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WITH BMO BOUNDARY VALUES
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Abstract. Let D be a symmetric Siegel domain of tube type and S be a solvable Lie
group acting simply transitively on D. Assume that L is a real S-invariant second order
operator that satisfies Hörmander’s condition and annihilates holomorphic functions. Let
H be the Laplace–Beltrami operator for the product of upper half planes imbedded in D.
We prove that if F is an L-Poisson integral of a BMO function and HF = 0 then F is
pluriharmonic. Some other related results are also considered.

1. Introduction. Let D be a symmetric Siegel domain of tube type,
i.e. D = V + iΩ, where Ω is an irreducible symmetric cone in a Euclidean
space V . Let S be a solvable Lie group acting simply transitively on D
which, as in previous papers [DHMP], [DHP], etc., we identify with D. In a
recent series of articles [BBDHPT], [BDH], [DHMP] pluriharmonic functions
have been studied by means of S-invariant operators. More precisely, the
operators of interest are real S-invariant, second order, degenerate elliptic
operators L that annihilate holomorphic functions F and, consequently, their
real and imaginary parts. Such operators will be called admissible. If L is
hypoelliptic then there is a bounded, integrable, positive function PL on V
such that the Poisson integrals

(1.1) F (w) =
\
V

f(w • x)PL(x) dx = PLf(w),

f ∈ Lp(V ), 1 < p ≤ ∞, are L-harmonic [DH], [DHP]. A real-valued F is

pluriharmonic if and only if the (distributional) Fourier transform f̂ satisfies

(1.2) supp f̂ ⊂ Ω ∪ −Ω.
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Granted (1.1), condition (1.2) is equivalent to

(1.3) HF = 0,

H being the Laplace–Beltrami operator for the product of upper half planes
imbedded in D [BDH]. If F is real, satisfies (1.1), (1.2) and f ∈ L2(V ),

then the conjugate pluriharmonic function F̃ has the same properties (up

to an additive constant) and F + iF̃ is in the Hardy H2 space [DHMP].
It follows from what is shown in the present paper that the same holds if
f ∈ Lp(V ), 1 < p < ∞. In general, when F is a bounded function, then

f̃ can be only BMO, as in the case example of the upper half plane. The
aim of this paper is to study the PL-Poisson integrals in the sense of (1.1),
where f ∈ BMO(V ). We show that for f ∈ BMO(V ) the integral (1.1) is
absolutely convergent, conditions (1.2) and (1.3) are equivalent and, in turn,
they are equivalent to pluriharmonicity of F . Moreover, for the conjugate
pluriharmonic function F̃ , its boundary value f̃ is also a BMO(V ) function.
The group S being identified with D, admissible operators are of the

form

(1.4) L =
m∑

j=1

X2j +X0,

where the Xj ’s are appropriately chosen elements of the Lie algebra of S. If
X1, . . . , Xm generate the Lie algebra, then we say that L is of Hörmander
type. If L is admissible of Hörmander type, the bounded L-harmonic func-
tions are integrals of their boundary values on a nilpotent subgroup N(L)
of S against the corresponding Poisson kernel [DH] (1). The fact that L
annihilates holomorphic functions implies that the Shilov boundary V is
contained in N(L) and is not necessarily equal to N(L) ([DHP]). However,
there is a positive Poisson kernel PL on V with the following properties:

1. The PL-Poisson integrals F (w) =
T
V
f(w•x)PL(x) dx of PL-integrable

functions f are L-harmonic (see (2.11)).
2. Bounded holomorphic and antiholomorphic functions are PL-Poisson

integrals.
3.
T
V
|x|εPL(x) dx <∞ for some ε > 0.

This way we obtain a family of kernels analogous to the Poisson–Szegő
kernel except that they are not Laplace–Beltrami harmonic, but L-harmonic.
In [BDH] the following theorem was proved:

Theorem 1.5. Let D be a symmetric tube domain and let L be a Hör-
mander type admissible operator. There is an elliptic degenerate operatorHα

(1) See (2.9). The origin of this research goes back to H. Furstenberg [F], Y. Guivarc’h
[G] and A. Raugi [Ra] who developed a probabilistic approach to bounded functions on
groups harmonic with respect to a probability measure.
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(see (4.1)) such that if a bounded function F is annihilated by L and Hα,
then F is pluriharmonic (2).

Hα is the Laplace–Beltrami operator for the product of upper half planes
with the usual metric, possibly scaled on each factor by an appropriate
constant. The scaling is done in the way that N(L+Hα) = V . This allows
writing F as the Poisson integral PL+Hαf on V . Generally Hα depends on
L, but there is quite a freedom in choosing it. Granted F = PL+Hαf , (1.2)
is equivalent to HαF = 0. As a straightforward consequence of Theorem 1.5
we find that if F = PLf , f ∈ Lp, 1 < p < ∞, and HαF = 0, then F
is pluriharmonic. However, no information about the size of the conjugate
function can be deduced from [BDH]. Here we prove more general theorems
that, in particular, solve this problem.

Theorem 4.3. Let F be the PL-Poisson integral of a BMO function f .
Let Hα be any operator of the form (4.1) and assume that HαF = 0. Then
F is pluriharmonic and the conjugate function is the PL-Poisson integral
of a BMO function f̃ with ‖f̃‖BMO ≤ C‖f‖BMO. Moreover , if F = PLf ,

f ∈ Lp, 1 < p <∞, then F̃ = PLf̃ and ‖f̃‖Lp(V ) ≤ ‖f‖Lp(V ) for a properly

chosen f̃ (up to an additive constant).

