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SPACES OF MULTIPLIERS AND THEIR PREDUALS FOR

THE ORDER MULTIPLICATION ON [0, 1]

BY

SAVITA BHATNAGAR* and H. L. VASUDEVA (Chandigarh)

Abstract. Let I = [0, 1] be the compact topological semigroup with max multipli-
cation and usual topology. C(I), Lp(I), 1 ≤ p ≤ ∞, are the associated Banach algebras.
The aim of the paper is to characterise HomC(I)(L

r(I), Lp(I)) and their preduals.

1. Introduction. In [20], Wendel proved that the operators on the
group algebra L1(G) which commute with convolution correspond in a natu-
ral way to the measure algebraM(G). The more general situation of Banach
module homomorphisms for Banach modulesK over L1(G) has been consid-
ered by several authors. The operators from L1(G) into K, and from K into
L∞(G), which commute with module composition have been investigated
by Gulick, Liu and van Rooij [10]. Investigations of various other kinds of
module homomorphisms occur in Figà-Talamanca [6], Figà-Talamanca and
Gaudry [7], Johnson [13] and Rieffel [17].

The extension of Wendel’s result on multipliers on a group algebra L1(G)
to locally compact semigroups has been carried out by, among others, Larsen
[15], Todd [19], Dhar and Vasudeva [3], Johnson and Lahr [14] and Baker,
Pym and Vasudeva [1]. Both Larsen [15] and Todd [19] obtain characterisa-
tions of multipliers for L1(S) where S is a totally ordered semigroup. The
characterisations of multipliers for L1(S), where S is a partially ordered
semigroup which is the product of totally ordered semigroups, have been
obtained by Dhar and Vasudeva [3] and Johnson and Lahr [14]. A charac-
terisation of multipliers of a convolution measure algebra in the measure
algebra M(S) of certain subsemilattices S of the cube In, where I denotes
the unit interval with min multiplication, has been obtained in [2]. Baker,
Pym and Vasudeva [1] obtain characterisations of multipliers from Lp(I) to
Lr(I), 1 ≤ r ≤ p, where I = [0, 1] is the compact topological semigroup with
max multiplication and the usual topology. Of course, the choice of max or
min makes no difference to the theory.
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The aim of this paper is to study the multipliers or at least some version
of them for the interval [0, 1] with max as multiplication. This is a compact
semigroup, so that it is possible to define convolution of measures on it. It
is also well known that L1(I) forms an algebra under convolution. It is not
clear what should be the notion of multiplier in this context; the one we
choose—HomC(I)(L

r(I), Lp(I)), the space of C(I)-module homomorphisms
from Lr(I) to Lp(I) where C(I) acts by convolution—is at once interesting
and natural. There are differences from the group case arising from the way
in which the convolution action of C(I) on Lp(I) differs fundamentally from
the dual action that Lp(I) inherits from Lp

′

(I).
Our methods are in the spirit of the work of Figà-Talamanca, Gaudry,

Hörmander, Herz and Eymard ([7], [12], [11], [5]) in that we study the pre-
dual space (the so-called Ar,p space) of the space of multipliers. Indeed in
this situation we are able to give a complete description of Ar,p as a space of
measurable functions on I in the case when r ≤ p, though here also the lack
of symmetry between the convolution action and its adjoint is manifested,
and we have to study two different Ar,p spaces corresponding to the two
actions. This aspect of our work is described in Section 3. Our characterisa-
tion of these spaces makes heavy use of Hardy’s inequality and interpolation
theory. The regularities of behaviour that occur in the Ar,p spaces in the
group case are not as apparent here, and indeed are focussed in the vicin-
ity of the origin, as is to be expected from the nature of the multiplication
operation. In particular, there appears to be no analogue of Herz’s theorem
that the Ap spaces form an algebra under pointwise multiplication.
Section 2 is concerned with preliminary material. In Section 4 we consider

the predual of the space of multipliers as an algebra under convolution. It
is shown that this algebra has an approximate identity and we identify its
maximal ideal space. Finally in Section 5, we use the knowledge we have
obtained of the predual to obtain a characterisation of the multipliers in
question.

2. Preliminaries. This section contains the preliminary material on
which we shall draw throughout the rest of the paper. Henceforth, I will
denote the closed interval [0, 1]. We make I a semigroup by defining the
product of x and y in I by xy = max{x, y}. When I is endowed with the
usual interval topology, I is a compact topological semigroup. For p ∈ [1,∞),
we let, as is customary, Lp(I) be the Banach space of Lebesgue measurable
functions on I whose pth powers are absolutely integrable. L∞(I) consists
of the functions measurable and essentially bounded on I with respect to
Lebesgue measure. An important subspace of L∞(I) is the space of all con-
tinuous functions on I, which we denote by C(I). For every positive number
α, let α′ denote the conjugate index of α, i.e. α′ is such that α−1+(α′)−1 = 1.



