5, we limit
ourselves to pointing out the following three propositions.
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PROPOSITION 1.6. Let R C T be an algebraic extension. If R is an
AS-domain, then so is T.

Proof. Assume that T is not an AS-domain. Then by the previous the-
orem, there is a valuation overring W of T’ containing distinct prime ideals
p and M such that ht(p) =1 and pNT = M NT. By [18, Theorem 19.16],
V = W nNqf(R) is a valuation overring of R containing distinct prime ideals
pNaf(R) and M Nqf(R) such that (pNaf(R))NR = (M Nqf(R)) N R and
ht(p N qf(R)) = 1. In view of Theorem 1.5, we conclude that R is not an
AS-domain. =

REMARK 1.7. The converse of the previous proposition does not hold
(see Corollary 1.18).

PROPOSITION 1.8. Let R C T be an integral extension. R is an AS-
domain if and only if T is an AS-domain.

Proof. According to Proposition 1.6, if R is an AS-domain, then so is T'.
Assume now that 7" is an AS-domain, and let C' be an overring of R. Denote
by C’ the integral closure of C' in qf(7"). Since C’ is an overring of T, it is
an S-domain. Therefore C' is also an S-domain. =

PRrROPOSITION 1.9. If R is an AS-domain, then it has the following prop-
erty:
(x)  For each prime ideal p of R, if (0) C P C p[X] is a saturated chain
of primes in R[X], then PN R # (0).

Proof. We show that if the property (x) fails, then so does assertion (3)
in Theorem 1.5. For this, consider the ring 71 = R[X]/P and use the same
idea as in the proof of (3)=-(1) in Theorem 1.5. m

Recall that a domain R is said to be strong S if R/p is an S-domain for
each prime ideal p of R; equivalently, if for each pair of consecutive prime
ideals p C ¢ of R, the extended primes p[X] C ¢[X] are consecutive. R is
said to be stably strong S if R[n] is strong S for each integer n ([20, 21)).
A domain R is said to be totally Jaffard if R/p is locally Jaffard for each
prime p of R ([11]). We now recall the following theorem.

THEOREM 1.10 [6, Théoreme 5.1]. Let R be a domain. Then the follow-
ing statements are equivalent:

(i) each overring of R is a strong S-domain;
(ii) each overring of R is Jaffard,
(iii) each overring of R is totally Jaffard;
(iv) each overring of R is a stably strong S-domain;
v) each overring of R satisfies the altitude inequality;
(vi) each overring of R is locally Jaffard,
(vil) R satisfies absolutely the altitude inequality.
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This raises the question whether the class of rings satisfying absolutely
the altitude inequality coincides with that of absolutely S-domains. It is
clear that for one-dimensional domains these two notions coincide, but in
the general case, the answer is negative. Indeed, if V is a valuation domain
with maximal ideal M and k is a subfield of V//M such that dim(V') > 2 and
tr.deg[V/M : k] > 1, then by Corollary 1.18, R := (V, M, k) is an AS-domain
and by [2, Theorem 2.6], R is not a Jaffard domain.

The following result establishes a relationship between absolutely S-
domains and domains satisfying the altitude inequality.

ProposITION 1.11. Let R be a domain. The following statements are
equivalent:

(i) R satisfies absolutely the altitude inequality;
(ii) R/p is an AS-domain for each prime ideal p of R.

Proof. (i)=(ii). For each prime p of R, R/p satisfies absolutely the al-
titude inequality ([4, Proposition 2.2]), and therefore is an AS-domain.

(ii)=(i). Let P C ¢[X] be consecutive primes in R[X] and p= PN R.
Then P/p[X] C (¢/p)[X] are consecutive in (R/p)[X]. Since R/p is an
AS-domain, it follows that P = p[X] (Proposition 1.9). Thus R satisfies
absolutely the altitude inequality [6, Proposition 1.4]. m

As an immediate consequence of Proposition 1.11, we have:

COROLLARY 1.12. Let R be a domain such that dim(R) < 2 and
dim(R[X]) = 1+ dim(R). Then the following statements are equivalent:

(i) R satisfies absolutely the altitude inequality;
(ii) R is an AS-domain.

In the course of proof of Proposition 1.14, we need the following lemma.
LEMMA 1.13. If R[X] is an AS-domain, then so is R.

