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BLOW-UP OF SOLUTIONS FOR THE KIRCHHOFF EQUATION

OF q-LAPLACIAN TYPE WITH NONLINEAR DISSIPATION

BY

ABBES BENAISSA (Sidi Bel Abbes) and SALIM A. MESSAOUDI (Dhahran)

Abstract. We establish the blow-up of solutions to the Kirchhoff equation of q-
Laplacian type with a nonlinear dissipative term

(|ut|
l−2ut)t −M(‖A

1/2u‖22)Au+ |ut|
βut = |u|

pu, x ∈ Ω, t > 0.

1. Introduction. We consider the initial boundary value problem
(IBVP) for the nonlinear Kirchhoff equation of q-Laplacian type

(P)







(|ut|
l−2ut)t −M(‖A

1/2u‖22)Au+ |ut|
βut = |u|

pu, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where

Au = e−Φ(x) div(eΦ(x)|∇xu|
q−2∇xu), ‖A

1/2u‖2 =
\
Ω

eΦ(x)|∇xu|
q dx,

p > −1, β > −1, q > 1 and l > 1 are constants, M : R+ → R+ is a
continuous function and Ω ⊂ R

n is a bounded domain with boundary Γ so
that the divergence theorem can be applied.
When M ≡ 1, Φ ≡ 0 and q = l = 2, for the case of no dissipation

(i.e. (P) without the term |ut|
βut), it is well known that the source term

|u|pu is responsible for finite blow-up (global nonexistence) of solutions with
negative initial energy (see [3], [14], [18], [19]). The interaction between the
damping term and the source has been first considered by Levine [18], [19];
for the case with linear dissipation of the form τut (τ > 0), he showed that
solutions with negative initial energy blow up in finite time. In [10] Georgiev
and Todorova extended Levine’s result to the case of nonlinear damping of
the form |ut|

βut. This result was generalized to an abstract setup by Levine
and Serrin [20], Levine and Park [21] and Vitillaro [23]. In [17] Messaoudi
extended the result of Levine to the situation where Φ 6= 0.
When Φ ≡ 0 and M is not a constant function, in the case q = l = 2,

the equation without the damping and source terms is often called the wave
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equation of Kirchhoff type; it has been introduced by Kirchhoff [15] in order
to study the nonlinear vibrations of an elastic string (in the case l = 2 and
q 6= 2, the equation is called the Kirchhoff equation of q-Laplacian type) and
the existence of local and global solutions in Sobolev and Gevrey classes was
investigated by many authors (see [7], [8], [16], [6], [22], [13], [9], [11], [12]
and [4]).

In [2] Bainov and Minchev studied the blowing up of solutions of the
initial boundary value problem for the Kirchhoff equation with source and
without damping term. Unfortunately this method does not seem to be
applicable (also when l 6= 2, q = 2 and without damping term; l = 2, q = 2
and linear damping) to the case of more general nonlinear terms.

In the present paper, we investigate the blowing up of solutions of the
initial-boundary value problem for the Kirchhoff equation of q-Laplacian
type. We shall show that, for suitably chosen initial data, any classical so-
lution blows up in finite time.

We will then extend to the problem (P) the argument introduced in [10]
to prove blow-up of solutions of a wave equation with nonlinear damping
and source terms. We also extend the results of our previous paper [5], where
q = l = 2 and the dissipative term is linear.

2. Main result. In order to state our main result, we make the following
hypotheses:

(1) M ∈ C(R+,R+) and mM(s) ≥ sM(s) for all s ≥ 0, where M(s) =Ts
0M(k) dk, m ≥ 1,

(2) E(0) =
l − 1

l

\
Ω

eΦ(x)|u1|
l dx+

1

q
M
( \
Ω

eΦ(x)|∇xu0|
q dx
)

−
1

p+ 2

\
Ω

eΦ(x)|u0|
p+2 dx < 0,

(3) p > max{l, β, qm− 2} and β > l − 2 (l > 1).

Theorem 2.1. Assume that (1)–(3) hold. Then for any initial data sat-

isfying (u0, u1)∈W
1,q
0 (Ω)×L

l(Ω), the solution of (P) blows up in finite time.

Proof. We set

E(t) =
l − 1

l

\
Ω

eΦ(x)|ut|
l dx+

1

q
M
( \
Ω

eΦ(x)|∇xu|
q dx
)

(4)

−
1

p+ 2

\
Ω

eΦ(x)|u|p+2 dx.

By multiplying the equation of (P) by eΦ(x)ut(x, t) and integrating over Ω,
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we get

E′(t) = −
\
Ω

eΦ(x)|ut|
β+2 dx.(5)

Then it follows from (5) and (2) that

E(t) ≤ E(0) < 0,(6)

and hence

u(t) 6≡ 0 and M
( \
Ω

eΦ(x)|∇xu|
q dx
)

> 0.(7)

We then define the function

G(t) =
\
Ω

eΦ(x)|ut|
l−2utu dx

with

G′(t) =
\
Ω

eΦ(x)[|ut|
l + u(|ut|

l−2ut)t] dx.

