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Abstract. We construct a class of nonsemisymmetric Ricci-semisymmetric warped
products. Some manifolds of this class can be locally realized as hypersurfaces of a semi-
Euclidean space E

n+1
s
, n ≥ 5.

1. Quasi-Einstein manifolds. A semi-Riemannian manifold (M, g),
n = dimM ≥ 3, is called semisymmetric if on M we have

R ·R = 0.(1)

For definitions of the symbols used, we refer to Section 2 of this paper.
A review of results on semisymmetric semi-Riemannian manifolds is given
in [10]. A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Ricci-
semisymmetric if on M we have

R · S = 0.(2)

Manifolds of this class were investigated by several authors (see e.g. [3] and
[21]). Every semisymmetric manifold is Ricci-semisymmetric. The converse is
not true. The problem of the equivalence of (1) and (2), named the problem
of P. J. Ryan (cf. [23]), was considered by several authors (see e.g. [1]
and [7] and references therein). For instance, it is known that (1) and (2)
are equivalent on hypersurfaces of 5-dimensional semi-Riemannian spaces of
constant curvature. Ricci-semisymmetric hypersurfaces of Euclidean spaces
were classified (locally) in [22]. A semi-Riemannian manifold (M, g), n ≥ 3,
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is said to be a quasi-Einstein manifold if at every point of M we have

S = αg + βw ⊗ w, w ∈ T ∗xM, α, β ∈ R.(3)

We refer to [15] for a review of results on quasi-Einstein manifolds. In par-
ticular, if S = (κ/n)g on M then (M, g) is called an Einstein manifold.

Let M be a hypersurface in a semi-Riemannian space Nn+1s (c) of con-
stant curvature with signature (s, n + 1 − s), n ≥ 4, c = τ

n(n+1) , where τ

denotes the scalar curvature of the ambient space. Let UH be the subset of
M consisting of all points x at which the transformation A2 is not a linear
combination of the shape operator A and the identity transformation Id. If
(3) is satisfied at x ∈ M − UH then the Weyl tensor C of M vanishes at x
or at this point the Ricci tensor S of M is proportional to the metric tensor
([13, Lemma 4.1(iii)]). Therefore we restrict our considerations to the set
UH . We have

Theorem 1.1. Let M be a quasi-Einstein hypersurface of E
n+1
s , n ≥ 4,

and let (3) be satisfied on UH ⊂M .
(i) ([13, Theorem 5.1]) On UH the following three conditions are equiv-

alent to each other :

(a) R · S = 0, (b) A3 = tr(A)A2 − εκ

n− 1 A, ε = ±1,

(c) A(W ) = 0,
(4)

where w and α are defined by (3) and W is related to w by g(W,X) = w(X),
X ∈ TxM .
(ii) ([9, Theorem 5.1]; [13, Corollary 5.2]) If at every x ∈ UH either

(4)(a), (4)(b) or (4)(c) is satisfied then on UH we have

(a) rank

(
S − κ

n− 1 g
)
= 1, (b) R · C = Q(S,C),

(c) C · S = 0.
(5)

Semi-Riemannian manifolds, of dimension n ≥ 4, satisfying at every
point the condition: the tensors R · C and Q(S,C) are linearly dependent,
were investigated e.g. in [11] and [16]. This condition is equivalent to

R · C = LQ(S,C)(6)

on U = {x ∈ M | Q(S,C) 6= 0 at x}, where L is some function on U . We
denote by UL the set of all points of U at which L is nonzero. Evidently,
(5)(b) is (6) with L = const = 1. Combining the main results of [14] with
Theorem 1.1 we obtain

Theorem 1.2 ([15, Theorem 1.3]). If M is a hypersurface of E
n+1
s ,

n ≥ 5, satisfying R · C = LQ(S,C) on U ⊂ M then on U = UH ∩ UL ⊂ M
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we have: (4), (5) and

C ·R = n− 3
n− 2 Q(S,R).(7)

In Section 4 (see Theorem 4.1) we prove that if at a point x ∈ UH
of a Ricci-semisymmetric quasi-Einstein hypersurface M in E

n+1
s , n ≥ 4,

the scalar curvature κ of M is nonzero and either (4)(a), (4)(b) or (4)(c)
is satisfied then M is nonsemisymmetric. In our opinion, Theorems 1.1,
1.2 and 4.1 play an important role in the study of the problem of equiv-
alence of (1) and (2) on quasi-Einstein hypersurfaces of semi-Euclidean
spaces.