Proof. Let V be a one-dimensional valuation overring of R with max-
imal ideal M. By [18, Proposition 20.11], V[X]y/(x] is a one-dimensional
valuation overring of R[X]. Therefore, by Theorem 1.5, we have

tr.deg[V[X]arx)/MV[X]mx) : RIX]/(M N R)[X]] =0
= tr.deg[V[X]|/M|[X] : R[X]/(M N R)[X]]
= tr.deg[(V/M)[X]: (R/(M N R))[X]] = tr.deg[V/M : R/(M N R)].
Hence by Theorem 1.5, R is an AS-domain. m
PROPOSITION 1.14. R[X] is an AS-domain if and only if R is a field.

Proof. By way of contradiction, suppose that R has a height 1 prime
ideal p. From the previous lemma, it follows that R is an S-domain. Thus R,
is a Jaffard domain. Since R,[X] is a localization of R[X], it is an AS-domain



PSEUDO-POLYNOMIAL RINGS 9

(Proposition 1.2). Moreover, R, is a one-dimensional Jaffard domain, so
by Corollary 1.12, R,[X] satisfies absolutely the altitude inequality and
therefore R, is a field [4], contrary to the hypothesis. m

According to the previous proposition, a Noetherian domain need not
be an AS-domain. Indeed, a polynomial ring with two indeterminates over
a field is not an AS-domain. Nevertheless, we have the following

PRrROPOSITION 1.15. A Noetherian domain R is an AS-domain if and
only if dim(R) < 1.

Proof. Assume that R is a Noetherian domain such that dim(R) > 2. Let
p be a prime ideal of R of height 2. Since R, is a two-dimensional Noethe-
rian AS-domain (Proposition 1.2), Corollary 1.12 shows that R, satisfies
absolutely the altitude inequality, contrary to [4, Remarques §3].

Conversely, if dim(R) < 1, then R satisfies absolutely the altitude in-
equality and therefore R is an AS-domain. =

We now turn to transferring the “AS-domain” property to pullback con-
structions. We first record the following lemma, which is an immediate con-
sequence of Proposition 1.4.

LEMMA 1.16. Let T be a domain, M a mazimal ideal of T', D a subring
of the field K =T/M and R := (T,M,D). If R is an S-domain, then each
intermediate ring between R and T is an S-domain.

Now, we establish the following useful result.

ProposITION 1.17. Let T be a Priifer domain, M a mazimal ideal of T,
D a subring of the residue field K =T/M and R := (T, M, D).

(a) If htp(M) > 2, then R is an AS-domain.
(b) If htp(M) =1, then the following statements are equivalent:

(i) R is an S-domain;
(ii) K is algebraic over qf(D);
(iii) R is an AS-domain.

Proof. Assertion (a) is straightforward and we omit its proof.
(b) (i) and (ii) are equivalent by virtue of Proposition 1.4. Now it remains
to show that (i)=-(iii). We discuss two cases:

Case 1: If T is local, then it is a valuation domain. Let Ry be an overring
of R. Then by [3, Lemme 4.9], either R; is an overring of 7" and therefore
is an S-domain, or R; is a domain between R and T and therefore it is an
S-domain by the previous lemma. It follows that each overring of R is an
S-domain.

Case 2: If T is not local, we show that for each prime ideal p of R, R,
is an AS-domain. Then we conclude using Proposition 1.2.
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If M is not contained in p, then there is a unique prime ideal g of T' such
that R, = T,. Thus R, is an AS-domain (since Ty is a Priifer domain).

If M C p, then there is a unique prime ideal ¢ of D such that R, =
(Tnr, MTas, Dy) and therefore R, is an AS-domain by Case 1. m

The following corollary is in the same vein.

COROLLARY 1.18. Let R := (V, M, k), where V is a valuation domain
with mazimal ideal M and k a subfield of V/M.

(a) If dim(R) > 2, then R is an AS-domain.
(b) If dim(R) = 1, then R is an AS-domain if and only if the residue
field V//M s algebraic over R/M.

PROPOSITION 1.19. Let T be a domain, M a mazximal ideal of T, k
a subfield of the residue field K = T/M and R := (T,M,k). If T is an
AS-domain and K is algebraic over k, then R is an AS-domain.

Proof. Since K is algebraic over k, we see that T is integral over R (]2,
Lemma 2.1]). By Proposition 1.8, R is an AS-domain. =

It is clear that under the same hypotheses of the previous proposition,
if htp (M) = 1, then R is an AS-domain if and only 7" is an AS-domain and
K is algebraic over k. In the general case, if htp (M) > 2, then R may be an
AS-domain even if K is not algebraic over k (see Corollary 1.18).