SPACES OF MULTIPLIERS 23

If E is a Banach space, let E∗ denote the topological dual of E. By identi-
fication, (L1(I))∗ = L∞(I) and for 1 < p <∞, (Lp(I))∗ = Lp

′

(I).
Let A be a normed algebra over C and let V be a normed linear space

over C. Then V is said to be a normed left (resp. right) A-module if V
is a left (resp. right) A-module and also satisfies ‖av‖ ≤ k‖a‖ · ‖v‖ (resp.
‖va‖ ≤ k‖v‖ · ‖a‖) for all a ∈ A, v ∈ V and for some positive constant k.
A normed left A-module is called a Banach left A-module if it is complete
as a normed linear space.
If V and W are left (resp. right) Banach A-modules, then HomA(V,W )

will denote the Banach space of all continuous A-module homomorphisms
from V to W with the operator norm. The elements of HomA(V,W ) are
customarily calledmultipliers from V toW . If V is a left (resp. right) Banach
A-module, then V ∗, the dual of V , is a right (resp. left) Banach A-module
under the adjoint action of A.
We define the convolution ∗: C(I)× Lp(I)→ Lp(I) by

(1)

1\
0

(f ∗ g)(t)φ(t) dt =

1\
0

1\
0

φ(max(s, t))f(t)g(s) dt ds

for f ∈ C(I), φ ∈ C(I) and g ∈ Lp(I). This leads to the following formula
for the convolution of f and g:

(2) (f ∗ g)(t) = f(t)

t\
0

g(s) ds+ g(t)

t\
0

f(s) ds

for almost all t ∈ I. Observe that ‖g‖1 ≤ ‖g‖p (g ∈ Lp(I)), by Hölder’s
inequality. Also

|(f ∗ g)(t)| ≤ ‖f‖∞(‖g‖1 + |g(t)|)

for almost all t ∈ I, f ∈ C(I) and g ∈ Lp(I). Consequently,

‖f ∗ g‖p ≤ ‖f‖∞‖g‖1 + ‖f‖∞‖g‖p ≤ 2‖f‖∞‖g‖p

for f ∈ C(I) and g ∈ Lp(I). Thus Lp(I) is a normed left C(I)-module
and when so regarded, it is denoted by Lp∗. Indeed, L

p
∗ is a left Banach

C(I)-module.
Next we investigate the adjoint action of C(I) on the dual of Lp∗. We

define the dual pairing between Lp(I) and Lp
′

(I) by

〈f, g〉 =

1\
0

f(s)g(s) ds, f ∈ Lp(I), g ∈ Lp
′

(I),

and for f ∈ Lr(I) and g ∈ Lp(I), we define

(3) f ◦ g(s) = g(s)

s\
0

f(t) dt+

1\
s

f(t)g(t) dt, s ∈ [0, 1] and
1

r
+
1

p
≤ 1.
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Then, for φ ∈ C(I), f ∈ Lp(I) and g ∈ Lp
′

(I), we have

〈φ ∗ f, g〉 =

1\
0

(φ ∗ f)(t)g(t) dt =

1\
0

{
φ(t)

t\
0

f(s) ds+ f(t)

t\
0

φ(s) ds
}
g(t) dt

=

1\
0

f(s)
{
g(s)

s\
0

φ(t) dt+

1\
s

φ(t)g(t) dt
}
ds = 〈f, g ◦ φ〉,

by Fubini’s Theorem.

Thus the adjoint action of an element φ ∈ C(I) on Lp
′

(I) under which
Lp
′

(I) becomes a Banach right C(I)-module consists of the operation ◦ as
defined in (3). The Banach right C(I)-module Lp

′

(I) with the adjoint action

will be denoted by Lp
′

◦ .

In case Lp(I) is regarded as a Banach right C(I)-module under the con-
volution action then Lp

′

(I) becomes a Banach left C(I)-module under the
“•” action defined by φ • g = g ◦ φ.

The concept of tensor product for Banach modules was introduced by
Rieffel [16]. We include the definition for completeness. Let V and W be,
respectively, a left and right Banach A-module. Let V ⊗̂W denote the pro-
jective tensor product [9] of V and W as Banach spaces and let K be the
closed linear subspace of V ⊗̂ W which is spanned by all elements of the
form

av ⊗ w − v ⊗ wa, a ∈ A, v ∈ V, w ∈W.

Then the A-module tensor product, V ⊗̂AW , is defined to be the quotient
Banach space (V ⊗̂W )/K. Using the universal property of the projective
tensor product with respect to bounded bilinear maps from V ×W , it is
easily seen that V ⊗̂AW has the desired universal property with respect to
A-balanced bounded bilinear maps from V ×W .