There is also a question of examples of hypersurfaces satisfying the as-
sumptions of Theorems 1.1, 1.2 and 4.1. In Section 3 we present examples
of nonsemisymmetric Ricci-semisymmetric warped products M ×F Ñ of a
flat manifold (M, g), p = dimM ≥ 1, and an Einstein manifold (Ñ , g̃),
n− p = dim Ñ ≥ 4, with some warping function F . If p = 1 then M ×F Ñ
is a quasi-Einstein manifold. The Ricci tensor of such a warped product
satisfies (5)(a). The scalar curvature of these manifolds is nonzero. If p ≥ 2
then M ×F Ñ is a nonquasi-Einstein manifold. In Section 4 we present
an example of a nonsemisymmetric Ricci-semisymmetric hypersurface M of
E
n+1
s , n ≥ 5, satisfying (4), (5) and (7) (see Example 4.2). We also present
examples of nonquasi-Einstein and nonsemisymmetric Ricci-semisymmetric
warped products which can be realized as hypersurfaces of En+1s , n ≥ 5 (see
Example 4.3). Ricci-pseudosymmetric warped products which can be locally
realized as hypersurfaces of En+1s , n ≥ 5, were investigated in [8].

2. Basic formulas. Let (M, g), n ≥ 3, be a connected semi-Riemannian
manifold of class C∞ and let ∇ be its Levi-Civita connection. We define on
M the endomorphisms X ∧A Y , R(X,Y ) and C(X,Y ) by
(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,
R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

C(X,Y ) = R(X,Y )− 1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1 X ∧g Y
)
,

where the Ricci operator S is defined by g(X,SY ) = S(X,Y ), A is a sym-
metric (0, 2)-tensor, S the Ricci tensor, κ the scalar curvature and X,Y, Z
∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields of M . The Riemann–
Christoffel curvature tensor R and the Weyl conformal curvature tensor
C of (M, g) are defined by R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4) and
C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4), respectively. We refer to [9] (see
also [14] or [16]) for the definitions of the tensors: R·R, R·C, R·S, C ·R, C ·S,
Q(g,R),Q(g, C),Q(g, S),Q(S,R) andQ(S,C). For symmetric (0, 2)-tensors
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A and B we denote by A∧B their Kulkarni–Nomizu product. We have the
identity (see e.g. [9]) Q(S, g ∧ S) = −12Q(g, S ∧ S).
A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([6])

if at every point of M the tensors R ·R and Q(g,R) are linearly dependent.
This is equivalent to R ·R = LRQ(g,R) on UR =

{
x ∈M

∣∣ R− κ
(n−1)nG 6= 0

at x
}
, where LR is some function on UR. The (0, 4)-tensor G is defined by

G = 12g ∧ g. Evidently, every semi-Riemannian semisymmetric manifold is
pseudosymmetric. The converse is not true ([6]). It is easy to see that at
every point of any pseudosymmetric manifold (M, g) the tensors R · S and
Q(g, S) are linearly dependent. The converse is not true ([3]).

A semi-Riemannian manifold (M, g) is called Ricci-pseudosymmetric if
R · S and Q(g, S) are linearly dependent at every point of M . (M, g) is
Ricci-pseudosymmetric if and only if R · S = LSQ(g, S) on the set US =
{x ∈M | S 6= (κ/n)g at x}, where LS is some function on US . Examples of
compact non-Einstein Ricci-pseudosymmetric manifolds which are nonpseu-
dosymmetric were found in [17] and [18]. For instance, in [18, Theorem 1]
it was shown that the Cartan hypersurfaces have that property. We recall
that the Cartan hypersurface in the sphere Sn+1(c) is a compact, minimal
hypersurface with constant principal curvatures −(3c)1/2, 0, (3c)1/2 of the
same multiplicity ([2]). On every Cartan hypersurface we have ([18, Propo-
sition 1])

R̃ · S̃ = τ

n(n+ 1)
Q(g̃, S̃).(8)

