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ON FIXED POINTS OF HOLOMORPHIC TYPE

BY

EWA LIGOCKA (Warszawa)

Abstract. We study a linearization of a real-analytic plane map in the neighborhood
of its fixed point of holomorphic type. We prove a generalization of the classical Koenig
theorem. To do that, we use the well known results concerning the local dynamics of
holomorphic mappings in C

2.

1. Introduction. Let p ∈ C and U be an open neighborhood of p.
Assume that f : U → C is an R-analytic mapping such that f(p) = p
and Jf(p) > 0, where Jf denotes the jacobian of f at p. We have three
possibilities:

1.

(
Re
∂f

∂z
(p)

)2
< Jf(p).

In this case the characteristic polynomial Pf (p) of Df(p) has only com-
plex roots λ and λ with non-zero imaginary part. We shall say that p is a
fixed point of f of holomorphic type.

2.

(
Re
∂f

∂z
(p)

)2
= Jf(p).

In this case Pf (p) has a double real root. We shall say that p is a fixed
point of double type.

3.

(
Re
∂f

∂z
(p)

)2
> Jf(p).

In this case Pf (p) has two distinct real roots. We shall say that p is a
fixed point of real type.

Remark 1. Fixed points of holomorphic type are always isolated. If a
fixed point p is not isolated, then at least one of the eigenvalues of Df(p)
must be equal to one.

In the present note we shall deal with case 1.
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Examples. (a) If f is holomorphic near p, then Df(p)(z) = f ′(p) · z.
Hence p is a fixed point of holomorphic type if Im f ′(p) 6= 0, and is of double
type otherwise.
(b) Let f(z) = α(2z+z+ |z|2z). The fixed point p = 0 is: of holomorphic

type if |Reα| < |Imα|, of double type if |Reα| = |Imα|, of real type if
|Reα| > |Imα|.
(c) f(x, y) = (y + arctanx,−δx), δ > 0. The point p = 0 is: of holomor-

phic type if δ > 1/4, of double type if δ = 1/4, of real type if δ < 1/4.
(d) f(z) = z(1/2− i)+z/2. The point p = 0 is of holomorphic type since

Re ∂f/∂z ≡ 1/2, Jf ≡ 1. However we have f (6) = f ◦ f ◦ f ◦ f ◦ f ◦ f ≡ Id.

The aim of the present note is to prove the following.

Theorem 1. Let p ∈ U = intU ⊂ C and let f : U → C be a real-

analytic mapping such that f(p) = p, Jf(p) > 0 and Jf(p) 6= 1. Assume
that p is a fixed point of holomorphic type. Then there exist λ ∈ C (|λ| 6= 1,
Imλ 6= 0), an open neighborhood V of p, and a real-analytic orientation
preserving diffeomorphic map h from V onto some neighborhood of zero
such that h ◦ f ◦ h−1(z) = λz on h(V ).

Remark 2. Theorem 1 is a generalization of the classical Koenig theo-
rem for holomorphic mappings (see [1]).

The rest of the present paper will be devoted to the study of the cases
Jf = 1 and Df = 0.

2. The proof of Theorem 1. We shall start with the following crucial

Proposition 1. Let A(z) = az + bz be an R-linear mapping such that

(Re a)2 < |a|2 − |b|2.

Let λ, λ be the two roots of the characteristic polynomial of A. Then Imλ 6= 0
and there exists an R-linear automorphism H of C (C = R

2) for which
H−1AH(z) = λz.

If b = 0 there is nothing to prove. We shall assume that b 6= 0. Put
c = b/(λ− a). We have

|c|2 6= 1

since λ 6= λ, ac + b = λ · c, |b|2 = (λ − a)(λ − a) = (λ − a)(λ − a) and
a+ bc = a+ |b|2/(λ− a) = λ.
Define an R-linear mapping H(z) = cz + z. We have

AH(z) = a(cz + z) + b(cz + z) = (ac+ b)z + (a+ bc)z = λcz + λz;

since

H−1(w) =
1

1− |c|2
(w − cw),
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it follows that

H−1AH(z) =
1

1− |c|2
(λz+λcz−λ|c|2z−cλz) =

1

1− |c|2
(λz−λ|c|2z) = λz.