The strategy of the proof is as follows. First we show that HαF = 0 im-
plies supp f̂ ⊂ Ω∪−Ω (Section 4). Then using appropriate singular integral

operators T1, T2 we obtain two BMO functions T1f , T2f with supp T̂1f ⊂ Ω,

supp T̂2f ⊂ −Ω and such that

T1f + T2f = f as elements in BMO(V ).

Then it remains to prove that the PL-Poisson integrals of T1f , T2f are
holomorphic and antiholomorphic functions, respectively (Section 5).
A natural problem arises to characterize the PL-Poisson integrals F of

BMO functions in terms of F without referring directly to its boundary
values. In analogy to Poisson integrals of Lp functions a first guess could be:

F is the PL-Poisson integral of a BMO function f if , and only if , LF =0
and supy∈Ω ‖Fy‖BMO, where Fy(x) = F (x+ iy).
This however is not true, because adding to F a function h(y) that is

L-harmonic and constant on any slice V +iy does not change the BMO norm.
It is easy to see that there exist such functions h that are not PL-Poisson
integrals. Therefore a more appropriate characterization is the following:

Theorem 3.13. Assume N(L)=V and LF =0. Then supy∈Ω ‖Fy‖BMO
< ∞ if , and only if , F (x + iy) = PLf(x + iy) + h(y), x ∈ V , y ∈ Ω, for
some BMO function f and an h with Lh = 0.

(2) Theorem 3.3 in [BDH]. Although L is elliptic there, the result holds for a Hör-
mander type L with the same proof.
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We summarize all these in a slightly more general theorem:

Theorem 4.2. Given a Hörmander type operator L, there is an operator
Hα such that if LF = 0, HαF = 0 and supy∈Ω ‖Fy‖BMO < ∞, then
F (x + iy) = PLf(x + iy) + h(y), PLf is pluriharmonic, Lh = 0, Hαh = 0
and the function conjugate to PLf is the PL-Poisson integral of a BMO
function and the same norm inequalities as in Theorem 4.3 hold.

An example at the end shows that h does not have to be pluriharmonic
(Section 6).

The organization of the paper is as follows: Preliminaries contain basic
information about tube domains, the action of the group S, admissible op-
erators and Poisson integrals. Section 3 is devoted to Poisson integrals of
BMO functions. In Section 4 we formulate the main results and we prove
that (1.3) implies (1.2). In Section 5 we show that (1.2) implies plurihar-
monicity together with norm inequalities for the boundary functions.

The authors are grateful to Hans M. Reimann and Elias M. Stein for
valuable remarks about BMO functions.

2. Preliminaries

Symmetric tube domains. Let Ω be an irreducible symmetric cone in a
Euclidean space (V, 〈·, ·〉) and let

D = V + iΩ ⊂ V C

be the corresponding tube domain. There is a solvable Lie group S acting
simply transitively on D. To construct S we consider the connected compo-
nent G of the linear group G(Ω) = {g ∈ GL(V ) : g(Ω) = Ω}. The Iwasawa
decomposition of G(Ω) = S0K yields a triangular group S0 acting simply
transitively on Ω. The action of S0 extends to D by

(2.1) s ◦ (x+ iy) = s ◦ x+ is ◦ y, x ∈ V, y ∈ Ω, s ∈ S0.

Moreover, V acts on D by translations

(2.2) v ◦ (x+ iy) = v + x+ iy, v ∈ V.

These actions generate a solvable Lie group S that acts simply transitively
on D. The group S = V S0 is a semidirect product of V and S0:

(2.3) (v, s)(v1, s1) = (v + s ◦ v1, ss1), v, v1 ∈ V, s, s1 ∈ S0.

The group S0 = N0A is a semidirect product of a nilpotent Lie group N0
and A = (R+)r. The Lie algebra S of S has the decomposition

(2.4) S = N ⊕A, N = V ⊕N0,

A being the Lie algebra of A, N0 the Lie algebra of N0.
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In view of (2.1) and (2.2) we may identify D with S. More precisely, let
e be the stabilizer of K, e = ie and let

(2.5) θ : S ∋ s 7→ θ(s) = s ◦ e ∈ D.

Then θ is a diffeomorphism of S and D. It also identifies the spaces of smooth
functions on S and D. The Lie algebra S then becomes the tangent space Te
of D at e. This allows transfer of the Bergmann metric g and the complex
structure J from D to S, where they become left-invariant tensors.
The group S and its Lie algebra S can also be described in terms of the

Jordan algebra structure of V ([FK]). Since we will make no use of it in
the paper, we refer the reader to e.g. [DHMP] and [BDH] for more details
concerning symmetric tube domains in the framework adapted to what we
need here.
Under identification (2.5) holomorphic functions on D are called holo-

morphic functions on S. A real left-invariant second order elliptic degenerate
operator L is called admissible if L annihilates holomorphic functions. Ad-
missible operators can be described more precisely in terms of S ([DHP],
[DHMP], [BDH]). Namely, we choose a g-orthonormal basis H1, . . . , Hr in
A, and we let λ1, . . . , λr be the dual basis in A∗. It turns out that the spaces
in the decomposition (2.4) are g-orthogonal and we let Λ ⊂ A∗ be

Λ =

{
λi + λj
2

, 1 ≤ i ≤ j ≤ r,
λj − λi
2

, 1 ≤ i < j ≤ r

}
.