For recent results on Ricci-pseudosymmetric hypersurfaces in Nn+1s (c),
n ≥ 4, we refer to [8] and [19].
It is known that at every point of a hypersurface Ñ ofNn+1s (c), n ≥ 4, the

following condition is satisfied ([6, Section 5.5]): the tensors R̃ · R̃−Q(S̃, R̃)
and Q(g̃, C̃) are linearly dependent. Precisely, on Ñ we have

R̃ · R̃−Q(S̃, R̃) = − (n− 2)τ
n(n+ 1)

Q(g̃, C̃).(9)

In particular, if the ambient space is E
n+1
s then (9) reduces to

R̃ · R̃ = Q(S̃, R̃).(10)

Every quasi-Einstein conformally flat manifold is a pseudosymmetric mani-
fold satisfying (10) ([6, Section 6.3]).

3. Ricci-semisymmetric manifolds. In this section we present a fam-
ily of nonsemisymmetric Ricci-semisymmetric quasi-Einstein warped prod-
ucts M ×F Ñ , dimM = 1, dim Ñ = n − 1 ≥ 3, satisfying at every point
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x ∈M × Ñ the following condition:

S =
κ

n− 1 g + βw ⊗ w, w ∈ T ∗x (M × Ñ), β ∈ R.(11)

We also present a family of Ricci-semisymmetric nonquasi-Einstein warped
products M ×F Ñ , p = dimM ≥ 2, n−p = dim Ñ ≥ 3. These constructions
are related to the notion of a cone in the sense of [21].

Proposition 3.1 (cf. [9, Proposition 3.1(ii)]). If (11) holds at a point
x of a Ricci-semisymmetric semi-Riemannian manifold (M, g), n ≥ 4, then
at x we have

R · C −Q(S,C) = R ·R−Q(S,R).(12)

As an immediate consequence of Proposition 3.1 and (10) we obtain

Corollary 3.1 (cf. [9, Theorem 3.1]). Let M be a Ricci-semisymmet-
ric hypersurface of E

n+1
s , n ≥ 4. If (11) holds at a point x of M then at x

we have R̃ · C̃ = Q(S̃, C̃).

Let now (M, g) and (Ñ , g̃), p = dimM , n − p = dim Ñ , 1 ≤ p < n,
be semi-Riemannian manifolds covered by systems of charts {U ;xa} and
{Ṽ ; yα}, respectively. Let F be a positive smooth function onM . The warped
product M×F Ñ is the product manifoldM×Ñ with the metric g = g×F g̃,
defined by g ×F g̃ = π∗1g + (F ◦ π1)π∗2 g̃, where π1 : M × Ñ → M and
π2 :M × Ñ → Ñ are the natural projections. Let {U × Ṽ ;x1, . . . , xp, xp+1 =
y1, . . . , xn = yn−p} be a product chart for M × Ñ . The local components
of the metric g = g ×F g̃ with respect to this chart are ghk = gab if h = a
and k = b, ghk = F g̃αβ if h = α and k = β, and ghk = 0 otherwise, where
a, b, c, d ∈ {1, . . . , p} and α, β ∈ {p+1, . . . , n}. We will mark by bars (resp.,
by tildes) tensors formed from g (resp., g̃).

It is known that the local components Rrstu of the Riemann–Christoffel
curvature tensor R and the local components Sts of the Ricci tensor S of
M ×F Ñ which may not vanish identically are the following (see e.g. [4], [5]
or [16]):

(13)

Rabcd = Rabcd,

Rαabβ = −
1

2
Tabg̃αβ,

Rαβγδ = FR̃αβγβ −
∆1F

4
G̃αβγδ,

(14)

Sab = Sab −
n− p
2F
Tab,

Sαβ = S̃αβ −
1

2

(
trT +

n− p− 1
2F

∆1F

)
g̃αβ.
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The (0, 2)-tensor T , with local components Tab, is defined by

Tab = ∇bFa −
1

2F
FaFb, trT = g

abTab,

∆1F = ∆1gF = g
abFaFb, Fa = ∂aF =

∂F

∂xa
.

