ON FIXED POINTS OF HOLOMORPHIC TYPE

ВЪ

EWA LIGOCKA (Warszawa)

Abstract. We study a linearization of a real-analytic plane map in the neighborhood of its fixed point of holomorphic type. We prove a generalization of the classical Koenig theorem. To do that, we use the well known results concerning the local dynamics of holomorphic mappings in \mathbb{C}^2 .

1. Introduction. Let $p \in \mathbb{C}$ and U be an open neighborhood of p. Assume that $f: U \to \mathbb{C}$ is an \mathbb{R} -analytic mapping such that f(p) = p and Jf(p) > 0, where Jf denotes the jacobian of f at p. We have three possibilities:

1.
$$\left(\operatorname{Re} \frac{\partial f}{\partial z}(p)\right)^2 < Jf(p)$$
.

In this case the characteristic polynomial $P_f(p)$ of Df(p) has only complex roots λ and $\overline{\lambda}$ with non-zero imaginary part. We shall say that p is a fixed point of f of holomorphic type.

2.
$$\left(\operatorname{Re} \frac{\partial f}{\partial z}(p)\right)^2 = Jf(p)$$
.

In this case $P_f(p)$ has a double real root. We shall say that p is a fixed point of double type.

3.
$$\left(\operatorname{Re} \frac{\partial f}{\partial z}(p)\right)^2 > Jf(p)$$
.

In this case $P_f(p)$ has two distinct real roots. We shall say that p is a fixed point of real type.

Remark 1. Fixed points of holomorphic type are always isolated. If a fixed point p is not isolated, then at least one of the eigenvalues of Df(p) must be equal to one.

In the present note we shall deal with case 1.

²⁰⁰⁰ Mathematics Subject Classification: Primary 37J; Secondary 32A.

62 E. LIGOCKA

EXAMPLES. (a) If f is holomorphic near p, then $Df(p)(z) = f'(p) \cdot z$. Hence p is a fixed point of holomorphic type if $\operatorname{Im} f'(p) \neq 0$, and is of double type otherwise.

- (b) Let $f(z) = \alpha(2z + \overline{z} + |z|^2 z)$. The fixed point p = 0 is: of holomorphic type if $|\operatorname{Re} \alpha| < |\operatorname{Im} \alpha|$, of double type if $|\operatorname{Re} \alpha| = |\operatorname{Im} \alpha|$, of real type if $|\operatorname{Re} \alpha| > |\operatorname{Im} \alpha|$.
- (c) $f(x,y) = (y + \arctan x, -\delta x), \delta > 0$. The point p = 0 is: of holomorphic type if $\delta > 1/4$, of double type if $\delta = 1/4$, of real type if $\delta < 1/4$.
- (d) $f(z) = z(1/2 i) + \overline{z}/2$. The point p = 0 is of holomorphic type since $\operatorname{Re} \partial f/\partial z \equiv 1/2$, $Jf \equiv 1$. However we have $f^{(6)} = f \circ f \circ f \circ f \circ f \circ f \equiv \operatorname{Id}$.

The aim of the present note is to prove the following.

THEOREM 1. Let $p \in U = \text{int } U \subset \mathbb{C}$ and let $f: U \to \mathbb{C}$ be a real-analytic mapping such that f(p) = p, Jf(p) > 0 and $Jf(p) \neq 1$. Assume that p is a fixed point of holomorphic type. Then there exist $\lambda \in \mathbb{C}$ ($|\lambda| \neq 1$, Im $\lambda \neq 0$), an open neighborhood V of p, and a real-analytic orientation preserving diffeomorphic map h from V onto some neighborhood of zero such that $h \circ f \circ h^{-1}(z) = \lambda z$ on h(V).

Remark 2. Theorem 1 is a generalization of the classical Koenig theorem for holomorphic mappings (see [1]).

The rest of the present paper will be devoted to the study of the cases Jf = 1 and Df = 0.

2. The proof of Theorem 1. We shall start with the following crucial

Proposition 1. Let $A(z) = az + b\overline{z}$ be an \mathbb{R} -linear mapping such that

$$(\operatorname{Re} a)^2 < |a|^2 - |b|^2.$$

Let λ , $\overline{\lambda}$ be the two roots of the characteristic polynomial of A. Then Im $\lambda \neq 0$ and there exists an \mathbb{R} -linear automorphism H of \mathbb{C} ($\mathbb{C} = \mathbb{R}^2$) for which $H^{-1}AH(z) = \lambda z$.