Then V and N0 admit further orthogonal decompositions

(2.6) V =
⊕

1≤i≤j≤r

Vij , N0 =
⊕

1≤i<j≤r

Nij ,

where
Vij = N(λi+λj)/2, Nij = N(λj−λi)/2

and for η ∈ Λ,

Nη = {X ∈ V ⊕N0 : [H,X] = η(H)X for every H ∈ A}.

Moreover, dimVjj = 1 and dimVij = dimNij = d. We denote by

Xj the orthonormal basis of Vjj , j = 1, . . . , r,

Xαij , α = 1, . . . , d, an orthonormal basis of Vij , 1 ≤ i < j ≤ r,

Y αij , α = 1, . . . , d, an orthonormal basis of Nij , 1 ≤ i < j ≤ r,

in such a way that

Hj = J (Xj), Y αij = J (X
α
ij).

Let now
Zj = Xj − iHj , j = 1, . . . , r,

Zαij = X
α
ij − iY

α
ij , 1 ≤ i < j ≤ r.
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Then {Zj : j = 1, . . . , r} ∪ {Zαij : 1 ≤ i < j ≤ r, α = 1, . . . , d} is an
orthonormal basis of S-invariant holomorphic vector fields. Any admissible
operator L is a linear combination of the operators

∆(Z,W ) = ZW −∇ZW,

∇ being the Riemannian connection determined by g. ∇ can be easily cal-
culated and

(2.7)
∆(Zj , Zj) = X

2
j +H

2
j −Hj = ∆j ,

∆(Zαij , Z
α
ij) = (X

α
ij)
2 + (Y αij )

2 −Hj = ∆
α
ij

(see e.g. [DHMP]).

Poisson boundaries. Given a Hörmander type admissible operator

L =
m∑

j=1

X2j +X0

we write X0 = Y + Z, Y ∈ A, Z ∈ N and we let

(2.8)

Λ0 = {η ∈ Λ : η(Y ) ≥ 0},

N0(L) =
⊕

η∈Λ0

Nη, N0(L) = expN0(L).

The space

N(L) = expN/N0(L) = S/N0(L)A

is the L-Poisson boundary (cf. [DH]). This means that the bounded L-har-
monic functions are in one-one correspondence with the L∞ functions on
N(L) via the following Poisson integral:

(2.9) F (w) =
\
N(L)

f(w • u)ν(u) du, w ∈ S,

where u 7→ w • u is the action of w ∈ S on N(L).

For an admissible operator of Hörmander type its A-component Y of the
first order term is of the form

(2.10) Y =
r∑

j=1

bjHj with bj < 0

(see [DHP]). Therefore, by (2.8), V ∩N0(L) = {0}. Thus it follows from the
general theory developed in [DH] that V is also a boundary for L, i.e. there
is a Poisson kernel PL on V such that the functions

(2.11) F (w) =
\
V

f(w • x)PL(x) dx, f ∈ L∞(V ),
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are bounded and L-harmonic. Here x 7→ w • x is the action of S on V =
S/N0A. If N0(L) = N0, i.e. N(L) = V , then (2.11) gives all the bounded
L-harmonic functions.

For any admissible operator L of Hörmander type the kernel PL has the
following properties (see [DH]):

(2.12)

PL ∈ L
1(V ) ∩ L∞(V ) ∩ C∞(V ), PL(x) > 0,

there is ε = ε(L) > 0 such that
\
V

|x|εPL(x) dx <∞.

3. Poisson integrals of BMO functions. It is convenient to rewrite
(2.11) in a slightly different form to avoid ( , ) in (2.3) and to put (x, s) = xs,
x ∈ V , s ∈ S0. Then the product of two elements of the group S takes the
form

ww1 = xsx1s1 = xsx1s
−1ss1,

where sx1s
−1 = s ◦ x1 is the linear action (2.1) of S0 on V . Therefore, the

action S on V = S/N0A in (2.11) becomes

(3.1) xs • u = xsus−1 = x+ s ◦ u, u ∈ V.

Let det s be the determinant of the linear transformation u 7→ s ◦ u and let

(3.2) Ps(x) = det s
−1P̆L(s

−1xs).

We define a function P on S by

(3.3) P (xs) = Ps(x), x ∈ V, s ∈ S0.

Then, by (3.1), the PL-Poisson integral can be written as

PLf(xs) = F (xs) =
\
V

f(xsus−1)PL(u) du(3.4)

=
\
V

f(u)Ps(u
−1x) du

= f ∗V Ps(x) =
\
V

f(u)P (u−1xs) du,

which shows, in particular, that P is L-harmonic. (3.4) makes sense for
f ∈ BMO(V ). Indeed, if f ∈ BMO(V ) then g(u) = f(xs • u) is a BMO
function, because the action of S on V is affine. Moreover, we show that in
virtue of (2.12), the integral \

V

f(u)PL(u) du

is absolutely convergent. The proof uses standard techniques, but we include
it for completeness.
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Lemma 3.5. Let g ∈ L1(Rk) ∩ L∞(Rk) and
T
Rk
|g(u)| · |u|ε du < ∞ for

some ε > 0. Then there is a constant C > 0 such that∣∣∣
\

Rk

g(u)f(u) du
∣∣∣ ≤ C‖f‖BMO(Rk) + ‖g‖L1 |mB(f)|,

where B is the unit ball in R
k centered at the origin and

mB(f) =
1

|B|

\
B

f(u) du.

In particular the integral is absolutely convergent.

Proof. Note that for every τ > 0,\
2j+1τ−1B\2jτ−1B

|g(u)| du ≤ 2−εjτε
\

2j+1τ−1B\2jτ−1B

|g(u)| · |u|ε du(3.6)

≤ C2−jετε.