(15)

The scalar curvature κ of M ×F Ñ satisfies the relation

κ = κ+
κ̃

F
− n− p
F

(
trT +

n− p− 1
4F

∆1F

)
.(16)

Theorem 3.1. Let (M, g), p = dimM , and (Ñ , g̃), n − p = dim Ñ ,
1 ≤ p < n, be semi-Riemannian manifolds and let F be a smooth positive
function on M .

(i) ([5, Theorem 1]) The condition R ·R = LRQ(g,R) is satisfied on UR
of M ×F Ñ if and only if on UR we have

(R ·R)abcdef = LRQ(g,R)abcdef ,(17)

HfdRfabc =
1

2F
(TacHbd − TabHcd),(18)

Had

(
R̃δαβγ −

∆1F

4F
G̃δαβγ

)
= −1
2
TfdH

f
aG̃δαβγ ,(19)

(R̃ · R̃)αβγδλµ =
(
FLR +

∆1F

4F

)
Q(g̃, R̃)αβγδλµ,(20)

where

Had =
1

2
Tad + FLRgad.(21)

(ii) ([5, Corollary 1]) Let (M, g), p ≥ 2, and (Ñ , g̃), n− p ≥ 2, be semi-
Riemannian spaces of constant curvature. The condition R ·R = LRQ(g,R)
is satisfied on UR of M ×F Ñ if and only if on UR we have

2κ

p(p− 1) (gabHcd − gacHbd) =
1

F
(TacHbd − TabHcd),(22)

Had

(
κ̃

(n− p)(n− p− 1) −
∆1F

4F

)
= −1
2
TfdH

f
a.(23)

(iii) (cf. [4, Lemma 6]) The only local components of the Weyl tensor C

of M ×F Ñ , p = 1 and n = 4, which are not identically zero are

Cα11β = −
1

2

(
S̃αβ −

κ̃

3
g̃αβ

)
,(24)

Cαβγδ =
F

2
(g̃αδS̃βγ − g̃αγS̃βδ + g̃βγS̃αδ − g̃βδS̃αγ)−

Fκ̃

3
G̃δαβγ .(25)
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(iv) ([3, Theorem 1]) The condition R ·S = LSQ(g, S) is satisfied on US
of M ×F Ñ if and only if on US we have

(26) (R · S)abcd − LSQ(g, S)abcd =
n− p
F
((R ·H)abcd − LSQ(g,H)abcd),

(27) Had

(
S̃αβ −

1

2F

(
trT +

(n− p− 1)∆1F
2F

)
gαβ

)

= Hcb

(
S
c
a −
n− p
2F
T ca

)
gαβ,

(28) (R̃ · S̃)αβγδ =
(
FLS +

∆1F

4F

)
Q(g̃, R̃)αβγδ.

Example 3.1. Let η and ξ1, . . . , ξp, p ≥ 1, be constants such that ξ21 +
. . .+ ξ2p > 0. Let M = {(x1, . . . , xp)} be a nonempty open connected subset
of Rp such that the function F defined by

F (x1, . . . , xp) = (ξax
a + η)2(29)

is positive onM , where a, b, c, d ∈ {1, . . . , p}. Further, we set gab = εa = ±1.
Using now (15) and (29) we find

Tab = 0,
∆1F

F
=
1

F

p∑

b=1

εbF
2
b = 4c0, c0 =

p∑

b=1

εbξ
2
b .(30)

Example 3.2. We consider the warped productM×F Ñ of the manifold
(M, g) defined in Example 3.1 and an (n − p)-dimensional Einstein semi-
Riemannian manifold (Ñ , g̃), n− p ≥ 3, with F defined by (29). Now (13),
(14) and (16) yield

Rabcd = Rαabβ = 0, Rαβγδ = F (R̃αβγδ − c0G̃αβγδ),(31)

Sab = 0,(32)

Sαβ =
κ̃− (n− p− 1)(n− p)c0

(n− p)F gαβ,(33)

κ =
κ̃− (n− p− 1)(n− p)c0

F
,(34)

respectively. Applying (34) in (33) we get

Sαβ =
κ

n− p gαβ.(35)

(i) We assume that p = 1. The manifold M ×F Ñ is quasi-Einstein. In
fact, we have