We let Mr,p◦ denote HomC(I)(L
r
∗, L

p
∗) and M

r,p
∗ denote HomC(I)(L

r
∗, L

p
◦)

for 1 ≤ r, p ≤ ∞. Observe that HomC(I)(L
r
◦, L

p
◦) may be identified with

HomC(I)(L
p′

∗ , L
r′

∗ ) by the adjoint map at least for p, r 6= 1. If we let A
r,p
∗ =

Lr∗ ⊗̂C(I) L
p′

∗ and A
r,p
◦ = Lr∗ ⊗̂C(I) L

p′

◦ , where the tensor product is the
projective tensor product of Banach modules as defined in the paragraph
above, then, by a theorem of Rieffel [17],

(Ar,p∗ )
∗ =Mr,p∗ and (Ar,p◦ )

∗ =Mr,p◦ .

A key result in the understanding and characterisation of Ar,p∗ and A
r,p
◦

is the following minor variant of an argument of Rieffel [17].

Theorem 1. Let D be a dense subalgebra of a Banach algebra A and
let B be a Banach A-module. Suppose that A has an approximate identity
(en) satisfying ‖ena‖ ≤ C‖a‖ for each n and all a ∈ A. Then the map
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π : A⊗̂B → B given by a⊗b 7→ ab factors through A⊗̂DB and the resulting
map A ⊗̂D B → B is injective.

Proof. Since the theorem is well known, only a brief outline of the proof
is given below.
If
∑
i ai ⊗ bi ∈ A ⊗̂B then∥∥∥

∑

i

ai ⊗ bi −
∑

i

enai ⊗ bi

∥∥∥ ≤
∑

i

‖ai − enai‖ · ‖bi‖

≤
M∑

i=1

‖ai − enai‖ · ‖bi‖+ (C + 1)
∞∑

i=M+1

‖ai‖ · ‖bi‖.

Given ε > 0, choose M so large that the second sum on the right hand side
is less than ε/2 independently of n and then by taking n large the first sum
is less than ε/2. If π(

∑
i ai ⊗ bi) = 0, then∑

i

enai ⊗ bi =
∑

i

(enai ⊗ bi − en ⊗ aibi)

is in Kerπ as Kerπ is closed and A ⊗̂D B = A ⊗̂A B. This completes the
proof.

3. Description of the preduals. We define an operator

B : Lr(I) ⊗̂ Lp
′

(I)→ Lp
′

(1 ≤ r, p′ <∞)

by

B(f ⊗ g)(s) = g(s)

s\
0

f(t) dt.

It will play a key role in our discussion of the preduals of the spaces of
multipliers. We begin this section with characterisations of the image of B
which we call Br,p in Lp

′

when 1 < r, p < ∞ and B∞,1 in L∞ when r =
p′ = ∞. Let In = [0, 1/2

n] and Jn = [1/2
n, 1/2n−1], n = 1, 2, . . . , and

let |J | denote the length of an interval J . For a measurable function φ on
I let Pn(φ) denote the function χJnφ, n = 1, 2, . . . Define en = 2

nχIn ,

n = 1, 2, . . . Since
T1
0
en(s) ds = 1 for each n, we can easily see that if f ≡ 0

on In then B(en ⊗ f) = f . As f =
∑∞
n=1 Pn(f), we obtain

(4) f =

∞∑

n=1

B(en ⊗ Pn(f)) =

∞∑

n=1

en ◦ Pn(f) =

∞∑

n=1

en ∗ Pn(f)

almost everywhere, for any measurable function f on I. We shall also need
the following inequality:

‖en ∗ f‖r ≤
2r − 1

r − 1
‖f‖r, f ∈ Lr, 1 < r <∞.
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To see this, observe that

en ∗ f(s) =

{
2n
Ts
0
f(t) dt+ 2nsf(s), 0 ≤ s ≤ 1/2n,

f(s), s > 1/2n.

Consequently,

(5) ‖en ∗ f‖r ≤

∥∥∥∥
1

s

s\
0

f(t) dt

∥∥∥∥
r

+ ‖f‖r ≤
2r − 1

r − 1
‖f‖r

using Hardy’s inequality.

Theorem 2. For r ≤ p,

Br,p =
{
φ : φ is measurable,

∞∑

n=1

2n/r
′

‖Pnφ‖p′ <∞
}
.

Proof. First note that if
∑∞
n=1 2

n/r′‖Pnφ‖p′ <∞ then we may write φ =∑∞
n=1B(en⊗Pn(φ)) and

∑∞
n=1 ‖en‖r‖Pn(φ)‖p′ =

∑∞
n=1 2

n/r′‖Pnφ‖p′ <∞.
Thus

ψ =
∞∑

n=1

en ⊗ Pn(φ) ∈ L
r ⊗̂ Lp

′

and B(ψ) = φ.

To prove the converse, we first show that there is a constant k such that
if φ = B(f ⊗ g), where f ∈ Lr, g ∈ Lp

′

then

∞∑

n=1

2n/r
′

‖Pn(φ)‖p′ ≤ k‖f‖r‖g‖p′ .