Since
T
Rk
|g(u)| · |mB(f)| du ≤ ‖g‖L1 |mB(f)|, it is enough to prove that

(3.7)
\

Rk

|g(u)| · |f(u)−mB(f)| du ≤ C‖f‖BMO.

We have\
Rk

|g(u)| · |f(u)−mB(f)| du ≤
∞∑

j=0

\
2j+1B\2jB

|g(u)| · |f(u)−mB(f)| du

+
\
B

|g(u)| · |f(u)−mB(f)| du.

But \
B

|g(u)| · |f(u)−mB(f)| du ≤ ‖g‖L∞
\
B

|f(u)−mB(f)| du

≤ ‖g‖L∞ |B| · ‖f‖BMO

and

(3.8)
\

2j+1B\2jB

|g(u)| · |f(u)−mB(f)| du

≤
\

2j+1B\2jB

|g(u)| · |f(u)−m2j+1B(f)| du

+
\

2j+1B\2jB

|g(u)|

j∑

i=0

|m2i+1B(f)−m2iB(f)| du.

Since |m2i+1B(f) − m2iB(f)| ≤ C‖f‖BMO, by (3.6), the second sum-
mand on the right-hand side of (3.8) is smaller than or equal to C(j + 1)
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×2−jε‖f‖BMO. To estimate the first summand we apply the Hölder inequal-
ity to obtain\
2j+1B\2jB

|g(u)| · |f(u)−m2j+1B(f)| du

≤
[ \
2j+1B\2jB

|g(u)|p du
]1/p[ \

2j+1B

|f(u)−m2j+1B(f)|
q du
]1/q

≤ C‖g‖
(p−1)/p
L∞

( \
2j+1B\2jB

|g(u)| du
)1/p
|2j+1B|1/q‖f‖BMO

≤ C‖g‖
(p−1)/p
L∞ 2−jε/p2(j+1)k/q‖f‖BMO.

Taking p close to 1 yields estimate (3.7).

Corollary 3.9. Under the assumptions of Lemma 3.5 there exists a
constant C > 0 such that∣∣∣

\
Rk

g(x− u)f(u) du
∣∣∣ ≤ C(‖f‖BMO + |mB(xf)|).

Proof. By Lemma 3.5, we obtain
∣∣∣
\

Rk

g(x− u)f(u) du
∣∣∣ =
∣∣∣
\

Rk

g(−u)f(x+ u) du
∣∣∣ ≤ C(‖xf‖BMO + |mB(xf)|)

= C(‖f‖BMO + |mB(xf)|).

Let us remark that Lemma 3.5 yields a formula for the left-invariant
derivatives of F = PLf , f ∈ BMO(V ). Let D be a left-invariant differential
operator on S. Then

(3.10) DF (xs) =
\
V

f(u)(DP )(u−1xs) du,

where P is as in (3.3). To prove (3.10) we notice that by the Harnack in-
equality for L and left-invariance of L,

(3.11) sup
w1∈K

|(DP )(ww1)| ≤ CDP (w),

for a compact set K ⊂ S and for every w ∈ S. Then we use Lemma 3.5.
Taking the partial Fourier transform of P (xs) with respect to x, we see

that for any ξ ∈ V , P (ξ̂, s) as a function of s ∈ S0 is annihilated by a
hypoelliptic operator on S0 (for details see 2.5 in [DHMP] or Lemma 5.4 in

[BDH]). Hence s 7→ P (ξ̂, s) is a smooth function. Moreover, for ξ ∈ Ω we
have

(3.12) P (ξ̂, s) = e−〈ξ,s◦e〉.



76 E. DAMEK ET AL.

Indeed, given ξ ∈ Ω, e−i〈ξ,z̄〉 is a bounded antiholomorphic function on D
with the boundary value e−i〈ξ,x〉. Hence

e−i〈ξ,−s◦ie〉 =
\
V

e−i〈ξ,x〉Ps(x) dx

and (3.12) follows.
The following is a characterization of harmonic functions with BMO

boundary values.

Theorem 3.13. Assume that N(L) = V and LF = 0. For s ∈ S0,
x ∈ V let Fs(x) = F (xs). Then the condition

(3.14) sup
s∈S0

‖Fs‖BMO <∞

is equivalent to: there is f ∈ BMO(V ) and an L-harmonic function h(xs) =
h(s), x ∈ V , s ∈ S0, such that

(3.15) Fs(x) = f ∗ Ps(x) + h(s).

Moreover , given F the representation (3.15) is unique up to an additive
constant.

We start with uniqueness. Suppose

f ∗ Ps(x) + h(s) = f1 ∗ Ps(x) + h1(s).

For every φ in the Hardy space H1(V ) we then have

φ ∗ f ∗ Ps(x) = φ ∗ f1 ∗ Ps(x),

and since BMO(V ) is the dual space to H1(V ), φ∗f and φ∗f1 are in L∞(V ).
Therefore, (2.11) implies φ ∗ f = φ ∗ f1, whence f = f1 as elements in BMO
and the rest follows.
Now, since the PL-Poisson integral (3.4) is absolutely convergent, for

every ball B we have

(3.16)
1

|B|

( \
B

|f ∗ Ps(x)−mB(f ∗ Ps)| dx
)
≤ C‖f‖BMO.

Hence (3.15) implies (3.14). To prove the converse, we need the following
lemma.

Lemma 3.17. Let H =
∑r
j=1Hj , Pt = Pexp tH , and let f ∈ BMO(V ).