Sij =
κ

n− 1 gij + γε1wiwj ,

where wi = δ
1
i , γ = −κ/(n− 1) and i, j ∈ {1, . . . , n}. From Theorem 3.1(iv)

it follows that M ×F Ñ is a Ricci-semisymmetric manifold. If dim Ñ =
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n− 1 = 3 then, in view of Theorem 3.1(i), (iii), M ×F Ñ is a semisymmet-
ric conformally flat manifold. Assume now that dim Ñ = n − 1 ≥ 4. Using
Theorem 3.1(i) we can deduce that if (Ñ , g̃), dim Ñ ≥ 4, is an Einstein
semisymmetric manifold not of constant curvature then M ×F Ñ is a non-
semisymmetric Ricci-semisymmetric manifold. If the constant c2 defined by
c2 = κ̃− (n− 1)(n− 2)c0 is nonzero then the scalar curvature κ of M ×F Ñ
is also nonzero.
(ii) We assume that p ≥ 2. First of all, we note that

Sij =
κ

n− p gij + ̺
p∑

a=1

εawaiwaj ,(36)

where wai = δai, ̺ = −κ/(n− p) and i, j ∈ {1, . . . , n}. From Theorem
3.1(iv) it follows that M ×F Ñ is a Ricci-semisymmetric manifold. Using
(31) and (32) we find

Cabcd =
κ

(n− 2)(n− 1) Gabcd.

Thus M ×F Ñ is a nonconformally flat manifold with nonconstant scalar
curvature κ, provided that the constant c2 defined by

c2 = κ̃− (n− p− 1)(n− p)c0(37)

is nonzero. If n − p = 3 then, in view of Theorem 3.1(i), M ×F Ñ is a
semisymmetric manifold. Assume now that n − p ≥ 4. Using again Theo-
rem 3.1(i) we can deduce that if (Ñ , g̃) is an Einstein semisymmetric mani-

fold not of constant curvature then M ×F Ñ is a nonsemisymmetric Ricci-
semisymmetric manifold. SinceM ×F Ñ is a Ricci-semisymmetric manifold,
we have R · C = R ·R. Thus the (0, 6)-tensor T defined by

T = R · C −Q(S,C)−R ·R+Q(S,R)
takes the form

T = −Q(S,C) +Q(S,R) = −Q(S,C −R)

=
1

n− 2 Q
(
S, g ∧ S − κ

n− 1 G
)

= − 1

n− 2 Q
(
g,
1

2
S ∧ S

)
− κ

(n− 2)(n− 1) Q(S,G).

Applying now (35) we get

Taβγδαb =
(p− 1)κ2

(n− p)2(n− 2)(n− 1) gabGαβγδ.

If the constant c2 defined by (37) is nonzero then (12) is not satisfied on

M ×F Ñ .
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Proposition 3.1 yields immediately

Corollary 3.2. The warped product defined in Example 3.2(i) satis-
fies (12).

Example 3.3. (i) Let (Ñ , g̃), dim Ñ = n − p ≥ 3, p ≥ 1, be a non-
Einstein Ricci-pseudosymmetric semi-Riemannian manifold such that on US̃
we have R̃ · S̃ = LS̃Q(g̃, S̃) and LS̃ = const 6= 0. We consider the warped
product M ×F Ñ with (M, g) and F defined in Example 3.1. Let c0 =
LS̃ . Now, in view of Theorem 3.1(iv), M ×F Ñ is a Ricci-semisymmetric
nonsemisymmetric manifold. If (Ñ , g̃) is nonpseudosymmetric then so is

M ×F Ñ .
(ii) Let (Ñ , g̃), dim Ñ = n − p = 3, 6, 12 or 24, p ≥ 1, be a Riemannian

manifold locally isometric to the Cartan hypersurface of dimension 3, 6, 12
or 24, respectively. We note that (8) holds on (Ñ , g̃). We consider the warped

product M ×F Ñ with (M, g) and F as in (i). Let c0 = τ/(n(n+ 1)). Now,
as in (i), M ×F Ñ is a nonsemisymmetric Ricci-semisymmetric manifold
provided that n−p = 6, 12 or 24. If n−p = 3 thenM×F Ñ is semisymmetric.
This is a consequence of Theorem 3.1(ii) and the fact that the 3-dimensional
Cartan hypersurface is pseudosymmetric.