Let

X =
∞∑

n=1

2n/r
′

‖Pn(φ)‖p′ =
∞∑

n=1

2n/r
′

(1\
0

∣∣∣Pn
(
g(t)

t\
0

f(s) ds
)∣∣∣
p′

dt
)1/p′

.

Without loss of generality, we may assume that f, g ≥ 0 since we can replace
them by their absolute values. Then

X ≤
∞∑

n=1

2n/r
′

2−(n−1)\
0

f(s) ds ‖Pn(g)‖p′

≤
( ∞∑

n=1

(
2n/r

′

2−(n−1)\
0

f(s) ds
)p)1/p

‖g‖p′

by Hölder’s inequality. To show that
∑∞
n=1(2

n/r′
T2−(n−1)
0

f(s) ds)p <∞ we
define a map S from measurable functions to complex sequences by
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S(f) =
(
2n/r

′

2−(n−1)\
0

f(s) ds
)

n∈N

.

Its adjoint is given, formally at least, by

S∗((cn)) =
∞∑

n=1

2n/r
′

cnχIn−1 .

It is enough to prove that S∗ maps ℓp
′

into Lr
′

, for then S will be its adjoint
map from Lr to ℓp and we will have shown that

∞∑

n=1

(
2n/r

′

2−(n−1)\
0

f(s) ds
)p

<∞.

Now

‖S∗((cn))‖
r′

r′ =

1\
0

∣∣∣
∞∑

n=1

2n/r
′

cnχIn−1(x)
∣∣∣
r′

dx ≤

1\
0

( ∞∑

n=1

2n/r
′

|cn|
∑

k≥n

χJk

)r′
dx

=

1\
0

∞∑

k=1

(∑

n≤k

2n/r
′

|cn|
)r′

χJk(x) dx =
∞∑

k=1

(∑

n≤k

2n/r
′

|cn|
)r′ 1
2k

=
∞∑

k=1

2 ·

(
1

2(k+1)/r′
∑

n≤k

2n/r
′

|cn|

)r′
.

At this point it is appropriate to define a linear map V from ℓp
′

to the space
of complex sequences by

V ((cn)) =
1

2(k+1)/r′
∑

n≤k

2n/r
′

cn

and observe that for (cn) in ℓ
1,

‖V ((cn))‖1 =
∞∑

k=1

∣∣∣∣
1

2(k+1)/r′
∑

n≤k

2n/r
′

cn

∣∣∣∣ ≤
∞∑

k=1

1

2(k+1)/r′

(∑

n≤k

2n/r
′

|cn|
)

=
∞∑

n=1

|cn|
∑

k≥n

2(n−k−1)/r
′

≤ d
∑

n

|cn|

for some positive constant d. Similarly, for (cn) ∈ ℓ
∞,

‖V ((cn))‖∞ = sup
k

∣∣∣∣
1

2(k+1)/r′
∑

n≤k

2n/r
′

cn

∣∣∣∣ ≤ e‖cn‖∞

where e is another constant. Thus V maps ℓ1 into ℓ1 and ℓ∞ into ℓ∞. Hence
by the Riesz–Thorin Convexity Theorem [4], V maps ℓp

′

into ℓp
′

⊂ ℓr
′

and
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so the result follows in this case. It follows that
∞∑

n=1

2n/r
′

‖Pn(B(f ⊗ g))‖p′ ≤ k‖f‖r‖g‖p′ .

Now let ψ =
∑∞
i=1 fi ⊗ gi where

∑∞
i=1 ‖fi‖r‖gi‖p′ <∞. For φ = B(ψ),

∞∑

n=1

2n/r
′

‖Pn(φ)‖p′ ≤
∞∑

n=1

∞∑

i=1

2n/r
′

‖PnB(fi⊗gi)‖p′ ≤
∞∑

i=1

k‖fi‖r‖gi‖p′ <∞.

Therefore, B maps Lr ⊗̂ Lp
′

into Br,p.

We next characterise the predual Ap,p◦ of the multiplier space M
p,p
◦ . Let

AC0 be the space of absolutely continuous functions on [0, 1] which vanish
at 1.

Theorem 3. Ap,p◦ = B
p,p +AC0, 1 < p ≤ ∞.

Proof. First we show that Bp,p is contained in Ap,p◦ . For φ ∈ B
p,p, we can

write φ =
∑∞
n=1 en◦Pnφ and, by definition of B

p,p,
∑∞
n=1 ‖en‖p‖Pn(φ)‖p′ <

∞ so that φ ∈ Ap,p◦ .

Now for an arbitrary φ ∈ AC0, we can write φ(s) =
T1
s
f(t)g(t) dt, where

f ∈ Lp and g ∈ Lp
′

. Hence

(f ◦ g)(s) = B(f ⊗ g) +

1\
s

f(t)g(t) dt = B(f ⊗ g) + φ(s).