2. Pseudo-polynomial rings. Let R be a ring and R[X]| the polyno-
mial ring in one indeterminate X over R. The purpose of this section is to
study pseudo-polynomial rings. We define an R-pseudo-polynomial ring to
be a ring T' contained between R and R[X] in which every prime ideal P
contains the prime ideal p[X]NT, where p = PN R. Clearly R, R[X?], R[X]
are R-pseudo-polynomial rings. In this section we collect more information
on rings between R and R[X] in order to clear up their relationship with
the polynomial ring R[X]. We start with a proposition which generalizes the
fact that if p is a prime ideal of a ring R and X is an indeterminate over
R, then ht(p[X]) > ht(p), dim(R[X]) > dim(R) + 1, and ht,, (p[X]) = ht,(p)
(19, 15)).

PROPOSITION 2.1. Let R be a domain, p a prime ideal of R, X an in-
determinate over R, and T a domain such that R C T C R[X]. Then:

(i) B(p[X] N T) > he(p):

(ii) if p[X]NT is not mazximal among the primes of T lying over p,

then ht, (p[X]NT) = ht,(p);

(iii) of p[X]NT is mazimal among the primes of T lying over p, then
ht, (p[X] NT) = hty(p) + 1.
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Proof. The case where ht(p) = oo is clear. Hence we assume that ht(p)
is finite. By localization of R at p, we can suppose that R is local with
maximal ideal p.

(i) It is clear that a chain pg C p1 C ... C pr = p of prime ideals in R
gives rise to a chain po[X|NT C pi[X]NT C ... C px[X]NT of prime ideals
in 7. Thus ht(p[X]NT) > ht(p).

(ii) Since Ty xjnr € R[X]p(x] is an algebraic extension, [18, Theorem 30.8]
yields ht, (p[X] N T) > ht,(p[X]) = ht,(p). On the other hand, using the
fact that p[X]| N 7T is not maximal among the primes of T" lying over p and
[4, Lemme 1.1], we have ht, (p[X]NT) < dim,(7},) — 1 < dim,(R) = ht,(p).
Thus ht, (p[X]NT) = ht,(p).

(i) It is clear that ht, (p[X]NT') < dim, (7)) < dim,(R)+1 = ht,(p)+1
[4, Lemme 1.1]. Since T,,/(p[X] N T), is a field contained between R/p and
(R/p)[X], necessarily T,,/(p[X] N T), = R/p. Thus denoting by A the ring
of the (R[X],p[X], R/p) construction (in fact A = R + p[X]), we have the
algebraic extension T, = R + (p[X]NT), C A and, by [18, Theorem 30.8],
we get ht,(p[X]NT) > ht,, (p[X]). On the other hand, for any positive
integers m and r, we have, according to [11, Lemme 3],

ht g (P[X][m + 7))
> ht pix)pm) (P[X][m]) + inf(tr.deg[(R/p)[X] : R/p], 7).
Then by passage to the limit m,r — oo, we obtain
hty, (p[X]) = 1+ hty ) (p[X]) = 1 4 bty (p).

For instance, let R be a domain, p a maximal ideal of R, X an indeter-
minate over R, and set T := (R[X],p[X], D), where D is a ring contained
between R/p and (R/p)[X]. Then ht,,(p[X]) = 1+ ht,(p) if D is a field,
and ht,,. (p[X]) = ht,(p) if not.

Recall that according to [15], a prime ideal p of a ring R is said to be a
Jaffard prime ideal if ht(p) = ht, (p) < oo. It is an open question whether if
R is locally Jaffard, then each ring between R and R[X] is locally Jaffard.
Nevertheless, we have the following

COROLLARY 2.2. Let R be a domain, X an indeterminate over R and
T a domain such that R C T C R[X]. Then for each Jaffard prime ideal p
of R, plX|NT is a Jaffard prime ideal of T.

Proof. We ignore the case T'= R and by localization of R at p, we can
suppose that R is local with maximal ideal p. If ht(p[X]NT) = ht(p)+1, then
Proposition 2.1 gives ht(p[X]|NT) = ht,(p[X]NT) = ht,(p) + 1 = ht(p) + 1.
If ht(p[X]NT) = ht(p) = ht,(p), then using Proposition 2.1, to prove that
ht(p[X] NT) = ht,(p[X] NT) = ht,(p) = ht(p), it suffices to prove that
p[X]NT is not maximal in T
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Indeed, assume that p[X]NT is maximal in 7" and ht(p[X]|NT) = ht(p).
Let g be a prime ideal of R such that ht(q) = ht(p) — 1. By passage to the
quotients R/q C T/(q[X]NT) C (R/q)[X], we can suppose that ht(p) = 1
and that p[X]|NT is a height 1 maximal ideal of T". By [5, Proposition 1.7],
we have necessarily R/p = T/(p[X] NT) and therefore R C T C R + p[X]
and T = R+ p[X] NT. But in this case ht(p[X]NT) = 2 > 1, since
(0) € (XR[X])NT C p[X]NT, contradicting the hypothesis ht(p[X]| N T)
=ht(p)=1. nu

Now, we turn our attention to pseudo-polynomial rings. We start with
a simple result showing how we can construct a pseudo-polynomial ring.