Remark 3.1. Using (13) and (14) and the definitions of the tensors
R · R and Q(S,R) we can easily check that the warped product defined in
Example 3.2 satisfies R ·R = Q(S,R).
Lemma 3.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold.
(i) If at x ∈M , (2), (11) and R ·R = Q(S,R) are satisfied then at x we

have

R · C = Q(S,C).(38)

(ii) If at x ∈ M , (11), R · R = Q(S,R), κ 6= 0 and C 6= 0 are satisfied
then M is nonsemisymmetric.

Proof. (i) is a consequence of our assumptions and Proposition 3.1.

(ii) We suppose that R·R = 0 at x. Thus also Q(S,R) vanishes at x. Fur-
ther, by our assumptions, rankS > 1 at x. Now the equation Q(S,R) = 0,
in view of Lemma 3.4 of [12], implies λR = 12S ∧ S, λ ∈ R − {0}, which
yields

λC =
1

2
S ∧ S − λ

n− 2 g ∧ S +
λκ

(n− 2)(n− 1) G.

This leads to

λC =
1

2

(
S − λ

n− 2g
)
∧
(
S − λ

n− 2g
)
+
λ

n− 2

(
κ

n− 1 −
λ

n− 2

)
G,



96 R. DESZCZ AND M. GŁOGOWSKA

whence, by an application of (11), we get

λC =

(
κ

n− 1 −
λ

n− 2

)(
κ

n− 1 G+ βg ∧ w ⊗ w
)
.(39)

By suitable contraction this gives(
κ

n− 1 −
λ

n− 2

)
((κ+ β‖w‖2)g + (n− 1)β ∧ w ⊗ w) = 0.

Since (κ+β‖w‖2)g+(n−1)β∧w⊗w is a nonzero tensor, the above relation
leads to κ

n−1 − λ
n−2 = 0. Therefore (39) implies C = 0, a contradiction.

Remark 3.2 ([6, Section 9]). If at a point of a semi-Riemannian manifold
(M, g), n ≥ 5, the tensors C and R ·R are nonzero then the tensor R · C is
also nonzero at this point.

4. Ricci-semisymmetric hypersurfaces. Let Ñ , n = dim Ñ ≥ 3,
be a connected hypersurface isometrically immersed in a semi-Riemannian
manifold (N, g). We denote by g̃ the metric tensor induced on Ñ from g.

Further, we denote by ∇̃ and∇ the Levi-Civita connections corresponding to
g̃ and g, respectively. Let ξ be a local unit normal vector field on Ñ in N and
let ε = g̃(ξ, ξ) = ±1. We can write the Gauss formula and the Weingarten
formula of Ñ in N in the following form: ∇XY = ∇̃XY + εH̃(X,Y )ξ and
∇Xξ = −AX, respectively, where X,Y are vector fields tangent to Ñ , H̃
is the second fundamental tensor of Ñ in N , A is the shape operator of Ñ
in N and H̃k(X,Y ) = g(AkX,Y ), tr(H̃k) = tr(Ak), k ≥ 1, H̃1 = H̃ and
A1 = A. We denote by R̃ and R the Riemann–Christoffel curvature tensors
of Ñ and N , respectively. We let UH̃ be the set of all x ∈ Ñ at which A2
is not a linear combination of A and Id. Note that UH̃ ⊂ US̃ . The Gauss
equation of Ñ in N has the form

R̃(X1, . . . , X4) = R(X1, . . . , X4) +
ε

2
(H̃ ∧ H̃)(X1, . . . , X4),(40)

whereX1, . . . , X4 are vector fields tangent to Ñ . Let x
r = xr(yα) be the local

parametric expression of Ñ in (N, g), where yα and xr are local coordinates

of Ñ and N , respectively, and α, β, γ, δ ∈ {1, . . . , n} and r ∈ {1, . . . , n+ 1}.
Let the ambient space (N, g) be a semi-Riemannian space Nn+1s (c) of

constant curvature. Now (40) reads

R̃αβγδ = ε(H̃αδH̃βγ − H̃αγH̃βδ) +
τ

n(n+ 1)
G̃αβγδ,(41)

where R̃αβγδ, G̃αβγδ and H̃αδ are the local components of R̃, G̃ =
1
2 g̃ ∧ g̃,

and H̃, respectively.
As a consequence of Theorem 1.1, Lemma 3.1 and Remark 3.2 we have

the following
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Proposition 4.1. Let M be a hypersurface of E
n+1
s , n ≥ 5.