If b=0 there is nothing to prove. We shall assume that $b\neq 0$. Put $c=b/(\lambda-a)$. We have

$$|c|^2 \neq 1$$

since $\lambda \neq \overline{\lambda}$, $ac + b = \lambda \cdot c$, $|b|^2 = (\lambda - a)(\lambda - \overline{a}) = (\overline{\lambda} - \overline{a})(\overline{\lambda} - a)$ and $a + b\overline{c} = a + |b|^2/(\overline{\lambda} - \overline{a}) = \overline{\lambda}$.

Define an \mathbb{R} -linear mapping $H(z) = cz + \overline{z}$. We have

$$AH(z) = a(cz + \overline{z}) + b(\overline{cz} + z) = (ac + b)z + (a + b\overline{c})\overline{z} = \lambda cz + \overline{\lambda}\overline{z};$$

since

$$H^{-1}(w) = \frac{1}{1 - |c|^2} \left(\overline{w} - \overline{c}w \right),$$

it follows that

$$H^{-1}AH(z) = \frac{1}{1 - |c|^2} \left(\lambda z + \overline{\lambda} \overline{c} \overline{z} - \lambda |c|^2 z - \overline{c} \overline{\lambda} \overline{z} \right) = \frac{1}{1 - |c|^2} \left(\lambda z - \lambda |c|^2 z \right) = \lambda z.$$

REMARK 3. We can take $\overline{\lambda}$ instead of λ and find H_1 conjugating A to $\overline{\lambda}z$ since $\overline{\lambda}\overline{z} = \overline{\lambda}z$; the map H_1 will have opposite orientation to H. Hence we can always find λ for which the mapping H is orientation preserving.

We now prove Theorem 1.

Assume that p=0 and that $f(z)=\sum_{i,j=0}^{\infty}a_{ij}z^{i}\overline{z}^{j}$ on U. Define the holomorphic function $F:U\times U\to\mathbb{C}^{2}$ by

$$F(z, w) = (f_1(z, w), f_2(z, w)) = \Big(\sum_{i,j=0}^{\infty} a_{ij} z^i w^j, \sum_{i,j=0}^{\infty} \overline{a}_{ij} w^i z^j\Big).$$

Note that $f_1(z, \overline{z}) = f(z)$ and $f_2(z, \overline{z}) = \overline{f(z)}$.

Let $M = \{(z, \overline{z}) : z \in \mathbb{C}\}$. We have $F(M \cap (U \times U)) \subset M$. The derivative

$$DF(0) = \begin{bmatrix} \frac{\partial f}{\partial z}(0) & \frac{\partial f}{\partial \overline{z}}(0) \\ \frac{\overline{\partial f}}{\partial \overline{z}}(0) & \frac{\overline{\partial f}}{\partial z}(0) \end{bmatrix} = \begin{bmatrix} a_{10} & a_{01} \\ \overline{a}_{01} & \overline{a}_{10} \end{bmatrix}$$

has eigenvalues $\lambda, \overline{\lambda}$, which are the roots of the characteristic polynomial of Df(0).

Since $Jf(0) \neq 1$ we have either $|\lambda| < 1$ or $|\lambda| > 1$. It suffices to consider the case $Jf(0) < 1 \Rightarrow |\lambda| < 1$. If Jf(0) > 1 we can consider f^{-1} and F^{-1} . In this case there exists a neighborhood $W_0 = V_0 \times V_0$ of zero such that $F(W_0) \subset W_0$ and $F^{(n)}(z,w) = F \circ {n \text{ times} \atop } \circ F(z,w) \to 0$ as $n \to \infty$.