Since f ◦ g and B(f ⊗ g) belong to Ap,p◦ , so does φ. It is clear that any
element of Ap,p◦ is a sum of functions of the form φ+ψ, where φ ∈ Bp,p and
ψ ∈ AC0 so that we have the required result.

Remark. In §5, it will be shown that Ar,p◦ = (0) if r < p.

Theorem 4. Ar,p∗ = B
r,p +Bp

′,r′ , 1 ≤ r ≤ p ≤ ∞.

Proof. It is enough to show that Br,p, Bp
′,r′ ⊂ Ar,p∗ . If φ ∈ B

r,p we may
write

φ =
∞∑

n=1

en ∗ Pn(φ)

and
∞∑

n=1

‖en‖r‖Pn(φ)‖p′ =
∞∑

n=1

2n/r
′

‖Pn(φ)‖p′ <∞.

Thus φ ∈ Ar,p∗ . Similarly, if φ ∈ B
p′,r′ , we may then write

φ =
∞∑

n=1

Pn(φ) ∗ en
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and
∞∑

n=1

‖Pn(φ)‖r‖en‖p′ =
∞∑

n=1

2n/p‖Pn(φ)‖r <∞.

Theorem 5. (a) Bp
′,r′ ⊂ Br,p if p ≥ r ≥ p′ and (b) Br,p ⊂ Bp

′,r′ if

r ≤ min(p, p′).

Proof. (a) Let p ≥ r ≥ p′. Then for φ ∈ Bp
′,r′ , we have

∞∑

n=1

2n/r
′

‖Pn(φ)‖p′ ≤
∞∑

n=1

2n/r
′

(1\
0

|Pn(φ)|
p′r/p′
) 1
p′
·
p′

r
(2−(n−1)\
2−n

1 dt
) 1
p′
[1− p

′

r
]

=
∞∑

n=1

2n(1−1/p
′)‖Pn(φ)‖r =

∞∑

n=1

2n/p‖Pn(φ)‖r <∞.

Thus φ ∈ Br,p. Now interchanging the roles of r and p′ we obtain the other
inclusion.

Corollary 6. Ar,p∗ = Br,p if p ≥ r ≥ p′ and Ar,p∗ = Bp
′,r′ if r ≤

min(p, p′).

4. The convolution algebras Ar,p∗ (r ≤ p). In this section we define
a multiplication on Ar,p∗ (r ≤ p) and show that it is a normed algebra. The
algebra has an approximate identity. We also identify the maximal ideal
space of the algebra under discussion.

The norm of an element in Ar,p∗ (r ≤ p) will be denoted by ‖·‖∗,r,p. Since
the tensor product norm and the Br,p norms are equivalent (Corollary 6),
we use them interchangeably.

Theorem 7. If φ, ψ ∈ Ar,p∗ (1 < r ≤ p <∞) then φ ∗ ψ ∈ Ar,p∗ where

φ ∗ ψ(t) = φ(t)

t\
0

ψ(s) ds+ ψ(t)

t\
0

φ(s) ds

for almost all t ∈ [0, 1]. The algebra Ar,p∗ is commutative and semisimple. It
has an approximate identity. The maximal ideal space of Ar,p∗ is the interval
(0, 1] with the usual topology and the Gelfand transform of φ ∈ Ar,p∗ is given

by φ̂(t) =
Tt
0
φ(u) du.

Proof. Consider Lr∗ ⊗̂ L
p′

∗ . Since L
q (1 ≤ q ≤ ∞) is a Banach algebra

under convolution, Lr∗ ⊗̂ L
p′

∗ is naturally organised as a Banach algebra.
Having so done

K = clspan{f ∗ g ⊗ h− g ⊗ h ∗ f : f ∈ C(I), g ∈ Lr∗, h ∈ L
p′

∗ }
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becomes a closed ideal. Hence Ar,p∗ = (L
r
∗⊗L

p′

∗ )/K is a Banach algebra. Us-
ing the identification from Theorem 1, we see that the algebra multiplication
can be realised as convolution of functions.
To prove that Ar,p∗ has an approximate identity it is enough to show that

Lr∗ (1 < r < ∞) has an approximate identity. Note that for en = 2
nχIn ,

n = 1, 2, . . . , and f ∈ Lr∗,

en ∗ f(x) =

{
2n
Tx
0
f(s) ds+ 2nxf(x), 0 ≤ x ≤ 1/2n,

f(x), x > 1/2n.

Now

‖en ∗ f − f‖r ≤
(2−n\
0

∣∣∣2n
x\
0

f(s) ds
∣∣∣
r

dx
)1/r

+
(2−n\
0

2nr|f(x)|r(2−n − x)rdx
)1/r

.

The second term on the right tends to zero as n→∞ whereas the first term
is bounded by

(2−n\
0

∣∣∣∣
1

x

x\
0

f(s) ds

∣∣∣∣
r

dx

)1/r
.

By Hardy’s inequality (1/x)
Tx
0
f(s) ds belongs to Lr(I) since f ∈ Lr(I).