(i) If at x ∈M condition (11) is satisfied then (38) holds at x.
(ii) If at x ∈ M the following conditions are satisfied : (11), κ 6= 0 and

C 6= 0, then at x we have R ·R 6= 0, R · C 6= 0 and Q(S,C) 6= 0.
(iii) If at x ∈ U = UH ∩ UL ⊂ M condition (3) is satisfied , κ 6= 0, and

either (4)(a), (4)(b), or (4)(c) holds, then M is nonsemisymmetric.

We now present examples of nonsemisymmetric Ricci-semisymmetric hy-
persurfaces in E

n+1
s , n ≥ 5.

Proposition 4.2. Let (M, g), dimM = p ≥ 2, be as defined in Example
3.1 and let (Ñ , g̃), dim Ñ = n − p ≥ 1, be a semi-Riemannian manifold
isometric to a hypersurface of Nn−p+1s (c). LetM×F Ñ be the warped product
with F and c0 defined by (29) and (30), respectively , and

c0 =
τ

(n− p)(n− p+ 1) ,(42)

where τ is the scalar curvature of Nn−p+1s (c). Then M ×F Ñ can be realized
locally as a hypersurface of En+1s .

Proof. (i) Let (M, g̃) be a hypersurface of Nn−p+1s (c). Thus (41) yields

R̃ =
ε

2
H̃ ∧ H̃ + τ

(n− p)(n− p+ 1) G̃,(43)

where τ is the scalar curvature of the ambient space and R̃ and H̃ are the
curvature tensor and the second fundamental tensor of M , respectively. By
making use of (30), (42) and (43), we can write the formulas (5), (6) and
(7) of [4] in the form

Rabcd = 0,

Rαabβ = −
1

2
Tabg̃αβ = 0,

Rαβγδ = FR̃αβγδ −
∆1F

4
G̃αβγδ

= ε(
√
F H̃αδ

√
F H̃βγ −

√
F H̃αγ

√
F H̃βδ)

+F

(
τ

(n− p)(n− p+ 1) −
∆1F

4F

)
G̃αβγδ

= ε(HαδHβγ −HαγHβδ),
respectively, where Hαδ =

√
F H̃αδ. Let H be the symmetric (0, 2)-tensor H

on M ×F Ñ with local components Hab = 0, Haδ = 0 and Hαδ =
√
F H̃αδ.

Using the fact that ∇̃αH̃βδ = ∇̃βH̃αδ, we can easily check that H is a
Codazzi tensor on M ×F Ñ . Thus the semi-Riemannian manifold M ×F Ñ
can be locally realized as a hypersurface of E

n+1
s . Our proposition is thus

proved.
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Proposition 4.1 and Example 3.2 imply

Corollary 4.1. If (Ñ , g̃), n − p ≥ 4, is a semisymmetric Einstein
manifold not of constant curvature then the warped product M×F Ñ defined
in Proposition 4.1 is a nonsemisymmetric Ricci-semisymmetric manifold
which can be locally realized as a hypersurface of E

n+1
s .

Proposition 4.1 and Example 3.3 yield

Corollary 4.2. If (Ñ , g̃), US̃ = Ñ , n−p ≥ 4, is a non-Einstein Ricci-
pseudosymmetric manifold such that on US̃ ,

R̃ · R̃ = LS̃Q(g̃, S̃) and LS̃ =
τ

(n− p)(n− p+ 1) ,

then the warped productM×F Ñ defined in Proposition 4.1 is a nonsemisym-
metric Ricci-semisymmetric manifold which can be locally realized as a hy-

persurface of E
n+1
s .

Remark 4.1. The above result is also true when p = 1. However, in that
case we must additionally assume that the space Nn−p+1s (c) is nonflat.