Then for every g ∈ H1(V ),

lim
t→−∞

〈f ∗ Pt, g〉 = 〈f, g〉.

Proof. In view of (3.16) it suffices to prove that

lim
t→−∞

〈f ∗ Pt, φ〉 = 〈f, φ〉
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for every φ ∈ C∞c with
T
φ = 0. Fix a ball B centered at the origin such that

suppφ ⊂ B. Since
f|2B ∈ L

p(V ), 1 ≤ p <∞,

and Pt is an approximate identity as t→ −∞, we have

lim
t→−∞

〈f|2B ∗ Pt, φ〉 = 〈f|2B , φ〉 = 〈f, φ〉.

Now, we show that there is δ > 0 such that for x ∈ B,

(3.18) |f|(2B)c | ∗ Pt(x) ≤ Ce
δt.

If x ∈ B, then

|f|(2B)c | ∗ Pt(x) ≤
\
Bc

|f(x− u)|Pt(u) du =
\
Bc

|xf(u)|P̆t(u) du = I.

We proceed as in the proof of Lemma 3.5. We have

I ≤
\
Bc

|xf(u)−mB(xf)|P̆t(u) du+
\
Bc

|mB(xf)|P̆t(u) du.

In view of (3.6), we have\
Bc

|mB(xf)|P̆t(u) du ≤ Cm2B(|f |)
\

(e−tB)c

P̆ (u) du ≤ Ceεtm2B(|f |).

Then, as in (3.8) with f replaced by xf and g by P̆t, respectively, by (3.6)
we have\
2j+1B\2jB

P̆t(u)

j∑

i=0

|m2i+1B(xf)−m2iB(xf)| du

≤ C(j + 1)‖f‖BMO
\

2j+1e−tB\2je−tB

P̆ (u) du ≤ C(j + 1)2−jεeεt‖f‖BMO

and \
2j+1B\2jB

|xf(u)−m2j+1B(xf)|P̆t(u) du

≤ C(‖Pt‖L∞)
(p−1)/p2−jε/peεt/p2(j+1)Q/q‖f‖BMO

≤ Ce(ε/p−Q(p−1)/p)t2−jε/p+(j+1)Q/q‖f‖BMO,

where Q = dimV . Now taking p close to 1, for δ = (ε − Q(p − 1))/p > 0
and δ1 = ε/p−Q/q > 0, we have

I ≤ Ceεtm2B(|f |) + C
∞∑

j=0

(eεt(j + 1)2−jε + eδt2−jδ1)‖f‖BMO

≤ Ceδt(m2B(|f |) + ‖f‖BMO)

and (3.18) follows.
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To complete the proof of Theorem 3.13 we show that

(3.14) implies (3.15). Take s = exp tH. There is a sequence tn → −∞
and a function f ∈ BMO(V ) such that for every g ∈ H1(V ),

(3.19) lim
tn→−∞

〈Fexp tnH , g〉 = 〈f, g〉.

For φ ∈ C∞c with
T
φ = 0, consider now

Fφ(xs) = φ ∗ Fs(x).

Then Fφ is harmonic and bounded:

‖φ ∗ Fs‖L∞ ≤ ‖φ‖H1‖Fs‖BMO.

We are going to prove that

Fφ(xs) = φ ∗ f ∗ Ps(x).

Since N(L) = V , the Poisson integral (2.9) turns into (3.4) and yields the
one-to-one correspondence between bounded L-harmonic functions F and
L∞(V ). Moreover,

f(x) = ∗-weak lim
t→−∞

F (x exp[tH]).

Therefore it is enough to show that the boundary value of Fφ(xs)− φ ∗ f ∗
Ps(x) is zero, i.e. the boundary value of Fφ is φ ∗ f .
Let g ∈ L1 and consider

〈φ ∗ Fexp tnH − φ ∗ f, g〉 = 〈Fexp tnH − f, φ̆ ∗ g〉.

Since φ̆ ∗ g ∈ H1(V ), by (3.19) we have

lim
tn→−∞

〈Fexp tnH − f, φ̆ ∗ g〉 = 0.

Therefore, for every s ∈ S0,

φ ∗ Fs(x) = φ ∗ f ∗ Ps(x)

and so Fs = f ∗ Ps as elements in BMO(V ). Hence

Fs(x)− f ∗ Ps(x) = h(s)

and since the function on the left-hand side is L-harmonic so is h(s).

4. Pluriharmonicity. For α = (α1, . . . , αr) with αj > 0 let

(4.1) Hα =
r∑

j=1

αj∆j .

Theorem 4.2. Let L0 be an admissible operator of Hörmander type and
let Hα be such that for L = L0 + Hα we have N(L) = V . Let F be a
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real-valued function on V S0 = D such that LF = HαF = 0 and

sup
s∈S0

‖Fs‖BMO <∞.

Then

F (xs) = G(xs) + h(s),

where G is a pluriharmonic function and the function h, independent of x,
is annihilated by both L and Hα. Both G = PLg and its conjugate G̃ =
PLg̃ are PL-Poisson integrals of BMO functions. Moreover , ‖g̃‖BMO(V ) ≤
C‖g‖BMO(V ).

Remark. Given a Hörmander type admissible L0 there is always anHα
such that N(L0 +Hα) = V (see [DHMP], [DHP]). As shown at the end of
the article, the function h is non-zero, in general.

If F is already of the form F = PLf , then α in Hα may be arbitrary
and the following theorem holds.