PROPOSITION 2.3. Let R be a ring, I an ideal of R such that dim(R/I)
=0, and D a ring contained between R/I and (R/I)[X]. Then the ring T
of the (R[X],I[X], D) construction is a pseudo-polynomial ring.

Proof. Let @ be a prime ideal of T and ¢ = @ N R. If () does not contain
I[X], then by [10, Proposition 0] there is a prime ideal @’ of R[X] lying
over Q. Since ¢[X]| C @', we find that ¢[X|NT C Q. If @ contains I[X], the
result is a consequence of Proposition 3.5 since R/I C T/I[X] C (R/I)[X]. m

REMARK 2.4. (a) The “dim(R/I) = 0” condition is essential in the
previous proposition. Indeed, if dim(R/I) > 1, then by Proposition 3.5,
there exists a ring D contained between R/I and (R/I)[X] which is not
pseudo-polynomial. Therefore, the ring T := (R[X], I[X], D) is not pseudo-
polynomial.

(b) If J is not an extended ideal of R[X] (i.e. is not of the form I[X]),
then an (R[X],J, D) construction ring need not be pseudo-polynomial as
will be illustrated by the following example.

ExaMPLE 2.5. Let t1,t2 be two independent indeterminates over a
field K. Setting B = Klt1,t2], M = (t1 — 1) and N = (t1,t2), we have
B/M = Klts] and B/IN 2 K. Let = MNN,R=K+1, q=(t; +t2)B
and p = ¢ N R. Pick an element « of ¢ whose class @ in B/M is transcen-
dental over R/I = K (for instance o = t; + t2). By [11, Exemple 8], for
P = (aX —1)NR[X], (0) C P C I[X] is a chain of prime ideals in R[X].
Consider the ring T obtained by the (R[X], P, R) construction. It is clear
that R C T C R[X] and that p + P is a prime ideal of T lying over p
in R. Select two elements = and y in I such that 4+ y € p, x € p and
y & p (for instance z = (t; — 1)t; and y = (¢; — 1)t2). Then the polynomial
f=z(aX —1) —y = axX — x — y belongs to p[X] NT, whereas f does
not belong to p + P. Thus p + P does not contain p[X| N 7T and 7T is not
pseudo-polynomial.

Recall that a ring extension R C T is lying-over if each prime ideal p of
R lifts to T
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PROPOSITION 2.6. Let T be a ring contained between R and R[X]. Then
T is pseudo-polynomial if and only if T C R[X] is a lying-over extension.

Proof. Of course the “if” part is immediate since R[X] is pseudo-poly-
nomial.

For the “only if” part, let () be a prime ideal of T" and set ¢ = Q N R.
Since T is pseudo-polynomial, we have ¢[X] NT C Q. By localization of
R at ¢, we can assume that R is local with maximal ideal ¢. If ¢[X] N
T C Q, then Q/(¢[X]NT) is a nonzero prime ideal of T'/(¢[X]NT) which is
contained between R/q and (R/q)[X]. Since (R/q, (R/q)[X]) is a lying-over
pair [13, Proposition 2.9], there is a prime ideal Q’/q[X] of (R/q)[X] such
that Q/(¢[X]NT) = (Q'/q[X]) N (T/(¢[X]NT)). Thus @'NT = Q. =

Now, we give some results concerning the spectrum of pseudo-polynomial
rings which generalize well-known results about the polynomial ring in one
variable.

PROPOSITION 2.7. Let R be a domain, p a prime ideal of R and T a
pseudo-polynomial ring distinct from R. Then:

(i) ht(p) < ht(p[X]NT) < 2ht(p);
(ii) dim(R) + 1 < dim(7) < 2dim(R) + 1.

To prove this result we need the following lemma.

LEMMA 2.8. Let R be a domain and T a pseudo-polynomial ring. If
P, C P, C P53 is a chain of primes in T such that PPNR = P,NR = P;NR,
then necessarily Py = Py or Py, = Ps.