Hence
(2−n\
0

∣∣∣∣
1

x

x\
0

f(s) ds

∣∣∣∣
r

dx

)1/r
→ 0 as n→∞.

It follows that ‖en ∗ f − f‖r → 0 as n → ∞ for f ∈ L
r(I). Indeed, there

exists a constant C = (2r − 1)/(r − 1), r > 1, such that ‖en ∗ f‖r ≤ C‖f‖r
by (5). Thus for φ =

∑∞
i=1 fi ∗ gi ∈ A

r,p
∗ , we have

‖en ∗ φ− φ‖∗,r,p ≤

M∑

i=1

‖en ∗ fi − fi‖r‖gi‖p′ + (C + 1)

∞∑

i=M+1

‖fi‖r‖gi‖p′ .

We may choose M large so that the second term on the right is arbitrarily
small independently of n and then choose n large so that the first term is
arbitrarily small to see that ‖en ∗ φ− φ‖∗,r,p → 0 as n→∞.
It remains to show that the maximal ideal space of Ar,p∗ is just (0, 1] = I◦

and the Gelfand transform of φ ∈ Ar,p∗ is given by φ̂(t) =
Tt
0
φ(u) du. To see

this note that the mapping ∗ : Lr ⊗̂ Lp
′

to Ar,p∗ given by f ⊗ g 7→ f ∗ g is
a Banach algebra homomorphism and so the maximal ideal space of Ar,p∗
is embedded in the maximal ideal space of Lr ⊗̂ Lp

′

which is I◦ × I◦. (See
Gelbaum [8] and Baker, Pym and Vasudeva [1].) Now for f, g ∈ Lr ∩ Lp

′
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and χ ∈ ∆(Ar,p∗ ), where ∆(A
r,p
∗ ) denotes the maximal ideal space of A

r,p
∗ ,

χ(f ∗ g) = f̂(x)ĝ(y) = ĝ(x)f̂(y)

for some x, y ∈ I◦. Since there are enough elements in L
r ∩ Lp

′

to separate
points of I◦×I◦, it follows that x = y, so the embedding is just the diagonal.
It is easy to verify that the Gelfand topology on I◦ is the usual topology
inherited from the reals.

5. The spaces of multipliers. This section is devoted to the study of
multipliers, namely, Mr,p∗ = HomC(I)(L

r
∗, L

p
◦) and M

r,p
◦ = HomC(I)(L

r
∗, L

p
∗)

where r ≤ p. Mr,p∗ can be regarded as the dual of A
r,p
∗ . We deal with the

case r ≥ p′. The other case is obtained by identifying Ar,p∗ and A
p′,r′

∗ .

Theorem 8. For p ≥ r ≥ p′,

Mr,p∗ = {t : t is measurable and sup
n
2−n/r

′

‖Pnt‖p} <∞.

This is effectively already proved. We merely need to observe that for
p ≥ r ≥ p′, Ar,p∗ = Br,p, and note that the duality between Mr,p∗ and A

r,p
∗

is given by

〈t, φ〉 =

1\
0

t(s)φ(s) ds, t ∈Mr,p∗ , φ ∈ Ar,p∗ .

To clarify how a function serves as a multiplier from Lr∗ to L
p
◦, write Mt, for

t ∈Mr,p∗ , to denote the operator. Then

〈t, f ∗ g〉 = 〈Mt(f), g〉, f ∈ Lr, g ∈ Lp
′

,

where the pairing on the right is the usual Lp-Lp
′

duality. It then follows
that

Mt(f)(s) = t(s)

s\
0

f(u) du+

1\
s

f(u)t(u) du, a.e., f ∈ Lr.

This completes the proof.
Now we look at HomC(I)(L

p
∗, L

p
∗), i.e. (L

p ⊗̂C(I) L
p′)∗, where the action

of C(I) on Lp(I) is by ∗ and on Lp
′

(I) is by ◦. The map

◦ : Lp ⊗̂ Lp
′

→ Lp
′

factors through Lp ⊗̂C(I) L
p′ . (Note that C(I) can be replaced by another

dense subalgebra contained in Lp ∩ Lp
′

.) Theorem 1 shows that the map

Lp∗ ⊗̂C(I) L
p′

◦ → Lp ◦ Lp
′

induced by ◦ is one-to-one.

Thus Lp ◦ Lp
′

can be identified with Lp∗ ⊗̂C(I) L
p′

◦ , i.e. the predual of
HomC(I)(L

p
∗, L

p
∗) .
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Lemma 9. Let φ ∈ Ap,p∗ . Then ‖φ‖◦,p,p ≤ C‖φ‖∗,p,p, 1 < p ≤ ∞.