Theorem 4.3. Let L be an admissible operator of Hörmander type and
let Hα be as in (4.1). Assume that F = PLf with f ∈ BMO(V ) and

HαF = 0.

Then F is pluriharmonic and the conjugate function F̃ is the PL-Poisson
integral of a BMO function f̃ . Moreover , ‖f̃‖BMO(V ) ≤ C‖f‖BMO(V ).

If f ∈ Lp(V ), 1 < p ≤ ∞, then ‖f̃‖Lp(V ) ≤ C‖f‖Lp(V ) for a properly

chosen f̃ (up to an additive constant) (3).

The only difference in the proofs of the above two theorems is that for
the first one we need the conclusion of Theorem 3.13. The rest is the same.

Proof of Theorem 4.2. By Theorem 3.13,

(4.4) F (xs) = f ∗ Ps(x) + h(s)

for a BMO function f . The first step in the proof is to show that

(4.5) supp f̂ ⊂ Ω ∪ −Ω.

We let ψ ∈ S(V ) be such that

(4.6) ψ̂(ξ) = 0 ⇔ ξ = 0.

Set f1 = ψ ∗ f and F1(xs) = f1 ∗ Ps(x). By (3.10) and (4.4),

HαF1(xs) =
\
V

f1(u)(HαP )(u
−1xs) du = ψ ∗ (HαF )( · s)(x) = 0,

(3) When f ∈ Lp(V ), 1 < p ≤ ∞, pluriharmonicity follows from the results of [BDH],
but the norm inequalities do not.
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and, by (3.11), x 7→ HαP (xs) belongs to L1(V ). Since ψ ∈ H1(V ), f1 is a
bounded function. Therefore Wiener’s theorem ([Ru, Theorem 9.3]) implies
that for every s ∈ S0,

supp f̂1 ⊂ {ξ : (HαP )(ξ̂, s) = 0}.

Fix now ξ ∈ supp f̂1. We then have

(4.7) ∀s ∈ S0 (HαP )(ξ̂, s) = 0.

On the Fourier transform side for s = na, n ∈ N0, a ∈ A, (4.7) reads
r∑

j=1

αj(−a
2
jQ
2
j + a

2
j∂
2
aj )P (ξ̂, na) = 0,

where

(4.8) na = n

r∏

j=1

exp((log aj)Hj), n ∈ N0, aj > 0,

are coordinates in S0 = NA and Qj = Qj(n, ξ) is a polynomial in n and ξ
(see [DHMP, Theorem 2.20]). But, in view of (3.2),

|P (ξ̂, na)| ≤ ‖PL‖L1(V ) = 1,

so P (ξ̂, na) must be of the form

P (ξ̂, na) = g(n) exp
(
−
r∑

j=1

aj |Qj(n, ξ)|
)

(see [DHMP, Lemma 2.16]). Moreover, g(n) is a constant and so

(4.9) P (ξ̂, na) = c exp
(
−
r∑

j=1

aj |Qj(n, ξ)|
)
.

It was proved in [BDH, Lemma 5.7 and Corollary 5.9] that whenever ξ /∈

Ω ∪ −Ω, (4.9) contradicts smoothness of s 7→ P (ξ̂, s). Hence supp f̂1 =

supp ψ̂ ∗ f ⊂ Ω ∪ −Ω, and, by (4.6), we obtain (4.5).
Notice that if f ∈ Lp(V ), 1 < p <∞, then convolving F = PLf on V on

the left with a C∞c function φ we obtain the Poisson integral of a bounded

function and so supp φ̂f̂ ⊂ Ω ∪−Ω. Hence supp f̂ ⊂ Ω ∪−Ω. As we will see
in Section 5, (4.5) implies pluriharmonicity. Therefore, granted F = PLf ,
f ∈ Lp(V ), 1 < p <∞ or f ∈ BMO(V ), HαF = 0 is equivalent to (4.5).

The rest of the argument is contained in Section 5, where the following
theorem is proved:

Theorem 4.10. Assume that f is a real-valued BMO function and

supp f̂ ⊂ Ω ∪ −Ω.
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Then for any admissible operator L of Hörmander type the function

F (xs) = PLf(xs) = f ∗ Ps(x)

is pluriharmonic and its conjugate function F̃ is a PL-Poisson integral of a

BMO function f̃ . Moreover , f̃ = Tf , where T is an operator that maps all
Lp(V )→ Lp(V ), 1 < p <∞, and BMO(V )→ BMO(V ) boundedly.

5. Proof of Theorem 4.10. Let Σ be the unit sphere in V . For a
regular cone Ω we have

(Ω ∩Σ) ∩ (−Ω ∩Σ) = ∅

and so there is a smooth function m1 on Σ such that

(5.1) m1(ξ) =

{
1 for ξ ∈ neighbourhood of Ω ∩Σ in Σ,
0 for ξ ∈ −Ω ∩Σ.

We extend m1 to V by

m1(λξ) = m1(ξ), ξ ∈ Σ, λ > 0,

to obtain a smooth homogeneous function on V \{0}. Let m2(ξ) = m1(−ξ),
ξ ∈ V .
We define two multiplier operators T1 and T2 by

T̂jf = mj f̂ , f ∈ L2(V ), j = 1, 2.