Proof. By localization of R at p = P; N R, we can suppose that R is local
with maximal ideal p. Since T is pseudo-polynomial, p[X]NT C P;. On the
other hand, we have the inclusions R/p C T/(p[X]|NT) C (R/p)[X] and
dim(T/(p[X]NT)) <1 [4, Lemme 1.1], hence necessarily P,/(p[X]NT) =
Py /(p[X]NT) or Py/(p[X]|NT) = P3/(p|X]NT). Thus P, = Pyor P, = P5. m

Proof of Proposition 2.7. The prime ideal (X) N T is nonzero and such
that T/(X)NT ~ R. Thus dim(R) + 1 < dim(7). The inequality ht(p) <
ht(p[X] N T) is established in Proposition 2.1(i). It is straightforward to
check that, with the use of Lemma 2.8, the proof of [18, Corollary 30.3] may
be adapted to establish the remaining inequalities. m

REMARK 2.9. Let R be a one-dimensional domain and M a maximal
ideal of R, and set T := (R[X|, M[X],R/M) = R+ M[X]. Then, by Propo-
sition 2.3, T is a pseudo-polynomial ring. Moreover, we have htp(M[X]) = 2
and dim(7") = 2. Thus the upper bound in statement (i) of Proposition 2.7
is attained.

Notice that if R is a Jaffard domain, then for each T such that R C
T C R[X] we have dim(T) = dim,(T) = dim,(R) + 1 = dim(R) + 1. On
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the other hand, consider a local domain R with maximal ideal M such
that dim(R[X]) = 2dim(R) + 1. Let T := (R[X], M[X],(R/M)[X?]). By
Proposition 2.3, T' is a pseudo-polynomial ring and dim(7") = 2dim(R) + 1
since R[X] is integral over T. Hence the upper bound in statement (ii) of
Proposition 2.7 is attained.

LEMMA 2.10. Let R be a domain and T a pseudo-polynomial ring. If
P is a prime ideal of T such that p|X]NT C P, where p = PN R, then
ht(P) = ht(p[X]NT) 4+ 1 and ht,(P) = ht,(p[X]NT) + 1 = ht,(p) + 1.

Proof. Both assertions of the lemma are clear if ht(P) = oo. Hence
assume that ht(P) is finite. To prove the first part, we proceed as in [18,
Lemma 30.17]. By localization of R at p, we can suppose that R is local
with maximal ideal p. If p = (0), then f(R) C ST C qf(R)[X], where
S = R\ {0}. By [4, Lemme 1.1], we have dim(S~'7T) < 1. Thus ht(P) =
1 =1+ ht(p[X]NT). We assume the result for all & < m, where m > 0
and ht(p) = m. To prove that ht(P) = ht(p[X] N T) + 1, it suffices to show
that ht(Q) < ht(p[X] N T) for each prime ideal @ C P. Let ¢ = Q N R.
If ¢ = p, then (p[X]NT) C @ C P. By the previous lemma, we have
necessarily @ = p[X] N T and ht(Q) < ht(p[X]NT). If ¢ C p, then the
induction hypothesis implies that ht(Q) = ht(¢[X]NT) + 1 < ht(p[X]|NT).
This completes the proof of ht(P) = ht(p[X]NT) + 1.

Let Yi,...,Y, be n indeterminates over R[X]. We have the inclusions
R[Y1,...,Y,] CTY1,...,Y,] C R[Y3,...,Y,][X]. From the first part of the
lemma, ht(P[n]) = ht(P[Y1,...,Y,]) = ht((p[X] N T)[Y1,...,Y,]) + 1. By
Proposition 2.1 and letting n — oo, we have ht,(P) = ht,(p[X]|NT) + 1
=ht,(p)+1. =

By combining Proposition 2.1 and Lemma 2.10, we have the following
theorem which generalizes the special chain theorem ([9], [19]) and the val-
uative special chain theorem [15] for a given pseudo-polynomial ring.

THEOREM 2.11. Let R be a domain, X an indeterminate over R and T
an R-pseudo-polynomial ring. Let P be a prime ideal of T and let p = PNR.
Then ht(P) = ht(p[X]NT) + ht(P/(p[X]NT)) < ht(p[X]NT)+ 1 and
ht, (P) = hty(p) + ht(P/(p[X] N T)) < hty(p) + 1.

DEFINITION 2.12. Let R be a ring, X an indeterminate over R and T" a
ring such that R C T C R[X]. We say that a chain Py C P, C ... C Py of
primes in T is a generalized special chain if for each 0 <i <k, (p;[X]NT)
is a member of this chain, where p; = P, N R.