Proof. First note that if |||φ||| =
∑∞
n=1 2

n/p′‖Pn(φ)‖p′ then |||φ||| and
‖φ‖∗,p,p are equivalent. Thus

‖φ‖∗,p,p ≥ C|||φ||| = C
∞∑

n=1

‖en‖p‖Pn(φ)‖p′

and
∑
en ◦ Pnφ = φ and so

∑
‖en‖p‖Pn(φ)‖p′ ≥ ‖φ‖◦,p,p.

This proves the result.

Lemma 10. If φ ∈ AC◦, then ‖φ‖◦,p,p ≤ C‖φ‖AC◦ .

Proof. We show that the embedding θ : φ 7→ φ from AC◦ to Ap,p◦ is
continuous and use the closed graph theorem to do this. Suppose fn → f in
AC◦ and θ(fn) → g in Ap,p◦ . Then fn → f uniformly and θ(fn) = fn → g
in Lp

′

. Hence f = g.

Theorem 11. For 1 < p ≤ ∞, Mp,p◦ = {β : β ∈ L
∞ and has an almost

everywhere derivative h which satisfies supn 2
−n/p′‖Pnh‖p <∞}.

Proof. Suppose µ ∈ (Ap,p◦ )
∗. Then µ|AC◦ ∈ (AC

◦)∗ and µ|Bp,p ∈ (B
p,p)∗.

Note that (AC◦)∗ = L∞(I), by the pairing

(6) 〈µ, φ〉 =

1\
0

β(s)f(s) ds

where φ(s) =
T1
s
f(t) dt is in AC◦ and µ corresponds to β ∈ L∞(I). Since

µ|Bp,p ∈ (B
p,p)∗, it follows that β ∈ (Bp,p)∗. For any ε > 0, Lp

′

(Iε) ⊂ B
p,p

(Iε = [ε, 1]) and so µ|Lp′ (Iε) corresponds to an L
p(I) function hε such that

for φ ∈ Lp
′

(Iε),

〈µ, φ〉 =

1\
ε

hε(s)φ(s) ds =

1\
0

hε(s)φ(s) ds

where φ is taken to be zero on [0, ε). It is clear that hε’s are compatible,

i.e., hε′ = hε on [ε, 1] if ε
′ < ε. Moreover, for φ(s) =

T1
s
f(t) dt in Lp

′

(Iε), we
have

〈µ, φ〉 =

1\
0

hε(s)

1\
s

f(t) dt ds =

1\
0

f(t)

t\
ε

hε(s) ds dt.

Comparing this with (6), we get

β(t) =

t\
ε

hε(s) ds, t > ε.
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Evidently, β′(t) = hε(t) a.e. on [ε, 1] and so we have proved that there exists
h measurable on (0, 1] such that h ∈ Lp(Iε) for every ε > 0 and β

′(t) = h(t)
a.e. on (0, 1]. If we take φ ∈ Bp,p, then

〈µ, φ〉 =

1\
0

h(t)φ(t) dt

exists and is finite. Hence supn 2
−n/p′‖Pn(h)‖p<∞. This completes the proof.

We must calculate the effect of such a β as a multiplier from Lp∗ to L
p
∗.

Let Mβ denote the multiplier corresponding to β. Then for f ∈ C(I) and

g ∈ Lp
′

(I),

〈Mβ(f), g〉 = 〈β, f ◦ g〉

=
〈
β, g(·)

.\
0

f(t) dt+

1\
.
g(t)f(t) dt

〉

=

1\
0

{
h(t)g(t)

t\
0

f(s) ds+ g(t)f(t)β(t)
}
dt,

and this equals

1\
0

g(t)
{
kf(t)− f(t)

1\
t

h(s) ds+ h(t)

t\
0

f(s) ds
}
dt.

Thus

Mβ(f) = kf(t)− f(t)

1\
t

h(s) ds+ h(t)

t\
0

f(s) ds

for f ∈ C(I) and consequently for Lp(I). Here k = β(1).

Theorem 12. If r < p then Mr,p◦ = (0). Hence A
r,p
◦ = (0).

Proof. Let µ ∈ Mr,p◦ and so it can be identified with an element of
HomC(I)(L

r
∗, L

p
∗) and consequently with an element of HomC(I)(L

r
∗, L

r
∗). Let

Mµ denote the multiplier corresponding to µ. In view of Theorem 11 and
the paragraph following it, we have

Mµ(f) = kf(t)− f(t)

1\
t

h(s) ds+ h(t)

t\
0

f(s) ds, f ∈ Lr∗,

where µ corresponds to β in L∞(I), β′(s) = h(s) a.e. on (0, 1] and h satisfies
sup 2−n/r

′

‖Pnh‖r <∞.

If k −
T1
s
h(t) dt = 0 for every s ∈ (0, 1], then

Ts2
s1
h(t) dt = 0 for every

s1, s2 ∈ (0, 1] and this implies h ≡ 0 a.e. Thus kf ∈ L
p for every f ∈ Lr.