Clearly

(5.2) 〈T1f, g〉 = 〈f, T2g〉 for f, g ∈ L2(V ),

where 〈f, g〉 =
T
V
f(x)g(x) dx. Moreover, by Theorem 4 in [St, III, §3.2],

(5.3) Tj : H
1(V )→ H1(V ) and Tj : L

p(V )→ Lp(V ), 1 < p <∞,

boundedly.
In view of (5.2) and (5.3), Tj may be extended to BMO(V ) by setting

(5.4) 〈T1f, g〉 = 〈f, T2g〉, 〈T2f, g〉 = 〈f, T1g〉,

where g ∈ H1, f ∈ BMO (see [St, IV, §4.1]). Since Tj is defined up to an
additive constant, we choose it so that the integral of Tjf over the unit ball
is 0.
Let us note that Theorem 4.10, and consequently Theorem 4.2, will be

proved if we show

Theorem 5.5. Let f be a real-valued BMO function, supp f̂ ⊂ Ω∪−Ω.
Then

F1(xs) = T1f ∗ Ps(x) is holomorphic,(5.6)

F2(xs) = T2f ∗ Ps(x) is antiholomorphic,(5.7)
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F2 = F 1,(5.8)

there is a constant c ∈ R such that F = F1 + F2 + c,(5.9)

the conjugate function to F is given by F̃ =
1

i
(F1 − F2).(5.10)

We need a few lemmas:

Lemma 5.11. Assume that supp f̂ is compact and contained in Ω ∪−Ω.

Then supp T̂1f ⊂ Ω.

Proof. Let ϕ ∈ C∞c (V ) with suppϕ ⊂ V \Ω. In particular, ϕ̂ ∈ H
1. By

(5.4) we have

〈T̂1f, ϕ〉 = 〈T1f, ϕ̂〉 = 〈f, T2ϕ̂〉.

Notice that

(5.12) supp f̂ ∩ (− supp T̂2ϕ̂) = ∅.

Indeed,

T̂2ϕ̂ = m2ϕ
∼,

where ϕ∼(x) = ϕ(x−1).
But m2ϕ

∼ ∈ C∞c (V ) and (suppm2ϕ
∼) ∩ (Ω ∪ −Ω) = ∅, hence (5.12)

follows. Therefore,

〈f, T2ϕ̂〉 = 0.

Lemma 5.13. Let f ∈ BMO, g ∈ H1. Assume that supp f̂ is compact
and supp f̂ ∩ (− supp ĝ) = ∅. Then 〈f, g〉 = 0.

Proof. Take a sequence of gn that tends to g in H
1 and such that g∨n ∈

C∞c (V ). Let ψ be a Schwartz function such that ψ̂ = 1 on − supp f̂ and

ψ̂ = 0 on supp ĝ. Then gn ∗ ψ → g ∗ ψ in H1 and g ∗ ψ = 0. We have

〈f, g〉 = lim
n→∞
〈f, gn〉 = lim

n→∞
〈f, gn − gn ∗ ψ〉.

But (gn − gn ∗ ψ)∨ ∈ C∞c and (gn − gn ∗ ψ)
∨ = 0 on supp f̂ . Hence

〈f, gn − gn ∗ ϕ〉 = 〈f, ((gn − gn ∗ ψ)
∨)∧〉 = 0.

Lemma 5.14. Assume that supp f̂ is compact and contained in Ω ∪−Ω.
Then (T1 + T2)f = f in BMO.

Proof. Let g ∈ H1(V ) be such that 0 /∈ supp ĝ. Then

supp f̂ ∩ − supp ((T1 + T2 − I)g)
∧ = ∅.

Indeed, ((T1+T2−I)g)∧ = (m1+m2−1)ĝ. By (5.1) there is a neighborhood
of Ω ∪ −Ω such that (m1 +m2 − 1)ĝ|U = 0. Therefore, by Lemma 5.13,

〈(T1 + T2 − I)f, g〉 = 〈f, (T2 + T1 − I)g〉 = 0.
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Since {g ∈ H1(V ) : 0 /∈ supp ĝ} is a dense set in H1(V ), the conclusion
follows.

Lemma 5.15. Let f be a real-valued BMO function. Then T2f = T1f as
functions in BMO.

Proof. A simple calculation shows that for a test function ϕ ∈ C∞c (V )
we have T2ϕ = T1ϕ. Assume now ϕ̂(0) = 0. Then

〈T2f, ϕ〉 = 〈f, T1ϕ〉 = 〈f, T2ϕ〉 = 〈f, T2ϕ〉 = 〈T1f, ϕ〉 = 〈T1f, ϕ〉.

Now, to complete the proof of Theorem 5.5 we have to prove the main
point: F (xs) = T1f ∗Ps(x) is a holomorphic function. This follows from the
following proposition.

Proposition 5.16. Assume that g ∈ BMO and supp ĝ ⊂ Ω. Then

h(xs) = g ∗ Ps(x)

is holomorphic.

Proof. Consider λ ∈ Ω and gλ(x) = ei〈λ,x〉g(x). Then

supp ĝλ ⊂ λ+Ω ⊂ Ω.

It is enough to prove that hλ(xs) = gλ ∗ Ps(x) is holomorphic because we
then take λ = n−1e and observe that hλ → h as distributions.
Let now Gλ be a function on D determined by Gλ ◦ θ = hλ. In view of

(2.5),

Gλ(x+ iy) = gλ ∗ Ps(x),

where y = s ◦ e. We consider the partial Fourier transform of Gλ along the
variable x. For a system of coordinates x1, . . . , xQ in V and the correspond-
ing system of coordinates z1, . . . , zQ in V

C we have

(∂xjGλ)(ξ̂, y) = iξjGλ(ξ̂, y), (∂yjGλ)(ξ̂, y) = ∂yjGλ(ξ̂, y),

where Gλ(ξ̂, y), (∂xjGλ)(ξ̂, y), (∂yjGλ)(ξ̂, y) denote the distributions on D
that are the partial Fourier transforms along the x variable of the functions
Gλ(x + iy), ∂xjGλ(x + iy), ∂yjGλ(x + iy), respectively. Therefore to show
that ∂zjGλ = 0, j = 1, . . . , Q, it suffices to prove that

(5.17) ξjGλ(ξ̂, y) + ∂yjGλ(ξ̂, y) = 0.