It is clear that if 77 = R[X], then this definition coincides with the
definition of a special chain set by P. Jaffard [19, Chapitre II, Section 4].
The next theorem is a generalization of [19, chapitre II, Théoréme 3] for
pseudo-polynomial rings R.
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THEOREM 2.13. Let R be a ring and T a pseudo-polynomial ring. If P
is a prime ideal of T of finite height, then ht(P) can be realized as the length
of a generalized special chain of primes in T with terminal element P.

Proof. We proceed as in [18]. If ht(P) = 0, then P = (PN R)[X]NT
and the desired conclusion holds. If ht(P) = m > 0, and if the theorem is
true for primes of height less than m, then we take a chain of prime ideals
PyCc P C...C P, = P of length m. It is clear that ht(P;) = j for
each j. By Theorem 2.11, we can assume that P,,_1 = (PN R)[X]NT or
P,, = (PNR)[X]|NT.If P,,_1 = (PNR)[X]|NT, then the induction hypothesis
implies that there is a generalized special chain P, C P C ... C P,_, =
P,,_1 of length m — 1, and Pj C ... C P},_; = P,,_1 C P is a generalized
special chain of length m with terminal element P. If P = (PN R)[X]|NT,
then we can obtain a generalized special chain Pj C ... C P, _; of length
m — 1 with terminal element P,,_;, and P, C ... C P}, { C P,, = Pisa
generalized special chain of length m with terminal element P. m

It is known that if R is a Jaffard domain, then each domain between R
and R[X] is Jaffard [5]. We give here an analogous result in the case where
R is locally Jaffard for pseudo-polynomial rings. Note that it is an open
question whether each ring between R and R[X] is locally Jaffard whenever
R is locally Jaffard.

THEOREM 2.14. If R is a locally Jaffard domain, then each pseudo-
polynomial ring is locally Jaffard.

Proof. Let T be a pseudo-polynomial ring distinct from R, P a prime
ideal of T', and p = P N R. By localization of R at p, we can suppose that
R is local with maximal ideal p. Two cases may occur:

Case 1: p[X]NT C P. Then by Lemma 2.10, ht,(P) = ht,(p) + 1 <
ht(P) and therefore ht, (P) = ht(P) = ht(p) + 1.

Case 2: p[X]NT = P. By Corollary 2.2, we have ht(P) = ht,(P) =
ht(p) or ht(p) + 1. m

COROLLARY 2.15. If R is a one-dimensional S-domain, then each
pseudo-polynomial Ting is totally Jaffard.

Proof. From [4, Lemme 1.1], it follows that if 7" is a domain such that
R C T C R[X], then dim(T) < dim(R) + 1 = 2. Thus, each ring between R
and R[X] is catenarian. Since a locally Jaffard catenarian domain is totally
Jaffard [11, Corollaire 1], the previous theorem yields the desired conclu-
sion. m

COROLLARY 2.16. If R is an S-domain, then each pseudo-polynomial
ring is an S-domain.
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Proof. Let T be a pseudo-polynomial ring and let P be a height 1 prime
ideal in T. We have p[X|NT C P, where p = PN R. If p = (0), then
af(R) C S™IT C qf(R)[X], where S = R\ {0}. By [5, Théoreme 1.9], we
conclude that S™T is locally Jaffard and therefore ht(P) = ht,(P) = 1. If
p # (0), then necessarily P = p[X] N T and ht(p) = 1. By localization of R
at p and using the previous corollary, we deduce that ht(P) = ht,(P) = 1.
Thus T is an S-domain. m

3. Pseudo-polynomial rings and lying-over pairs. Recall that a
ring extension R C T is lying-over (resp., survival) if each prime ideal p
of R lifts to T' (resp., pT" # T). Considering an extension property (P), we
say that (R,T) is a (P)-pair if, for each ring A between R and T, that is,
R C ACT, both extensions R C A and A C T are (P) extensions.

If R C T is a lying-over extension, then for each A in between, R C A is
also a lying-over extension. Thus to say that (R,T) is a lying-over pair, it is
enough to say that, for each A such that RC A CT, A C T is a lying-over
extension. On the other hand, in the case of survival pairs it is enough to
say that for each A such that R C A C T, R C A is a survival extension.
A pair (R,T), where R C T, is said to be a lying-over pair (resp., survival
pair) if A C T (resp., R C A) is a lying-over extension (resp., survival
extension) whenever A is an intermediate ring between R and 7' [21]. It is
immediate that (R, T) is a survival pair if and only if each maximal ideal of
an intermediate ring between R and T’ lifts to 7.