Proposition 4.3. Let Ñ be a hypersurface of Nn+1s (c), n ≥ 4. If at a
point x the following conditions are satisfied :

R̃ · R̃ = 0, S̃ = κ̃
n
g̃ and R̃− κ̃

(n− 1)n G̃ 6= 0,

then at x we have

κ̃ =
n− 2
n+ 1

τ.(44)

Proof. (9), by our assumptions, turns into
(
κ̃− n− 2
n+ 1

τ

)
Q(g̃, R̃) = 0.

Since Q(g̃, R̃) 6= 0 if and only if R̃ − κ̃
(n−1)nG̃ 6= 0, the last equality implies

(44), which completes the proof.

As an immediate consequence of the last proposition we have the follow-
ing

Corollary 4.3. Let Ñ be a semisymmetric Einstein hypersurface of
N2k+1s (c), k ≥ 2. Then on UR̃ ⊂ Ñ we have

R̃αβγδ = ε(H̃αδH̃βγ − H̃αγH̃βδ) +
κ̃

4k(k − 1) G̃αβγδ.(45)

Example 4.1 ([20]). We now present examples of semisymmetric
Einstein hypersurfaces. Namely, in [20] Einstein hypersurfaces with A2 =
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−b2 Id, b 6= 0, were classified. They are complex spheres, either CSk(1/b) or
CSk(i/b), where, for any γ ∈ C,

CSk(γ) = {(z1, . . . , zk+1) ∈ C
k+1 : z21 + . . .+ z

2
k+1 = γ

2}, k ≥ 2.
It is known that CSk is an irreducible symmetric space (see [20] and
references therein). CSk(1/b) is a hypersurface in the indefinite sphere
S2k+1k+1 (1/b) and CSk(i/b) is a hypersurface in the indefinite hyperbolic space

H2k+1k (1/b), defined by

S2k+1k+1 (1/b) =
{
(x1, y1, . . . , xk+1, yk+1) ∈ R

2k+2 :

k+1∑

j=1

x2j − y2j = 1/b2
}
,

H2k+1k (1/b) =
{
(x1, y1, . . . , xk+1, yk+1) ∈ R

2k+2 :

k+1∑

j=1

x2j − y2j = −1/b2
}
.

S2k+1k+1 (1/b) has constant curvature b
2 and signature (k + 1, k), while

H2k+1k (1/b) has constant curvature −b2 and signature (k, k+1). By identify-
ing (x1+iy1, . . . , xk+1+iyk+1) ∈ C

k+1 with (x1, y1, . . . , xk+1, yk+1) ∈ R
2k+2,

the complex spheres can be viewed as hypersurfaces defined by the single
equation

∑
j xjyj = 0 in the sphere and hyperbolic space. It is clear that

(45) holds on these hypersurfaces.

Example 4.2. Let (Ñ , g̃), dim Ñ = n − p = 2k ≥ 4, p ≥ 1, be a semi-
Riemannian manifold isometric to an open nonempty part of the semisym-
metric Einstein hypersurface of Example 4.1. We now consider the warped
product M ×F Ñ where (M, g) and F are defined in Example 3.1, and
the constant c0 satisfies (42). In view of Corollary 4.1, M ×F Ñ can be
locally realized as a nonsemisymmetric Ricci-semisymmetric hypersurface
of E

n+1
s , n ≥ 5. From Corollary 4.3 it follows that c0 = τ/(2k(2k + 1)) =

κ̃/(4k(k − 1)), where κ̃ is the scalar curvature of (Ñ , g̃). Thus on M ×F Ñ
we have κ = −κ̃/((n− p− 2)F ).
Example 4.3. Using Corollary 4.2, in the same way as in Example 4.2,

we can show that the warped product M ×F Ñ , dimM = p ≥ 1, dim Ñ =
n− p = 3, 6, 12 or 24, defined in Example 3.3(ii) can be locally realized as a
Ricci-semisymmetric hypersurface in E

n+1
s , n ≥ 4. If n− p = 6, 12 or 24 the

hypersurface is nonsemisymmetric.

Remark 4.2. (i) An example of a semisymmetric quasi-Einstein hyper-
surface of En+1s , n ≥ 4, was given in [9, Example 5.1].
(ii) An example of a nonsemisymmetric Ricci-semisymmetric quasi-Ein-

stein hypersurface of the Euclidean space E
n+1, n ≥ 5, was found recently

in [1].
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