We also have $|\lambda|^2 < |\overline{\lambda}| = |\lambda| < 1$. Rosay and Rudin proved in [5] (see also [2, 4.4]) that $G = \lim_{n \to \infty} (DF(0))^{-n} \circ F^{(n)}$ is a well defined holomorphic mapping from W_0 into \mathbb{C}^2 , $DG(0) = \mathrm{Id}$ and

(*)
$$G \circ F = \widetilde{A} \circ G, \quad \widetilde{A} = DF(0).$$

In our case $G(W_0 \cap M) \subset M$ since DF(0)(M) = M and $(DF(0))^{-1}(M) = M$. If $G = (g_1, g_2)$, then $\overline{g_1(z, \overline{z})} = g_2(z, \overline{z})$. We have $g_1(f(z), \overline{f(z)}) = Df(0)(g_1(z, \overline{z}))$ by (*).

Proposition 1 implies that $Df(0) = H\lambda H^{-1}$ where, by Remark 3, λ is chosen such that H is orientation preserving. Since $DG(0) = \operatorname{Id}$, we have $(\partial/\partial z)g_1(z,\overline{z})(0) = 1$ and $(\partial/\partial\overline{z})g_1(z,\overline{z})(0) = 0$. Thus $Jg_1(z,\overline{z}) = 1$ and $g(z) = g_1(z,\overline{z})$ is invertible in a neighborhood V of zero. Now it suffices to put $h = H^{-1} \circ g$. This ends the proof of Theorem 1.

3. The case of Jf(p) = 1. Let f be a real-analytic map on the neighborhood of p and let p be a fixed point of holomorphic type. We can assume

64 E. LIGOCKA

that p = 0. If Jf(0) = 1, then $|\lambda| = |\overline{\lambda}| = 1$. Since the fixed point 0 is of holomorphic type, we have $\text{Im } \lambda \neq 0$. Hence Proposition 1 is valid and we can assume that f has the form $f(z) = \lambda z + \sum_{i+j=2}^{\infty} a_{ij} z^{i} \overline{z}^{j}$.

Thus

$$F(z,w) = \left(\lambda z + \sum_{i+j=2}^{\infty} a_{ij} z^i w^j, \overline{\lambda} w + \sum_{i+j=2}^{\infty} \overline{a}_{ij} w^i z^j\right)$$

and $DF(0,0)(z,w) = (\lambda z, \overline{\lambda}w).$

Since DF(0) is unitary, we can apply Theorem 4.24 of [2, Ch. 4, 4.4] to obtain

Theorem 2. Let f be as above. The following conditions are equivalent:

- (a) There exists a neighborhood of zero in \mathbb{C}^2 on which the sequence of iterates $F^{(n)} = F \circ {}^n \stackrel{times}{\dots} \circ F$, $n = 1, 2, \dots$, is uniformly bounded.
- (b) There exists a neighborhood U of zero and a real-analytic diffeomorphism $h: U \to \mathbb{C}$ with h(0) = 0 such that $h \circ f \circ h^{-1}(z) = \lambda z$ on h(U).

Proof. (a) \Rightarrow (b). Condition (a) implies that the point 0 belongs to the Fatou set of F. Thus by Theorem 4.24 of [2], there exists a biholomorphic map G defined on a neighborhood of zero in \mathbb{C}^2 such that $G \circ F \circ G^{-1} = DF(0)$. Hence we have the same situation as in the proof of Theorem 1.

(b) \Rightarrow (a). We have $h(z) = \sum_{k,j=0}^{\infty} c_{kj} z^k \overline{z}^j$ near zero. Define

$$H(z, w) = \Big(\sum_{k,j=1}^{\infty} c_{kj} z^k w^j, \sum_{k,j=1}^{\infty} c_{kj} w^k z^j\Big).$$

Since $JH(0) \neq 0$, H is biholomorphic on some neighborhood of zero in \mathbb{C}^2 . We have $H \circ F \circ H^{-1} = DF(0)$ on the set $\{(z,\overline{z})\}_{z \in \text{nbh of } 0}$, by the very definition of H and F. The above set is a set of uniqueness for holomorphic functions and thus $H \circ F \circ H^{-1} = DF(0)$ on some neighborhood of zero in \mathbb{C}^2 . The family $\{(DF(0))^{(n)}\}$ of mappings is uniformly bounded $((DF(0))^{(n)}(z,w) = (\lambda^n z, \overline{\lambda}^n w))$. This implies that so is the family $\{F^{(n)}\}$.

Remark 4. The assumption that $F^{(n)}$ are uniformly bounded on some neighborhood of zero in \mathbb{C}^2 cannot be replaced by the assumption that $f^{(n)}$ are uniformly bounded on some neighborhood of zero in \mathbb{C} .