In [13], D. E. Dobbs has shown that for rings R C T such that T is
semi-local, T is integral over R if and only if (R,T) is a lying-over pair, or
equivalently (R, T) is a survival pair. He asked if a survival pair is always a
lying-over pair. In this section we answer this question in the affirmative in
case T is transcendental over R.

In [13], D. E. Dobbs noted that a survival extension need not be lying-
over. He gave two examples; the first derives from Chevalley [12, Lemma 2]
and the second is due to W. J. Lewis [14, Example 4.4]. A sharpening of
this remark is that a survival extension of the form R C R[u] (for some u in
the quotient field of R) need not be lying-over (see Example 3.6).

We start with the following proposition.

PROPOSITION 3.1. Let R C T be a ring extension. Then (R,T) is a
survival pair if and only if (R/(¢ N R),T/q) is a survival pair for each
prime ideal q of T.

Proof. For the “only if” part, our task is to show that for each ring C
contained between R/(¢NR) and T'/q, C “survives” in T'/q. Note that C' may
be identified as C' = A/q where A is a suitable ring contained between R+ ¢
and T, and that maximal ideals of C correspond to those of A containing q.
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Let M be a maximal ideal of A containing ¢. Since (R + ¢,T) is a survival
pair and A C T, there exists a prime ideal ¢; of T such that M = ¢ N A
and so M/q = (q1/9) N (A/q).

For the “if” part, consider a maximal ideal M of a ring C contained
between R and T. Let ¢ be a minimal prime ideal contained in M. Then ¢
lifts to T" as a minimal prime ¢’. Since (R/(¢’ N R),T/q’) is a survival pair,
there exists a prime ideal ¢1/¢’ of T'/q’ lying over M/q in C'/q and hence
M=¢gnNC.n

Recall that D. E. Dobbs has established that for any ring R, (R, R[X])
is a lying-over pair if and only if dim(R) = 0 [13, Proposition 2.13]. This
characterization is sharpened in the next lemma.

LEMMA 3.2. Let R be a ring. Then (R, R[X]) is a survival pair if and
only if dim(R) = 0.

Proof. For the “if” part, assume that dim(R) = 0; then by [13, Propo-
sition 2.13], (R, R[X]) is a lying-over pair and a fortiori a survival pair.

For the “only if” part, if p is a minimal prime ideal of R, then by consid-
ering the survival pair (R/p, (R/p)[X]) (Proposition 3.1), we may assume
that R is a domain. If dim(R) > 0, then R contains a maximal ideal M
whose height is greater than 1. Select a nonzero element b in M, and con-
sider T' = R[1+ bX]. By hypothesis, the extension T' C R[X] is survival and
so there exists a prime ideal @ of R[X] such that QNT = (M,1+bX)T (note
that (M,14+0X)T is a maximal ideal of T). As bX € (MR[X]|NT) C QNT,
it follows that 1 = (1 +bX) — bX € QN T, contradicting Q@ C T. m

The next result as well as Proposition 3.4 are partial answers to a ques-
tion left open in [13] of whether a survival pair must be lying-over.

THEOREM 3.3. Let R C T be domains such that T is transcendental
over R. The following statements are equivalent:

(i) (R, T) is a lying-over pair;
(ii) (R,T) is a survival pair;
(iii) R is a field and for each element x in T which is transcendental
over R, T is integral over R[z];
(iv) R is a field and T is integral over R[z| for some element = in T
which is transcendental over R.

Proof. Assertions (i) and (iii) are equivalent by [13, Theorem 4.1]. It is
clear that (i) implies (ii).

(ii)=-(iii). Let = be an element of 7' which is transcendental over R.
Since (R, R[x]) is a survival pair, the previous lemma shows that R is a
field. If there were an element y of T" which is transcendental over R[z], then
(R[z], R[z][y]) would be a survival pair, contradicting Lemma 3.2. Hence, T
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is algebraic over R[z|. Since R|x] is a one-dimensional Priifer domain, each
ring contained between R[z] and T has dimension less than 1 and (R[z],T)
is an INC pair. Using [13, Theorem 2.1 and Corollary 2.4 (bis)], we conclude
that T is integral over R[z].

Finally, the equivalence between (iii) and (iv) is clear. m

However, in the algebraic case we obtain the following result in the case
of (T, M, D) constructions.

PROPOSITION 3.4. Let T be a domain, M a mazimal ideal of T, D a
subring of the field K = T/M and R := (T,M,D). Then the following
statements are equivalent.

(i) (R,T) is a lying-over pair;
(ii) (R, T) is a survival pair;
(iii) D is a field and D C K is an algebraic extension.

Proof. The implication (i)=-(ii) is clear.