Remark 3. We can take λ instead of λ and find H1 conjugating A to
λz since λz = λz; the map H1 will have opposite orientation to H. Hence
we can always find λ for which the mapping H is orientation preserving.

We now prove Theorem 1.
Assume that p = 0 and that f(z) =

∑
∞

i,j=0 aijz
izj on U . Define the

holomorphic function F : U × U → C
2 by

F (z, w) = (f1(z, w), f2(z, w)) =
( ∞∑

i,j=0

aijz
iwj ,

∞∑

i,j=0

aijw
izj
)
.

Note that f1(z, z) = f(z) and f2(z, z) = f(z).
LetM = {(z, z) : z ∈ C}. We have F (M ∩ (U×U)) ⊂M . The derivative

DF (0) =




∂f

∂z
(0)

∂f

∂z
(0)

∂f

∂z
(0)

∂f

∂z
(0)


 =
[
a10 a01
a01 a10

]

has eigenvalues λ, λ, which are the roots of the characteristic polynomial of
Df(0).
Since Jf(0) 6= 1 we have either |λ| < 1 or |λ| > 1. It suffices to consider

the case Jf(0) < 1 ⇒ |λ| < 1. If Jf(0) > 1 we can consider f−1 and F−1.
In this case there exists a neighborhood W0 = V0 × V0 of zero such that
F (W0) ⊂W0 and F

(n)(z, w) = F ◦ n times. . . ◦ F (z, w)→ 0 as n→∞.
We also have |λ|2 < |λ| = |λ| < 1. Rosay and Rudin proved in [5] (see also

[2, 4.4]) that G = limn→∞(DF (0))
−n ◦ F (n) is a well defined holomorphic

mapping from W0 into C
2, DG(0) = Id and

(∗) G ◦ F = Ã ◦G, Ã = DF (0).

In our case G(W0 ∩M) ⊂M since DF (0)(M) =M and (DF (0))
−1(M)

= M . If G = (g1, g2), then g1(z, z) = g2(z, z). We have g1(f(z), f(z))
= Df(0)(g1(z, z)) by (∗).
Proposition 1 implies that Df(0) = HλH−1 where, by Remark 3, λ is

chosen such that H is orientation preserving. Since DG(0) = Id, we have
(∂/∂z)g1(z, z)(0) = 1 and (∂/∂z)g1(z, z)(0) = 0. Thus Jg1(z, z) = 1 and
g(z) = g1(z, z) is invertible in a neighborhood V of zero. Now it suffices to
put h = H−1 ◦ g. This ends the proof of Theorem 1.

3. The case of Jf(p) = 1. Let f be a real-analytic map on the neigh-
borhood of p and let p be a fixed point of holomorphic type. We can assume
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that p = 0. If Jf(0) = 1, then |λ| = |λ| = 1. Since the fixed point 0 is of
holomorphic type, we have Imλ 6= 0. Hence Proposition 1 is valid and we
can assume that f has the form f(z) = λz +

∑
∞

i+j=2 aijz
izj .

Thus

F (z, w) =
(
λz +

∞∑

i+j=2

aijz
iwj , λw +

∞∑

i+j=2

aijw
izj
)

and DF (0, 0)(z, w) = (λz, λw).

Since DF (0) is unitary, we can apply Theorem 4.24 of [2, Ch. 4, 4.4] to
obtain

Theorem 2. Let f be as above. The following conditions are equivalent :

(a) There exists a neighborhood of zero in C
2 on which the sequence of

iterates F (n) = F ◦ n times. . . ◦ F , n = 1, 2, . . . , is uniformly bounded.

(b) There exists a neighborhood U of zero and a real-analytic diffeomor-
phism h : U → C with h(0) = 0 such that h ◦ f ◦ h−1(z) = λz on h(U).