Now we observe that due to the assumptions on the support of ĝλ and (3.12),

(5.18) Gλ(ξ̂, y) = ĝλ(ξ)P̂s(ξ) = ĝλ(ξ)e
−〈ξ,y〉

whence (5.17) follows (here ĝλ(ξ) is understood as a distribution). To finish,
it remains to show the first equality in (5.18):

(5.19) ̂gλ ∗ Ps(ξ) = ĝλ(ξ)P̂s(ξ).
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The proof of (5.19) is based on the following two facts:

(5.20) supp ĝλ ⊂ Ω,
\
|gλ(x− y)|Ps(y) dy <∞.

Let now ϕ be a Schwartz function. If supp ϕ̂ ∩ supp ĝλ = ∅ then (5.20) and
the Fubini theorem imply

〈 ̂gλ ∗ Ps, ϕ̂〉 = 0.
Therefore, we may restrict our attention to ϕ̂ ∈ C∞c (Ω). But then

(5.21) 〈 ̂gλ ∗ Ps, ϕ̂〉 = 〈gλ ∗ Ps, ϕ∼〉 = 〈gλ, ϕ∼ ∗ P∼s 〉 = 〈gλ, (ϕ ∗ Ps)∼〉.
Since P̂s(ξ) = e

−〈ξ,y〉, ξ ∈ Ω, the function ϕ̂(ξ)P̂s(ξ) belongs to C∞c (Ω), so
ϕ ∗ Ps is a Schwartz function. Consequently, we may write

(5.22) 〈gλ, (ϕ ∗ Ps)
∼〉 = 〈ĝλ, ̂ϕ ∗ Ps〉 = 〈ĝλ, ϕ̂P̂s〉 = 〈ĝλP̂s, ϕ̂〉.

Now (5.21) and (5.22) imply (5.19).

Proof of Theorem 5.5. Note that (5.6)–(5.10) follow immediately from
Proposition 5.16 and Lemmas 5.14 and 5.15 provided supp f is compact. The
constant c in (5.9) is real, because, in fact, T2f = T1f pointwise according
to our convention

T
B
Tjf = 0, B being the unit ball in V .

To complete the proof of Theorem 5.5 for arbitrary f ∈ BMO, we may
assume that mB(f) = 0. Let ϕ̂ be a real-valued C

∞
c (V ) function such that

ϕ̂(ξ) = 1 for ξ in the unit ball in V , ϕ̂(−ξ) = ϕ̂(ξ) and let ϕn(x) = nkϕ(nx).
Then fn = ϕn ∗ f is a real-valued BMO function with compactly supported
Fourier transform f̂n contained in Ω ∪ −Ω. Moreover,

(5.23) Tjfn = ϕn ∗ Tjf −mB(ϕn ∗ Tjf)

pointwise. Indeed, if g ∈ H1 then Tj(ϕn∗g) = ϕn∗Tjg and so (5.23) follows.
Now set

Fj,n(xs) = Tjfn ∗ Ps(x) = ϕn ∗ Tjf ∗ Ps(x)−mB(ϕn ∗ Tjf).

Then F1,n is holomorphic, F2,n is antiholomorphic, F2,n = F 1,n, and

Fn = ϕn ∗ f ∗ Ps(x) = F1,n(xs) + F2,n(xs) + cn

pointwise. But all the functions above have pointwise limits as n → ∞,
hence limn→∞ cn = c and

f ∗ Ps(x) = T1f ∗ Ps(x) + T2f ∗ Ps(x) + c,

which finishes the proof.

6. Example. For the domain D over the cone of 2 × 2 real symmet-
ric positive definite matrices we are going to show a family of functions h
satisfying

(6.1) Lh = 0, Hαh = 0
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that are not pluriharmonic. Let

h(xna) = ar11 a
r2
2

in coordinates (4.8). Then, by (2.7),

∆jh = ((aj∂aj )
2 − (aj∂aj ))h = rj(rj − 1)h, j = 1, 2,

∆12h = − aj∂ajh = −r2h.

Given L = β1∆1 + β2∆2 + β3∆12, βj > 0, we are going to find Hα =
∆1+β∆2, β > 0, and r1, r2 different from 0 and 1 such that (6.1) holds, i.e.

r1(r1 − 1) + βr2(r2 − 1) = 0,

β1r1(r1 − 1) + β2r2(r2 − 1)− β3r2 = 0.

Let

(6.2) r = r1(r1 − 1).

Notice that if r ≥ −1/4 then there exists r1 satisfying (6.2). Therefore we
solve

(6.3)
r + βr2(r2 − 1) = 0,

β1r + β2r2(r2 − 1)− β3r2 = 0,

for r2 6= 0, 1. (6.3) is equivalent to

r = −βr2(r2 − 1), (β2 − β1β)(r2 − 1) = β3, r2 6= 0,

or

r2 =
β3

β2 − β1β
+ 1, r = −β

(β3 + β2 − β1β)β3
(β2 − β1β)2

, r2 6= 0.

Taking β sufficiently close to 0, we can make r2 > 1 and −1/4 < r < 0.
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