Let us consider the following

EXAMPLE. Let $\varphi(z) = z/(1+z^2)$. The point zero belongs to the Julia set of φ and therefore the family $\{\varphi^{(n)}\}$ cannot be uniformly bounded on any neighborhood of zero. However the family $\{\varphi^{(n)}|_{\mathbb{R}}\}$ is uniformly bounded on the whole real axis \mathbb{R} . Put $f(z) = -i\varphi(\operatorname{Re} z) + \operatorname{Im} z$. Since $\lambda = -i$, zero is a fixed point of f of holomorphic type. The family $\{f^{(n)}\}$ is uniformly

bounded on the whole complex plane. We have

$$F(z,w) = \left(-i\varphi\left(\frac{z+w}{2}\right) - i\frac{z-w}{2}, +i\varphi\left(\frac{z+w}{2}\right) - i\frac{z-w}{2}\right).$$

The first component of the map $F^{(2n)}$ is equal to

$$(F^{(2n)})_1(z,w) = -i\varphi^{(n)}\left(\frac{z-w}{2i}\right) + \varphi^{(n)}\left(\frac{z+w}{2}\right)$$

and the first component of the map $F^{(2n+1)}$ is equal to

$$(F^{(2n+1)})_1(z,w) = -i\varphi^{(n+1)}\left(\frac{z+w}{2}\right) + \varphi^{(n)}\left(\frac{z-w}{2i}\right).$$

Thus the family $\{F^{(k)}\}$ cannot be bounded on any neighborhood of zero in \mathbb{C}^2 .

However zero is an attracting fixed point of f. The basin of attraction of zero is equal to the whole plane.

4. The case of $Df(p) \equiv 0$ **.** In the previous parts of this note we found an analogue of the classical Koenig theorem and a condition for the existence of a Siegel disc. The natural question arises: Is it possible to find an analogue of the Böttcher theorem? A slight modification of the Hubbard–Papadopol example [3] shows that the answer is negative.

EXAMPLE. Let $f(z) = z^2 + \overline{z}^3$. We shall show that there is no real-analytic diffeomorphism h of a neighborhood of zero such that $h \circ f \circ h^{-1}(z) = z^2$.

We have $F(z,w)=(z^2+w^3,w^2+z^3)$. Suppose that there exists a real-analytic diffeomorphism h conjugating f to z^2 on a neighborhood of zero in \mathbb{C} . As before for $h(z)=\sum_{k+j=1}^\infty a_{kj}z^k\overline{z}^j$ define

$$H(z,w) = \Big(\sum_{k+j=1}^{\infty} a_{kj} z^k w^j, \sum_{k+j=1}^{\infty} \overline{a}_{kj} w^k z^j\Big).$$

Since $h \circ f \circ h^{-1}(z) = z^2$, we have $H \circ F \circ H^{-1}(z,w) = (z^2,w^2)$. However as observed by Hubbard and Papadopol, this is impossible, because, by a theorem of Mumford [4], no local homeomorphism of \mathbb{C}^2 near the origin can map a smooth curve to a singular curve. Note that F maps the curve $\{z=0\}$ onto the singular curve $\{z^2=w^3\}$ and the curve $\{w=0\}$ to the curve $\{z^3=w^2\}$.

REFERENCES

66 E. LIGOCKA

- [2] P. C. Hu and C. C. Yang, Differentiable and Complex Dynamics of Several Variables, Kluwer, 1999.
- [3] J. H. Hubbard and P. Papadopol, Superattractive fixed points in \mathbb{C}^n , Indiana Univ. Math. J. 43 (1994), 321–365.
- [4] D. Mumford, The topology of normal singularities of a complex surface and a criterion for simplicity, Publ. Math. IHES 9 (1961), 5–22.
- [5] J. P. Rosay and W. Rudin, *Holomorphic maps from* \mathbb{C}^n to \mathbb{C}^n , Trans. Amer. Math. Soc. 310 (1988), 47–88.

Institute of Mathematics
Department of Mathematics, Computer Science and Mechanics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: elig@mimuw.edu.pl

Received 25 June 2001; revised 12 March 2002 (4084)