Proof. (a)⇒(b). Condition (a) implies that the point 0 belongs to the
Fatou set of F . Thus by Theorem 4.24 of [2], there exists a biholomorphic
map G defined on a neighborhood of zero in C

2 such that G ◦ F ◦ G−1 =
DF (0). Hence we have the same situation as in the proof of Theorem 1.

(b)⇒(a). We have h(z) =
∑
∞

k,j=0 ckjz
kzj near zero. Define

H(z, w) =
( ∞∑

k,j=1

ckjz
kwj ,

∞∑

k,j=1

ckjw
kzj
)
.

Since JH(0) 6= 0, H is biholomorphic on some neighborhood of zero in
C
2. We have H ◦ F ◦ H−1 = DF (0) on the set {(z, z)}z∈nbh of 0, by the
very definition of H and F . The above set is a set of uniqueness for holo-
morphic functions and thus H ◦ F ◦H−1 = DF (0) on some neighborhood
of zero in C

2. The family {(DF (0))(n)} of mappings is uniformly bounded
((DF (0))(n)(z, w) = (λnz, λnw)). This implies that so is the family {F (n)}.

Remark 4. The assumption that F (n) are uniformly bounded on some
neighborhood of zero in C

2 cannot be replaced by the assumption that f (n)

are uniformly bounded on some neighborhood of zero in C.

Let us consider the following

Example. Let ϕ(z) = z/(1+z2). The point zero belongs to the Julia set
of ϕ and therefore the family {ϕ(n)} cannot be uniformly bounded on any
neighborhood of zero. However the family {ϕ(n)|R} is uniformly bounded
on the whole real axis R. Put f(z) = −iϕ(Re z) + Im z. Since λ = −i, zero
is a fixed point of f of holomorphic type. The family {f (n)} is uniformly
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bounded on the whole complex plane. We have

F (z, w) =

(
−iϕ

(
z + w

2

)
− i
z − w

2
,+iϕ

(
z + w

2

)
− i
z − w

2

)
.

The first component of the map F (2n) is equal to

(F (2n))1(z, w) = −iϕ
(n)

(
z − w

2i

)
+ ϕ(n)

(
z + w

2

)

and the first component of the map F (2n+1) is equal to

(F (2n+1))1(z, w) = −iϕ
(n+1)

(
z + w

2

)
+ ϕ(n)

(
z − w

2i

)
.

Thus the family {F (k)} cannot be bounded on any neighborhood of zero
in C2.
However zero is an attracting fixed point of f . The basin of attraction

of zero is equal to the whole plane.

4. The case of Df(p) ≡ 0. In the previous parts of this note we found
an analogue of the classical Koenig theorem and a condition for the existence
of a Siegel disc. The natural question arises: Is it possible to find an analogue
of the Böttcher theorem? A slight modification of the Hubbard–Papadopol
example [3] shows that the answer is negative.

Example. Let f(z) = z2 + z3. We shall show that there is no real-
analytic diffeomorphism h of a neighborhood of zero such that h◦f ◦h−1(z)
= z2.
We have F (z, w) = (z2 +w3, w2 + z3). Suppose that there exists a real-

analytic diffeomorphism h conjugating f to z2 on a neighborhood of zero
in C. As before for h(z) =

∑
∞

k+j=1 akjz
kzj define

H(z, w) =
( ∞∑

k+j=1

akjz
kwj ,

∞∑

k+j=1

akjw
kzj
)
.

Since h ◦ f ◦ h−1(z) = z2, we have H ◦ F ◦H−1(z, w) = (z2, w2). However
as observed by Hubbard and Papadopol, this is impossible, because, by a
theorem of Mumford [4], no local homeomorphism of C

2 near the origin
can map a smooth curve to a singular curve. Note that F maps the curve
{z = 0} onto the singular curve {z2 = w3} and the curve {w = 0} to the
curve {z3 = w2}.
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