(ii)=-(iii). Since (R,T) is a survival pair, Proposition 3.1 shows that
(D, K) is also a survival pair. Hence by [13, Theorem 2.7], K is integral
over D. Thus D is a field and D C K is an algebraic extension.

(iii)=(i). Since D is a field and D C K is an algebraic extension, K is
integral over D. Thus T is integral over R (see [10]). Therefore (R, T) is a
lying-over pair. m

By combining Theorem 3.3, [13, Proposition 2.13] and Proposition 2.6,
we get the following;:

PROPOSITION 3.5. Let R be a ring. The following statements are equiv-
alent:

(i) each ring contained between R and R[X] is pseudo-polynomial,
(ii) (R, R[X]) is a lying-over pair;
(iii) (R, R[X]) is a survival pair;

(iv) dlm(R) =0.

The next example provides a survival extension of the form R C R[u]
(for some u in the quotient field of R) which is not lying-over.

ExAaMPLE 3.6. With the same hypotheses as in Example 2.5, set A =
R[X]/P ~ R[1/a]. We prove that the extension R C A is not lying-over.
Indeed, assume that there is a prime ideal Q/P of R[X]/P such that p =
(Q/P)NR. Since R, = By, we see that a € Q,. But aX —1 € @, implying
that 1 € @, a contradiction. We conclude that R C A is not a lying over
extension while it is a survival extension since I.A = I[X]|/P. =

Acknowledgments. The authors wish to thank the referee for helpful
suggestions concerning presentation.



PSEUDO-POLYNOMIAL RINGS 19

[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]
[19]

[20]
21]

REFERENCES

D. D. Anderson, D. F. Anderson and M. Zafrullah, Rings between D[X]| and K[X],
Houston J. Math. 17 (1991), 109-129.

D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard
domains, Exposition. Math. 5 (1988), 145-175.

A. Ayache, Inégalité ou formule de la dimension et produits fibrés, thése de doctorat,
Univ. d’Aix-Marseille I1I, 1991.

A. Ayache et P.-J. Cahen, Anneaux vérifiant absolument l’inégalité ou la formule
de la dimension, Boll. Un. Mat. Ital. B (7) 6 (1992), 39-65.

—, —, Radical valuatif et sous-extensions, Comm. Algebra 26 (1998), 2767-2787.

A. Ayache, P.-J. Cahen et O. Echi, Anneaux quasi-prifériens et P-anneauz, Boll.
Un. Mat. Ital. B (7) 10 (1996), 1-24.

A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z. 225 (1997),
49-65.

A. Bouvier, D. E. Dobbs and M. Fontana, Universally catenarian integral domains,
Adv. Math. 72 (1988), 211-238.

J. W. Brewer, P. R. Montgomery, E. A. Rutter and W. J. Heinzer, Krull dimension
of polynomial rings, in: Lecture Notes in Math. 311, Springer, 1972, 26—45.

P.-J. Cahen, Couple d’anneaux partageant un idéal, Arch. Math. (Basel) 51 (1988),
505-514.

—, Construction B, I, D et anneaux localement ou résiduellement de Jaffard, ibid.
54 (1990), 125-141.

C. Chevalley, La notion d’anneau de décomposition, Nagoya Math. J. 7 (1954),
21-33.

D. E. Dobbs, Lying-over pairs of commutative rings, Canad. J. Math. 33 (1981),
454-475.

D. E. Dobbs and I. J. Papick, Going-down: a survey, Nieuw. Arch. Wisk. 26 (1978),
255—291.

O. Echi, Sur les hauteurs valuatives, Boll. Un. Mat. Ital. B (7) 9 (1995), 281-297.

M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura
Appl. (4) 123 (1980), 331-355.

M. Fontana, L. Izelgue et S. Kabbaj, Quelques propriétés des chaines d’idéaux pre-
miers dans les anneaur A + X B[X], Comm. Algebra 22 (1994), 9-24.

R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.

P. Jaffard, Théorie de la dimension dans les anneauzr de polynémes, Mém. Sci.
Math. 146, Gauthier-Villars, Paris, 1960.

S. Kabbaj, Sur les S-domaines forts de Kaplansky, J. Algebra 137 (1991), 400—415.
I. Kaplansky, Commutative Rings, rev. ed., Univ. of Chicago Press, Chicago, 1974.

Department of Mathematics
Faculty of Sciences

University of Sfax

B.P. 802, 3018 Sfax, Tunisia
E-mail: Noomen.Jarboui@fss.rnu.tn

Thsen.Yengui@fss.rnu.tn

Received 16 May 2000;
revised 13 August 2001 (3931)