This is impossible unless k = 0.
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Suppose α = |k −
T1
s
h(t) dt| > 0 for some s ∈ (0, 1]. Then there exists

a neighbourhood N = (s − ε, s + ε) of s such that |k −
T1
x
h(t) dt| > 1

2α for
every x ∈ N . Therefore,

(Mµ(f))(x) =
[
k −

1\
x

h(t) dt
]
f(x) + h(x)

x\
0

f(t) dt, f ∈ Lr∗.

For x ∈ N and f ∈ Lr∗,

|(Mµ(f))(x)| >
1

2
α|f(x)| − |h(x)|

∣∣∣
x\
0

f(t) dt
∣∣∣,

i.e.,

(7)
1

2
α|f(x)| < |(Mµ(f))(x)|+ |h(x)|

∣∣∣
x\
0

f(t) dt
∣∣∣.

Now choose f = 0 on (s− ε, 1] such that
T1
0
f(t) dt = 1. Then for x ∈ N ,

Mµ(f)(x) = h(x)

x\
0

f(t) dt = h(x) ∈ Lp(N).

Using (7), we obtain f ∈ Lp(N) and this is a contradiction.

6. Comparison with earlier work. In this section we compare the
results obtained in §5 with those obtained in [1]. That the characterisations
of Mr,p◦ (r ≤ p) in §5 and [1] are identical is the content of the following
theorem.

Theorem 13. The following are equivalent for 1 < p ≤ ∞.

(i) T ∈ HomC(I)(L
p
∗, L

p
∗);

(ii) Tf(x) =
(
k −

1\
x

h(y) dy
)
f(x) + h(x)

x\
0

f(y) dy, f ∈ Lp,

where h is a measurable function on (0, 1] such that

(a) x 7→
T1
x
h(y) dy is a bounded function, and

(b) (x 7→ h(x)
Tx
0
f(y) dy) ∈ Lp for all f ∈ Lp.

Proof. In view of Theorem 11, it is enough to show that

h(x)

x\
0

f(y) dy ∈ Lp for every f ∈ Lp ⇔ sup
n
2−n/p

′

‖Pnh‖p <∞.

Suppose supn 2
−n/p′‖Pnh‖p < ∞. Let g ∈ L

p′ . If f̂(x) denotes
Tx
0
f(y) dy,
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f ∈ Lp, then

|〈hf̂, g〉| =
∣∣∣
1\
0

(hf̂ )(x)g(x) dx
∣∣∣ =
∣∣∣
∑

n

\
Jn

(hf̂ )(x)g(x) dx
∣∣∣

≤
∑

n

\
Jn

|h(x)| · |(gf̂ )(x)| dx

≤
∑

n

‖Pnh‖p‖Pn(gf̂ )‖p′ =
∑

n

2−n/p
′

‖Pnh‖p2
n/p′‖Pn(gf̂ )‖p′

≤ sup
n
2−n/p

′

‖Pnh‖p
∑

n

2n/p
′

‖Pn(gf̂ )‖p′ <∞,

since gf̂ ∈ Bp,p. Thus hf̂ ∈ Lp for all f ∈ Lp.
On the other hand suppose that hf̂ ∈ Lp for all f ∈ Lp. We shall show

that

sup
n
2−n/p

′

‖Pnh‖p = sup
φ∈Bp,p

‖hφ‖1
‖φ‖∗,p,p

.

Indeed,

‖hφ‖1 ≤
∑

n

‖Pnh‖p‖Pn(φ)‖p′ =
∑

n

2−n/p
′

‖Pnh‖p2
n/p′‖Pnφ‖p′

≤ sup
n
2−n/p

′

‖Pnh‖p
∑

n

2n/p
′

‖Pnφ‖p = sup
n
2−n/p

′

‖Pnh‖p‖φ‖∗,p,p.

On setting φ = χJn |h|
p−1, we get

‖hφ‖1
‖φ‖∗,p,p

=
‖Pn(h)‖

p
p

2n/p′‖Pn(h)‖
p/p′
p

= 2−n/p
′

‖Pnh‖p.

Using ‖φ‖p′ ≤ ‖φ‖∗,p,p for φ ∈ B
p,p, we get

‖hφ‖1 =

1\
0

|h(x)φ(x)| dx =

1\
0

|(x+ 1)1/p
′

h(x)(x+ 1)−1/p
′

φ(x)| dx

≤ ‖(x+ 1)1/p
′

h‖p‖(x+ 1)
−1/p′φ‖p′ ≤ ‖(x+ 1)

1/p′h‖p‖φ‖∗,p,p.

Thus

sup
n

‖hφ‖1
‖φ‖∗,p,p

≤ ‖(x+ 1)1/p
′

h‖p <∞,

since f(x) = (x+ 1)−1/p ∈ Lp. This completes the proof.

Remark. The characterisation for HomC(I)(L
r
∗, L

p
∗) for r < p, obtained

in §5, namely HomC(I)(L
r
∗, L

p
∗) = (0), is identical with the one obtained

in [1].
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