By using the equation of (P), we arrive at

G′(t) =
\
Ω

eΦ(x)|ut|
l dx+

\
Ω

eΦ(x)|u|p+2 dx−
\
Ω

eΦ(x)u|ut|
βut dx(8)

−M
( \
Ω

eΦ(x)|∇xu(x, t)|
q dx
) \
Ω

eΦ(x)|∇xu(x, t)|
q dx

≥
\
Ω

eΦ(x)|ut|
l dx+

\
Ω

eΦ(x)|u|p+2 dx−
\
Ω

eΦ(x)u|ut|
βut dx

−mM
( \
Ω

eΦ(x)|∇xu(x, t)|
q dx
)

and by (4) we obtain

G′(t) ≥

(

1 +
mq(l − 1)

l

) \
Ω

eΦ(x)|ut|
l dx− qmE(t)(9)

+
p+ 2− qm

p+ 2

\
Ω

eΦ(x)|u|p+2 dx−
\
Ω

eΦ(x)u|ut|
βut dx

= H(t) +
p+ 2− qm

2(p+ 2)

\
Ω

eΦ(x)|u|p+2 dx−
\
Ω

eΦ(x)u|ut|
βut dx

where

H(t) ≡ − qmE(t) +

(

1 +
mq(l − 1)

l

) \
Ω

eΦ(x)|ut|
l dx(10)

+
p+ 2− qm

2(p+ 2)

\
Ω

eΦ(x)|u|p+2 dx.
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We observe that

(11)
∣

∣

∣

\
Ω

eΦ(x)u|ut|
βut dx

∣

∣

∣

≤ ‖eΦ/(β+2)ut‖
β+1
β+2‖e

Φ/(β+2)u‖β+2 ≤ B1‖e
Φ/(β+2)ut‖

β+1
β+2‖e

Φ/(p+2)u‖p+2

≤ B1‖e
Φ/(β+2)ut‖

β+1
β+2‖e

Φ/(p+2)u‖
(p+2)/(β+2)
p+2 ‖eΦ/(p+2)u‖

−((p+2)/(β+2)−1)
p+2

with

B1 =
( \
Ω

eΦ(x) dx
)

p−β

(p+2)(β+2)
.

Since it follows from (4) that

‖eΦ/(p+2)u‖p+2p+2 ≥ (p+ 2)(−E(t)) ≥ −E(t),

we have

‖eΦ/(p+2)u‖p+2 ≥ (−E(t))
1/(p+2) ≥ (−E(0))1/(p+2),(12)

and from the Young inequality

B1‖e
Φ/(β+2)ut‖

β+1
β+2‖e

Φ/(p+2)u‖
(p+2)/(β+2)
p+2

≤
β + 1

β + 2
(ε−1B1)

(β+1)/(β+2)‖eΦ/(β+2)ut‖
β+2
β+2 +

εβ+2

β + 2
‖eΦ/(p+2)u‖p+2p+2

for any ε > 0. Therefore (11) takes the form
∣

∣

∣

\
Ω

eΦ(x)u|ut|
βut dx

∣

∣

∣
≤ (ε−1B1)

(β+1)/(β+2)(−E(t))−α‖eΦ/(β+2)ut‖
β+2
β+2(13)

+ εβ+2(−E(0))−α‖eΦ/(p+2)u‖p+2p+2

with α = 1/(β + 2)− 1/(p+ 2) > 0 since p > β. Thus, by choosing

εβ+2 =
p+ 2− qm

2(p+ 2)
(−E(0))α

in (13), we easily see, from (9), that

G′(t) ≥ {H(t)−m0(−E(t))
−α‖eΦ/(β+2)ut‖

β+2
β+2}(14)

with

mβ+10 =
2(p+ 2)

p+ 2− qm
Bβ+21 (−E(0))

−α.

Now, we define

L(t) ≡ (−E(t))1−α + (1− α)m−10 G(t),(15)

where α = 1/(β + 2) − 1/(p+ 2). Then differentiation of (15), using (5)
and (14), yields
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L′(t) = (1− α)(−E(t))−α(−E′(t)) + (1− α)m−10 G
′(t)(16)

= (1− α)(−E(t))−α‖eΦ/(β+2)ut‖
β+2
β+2 + (1− α)m

−1
0 G

′(t)

≥ (1− α)m−10 H(t).

Moreover, since H(t) ≥ qm(−E(t)) > 0 and E(t) ≤ E(0), we obtain

L′(t) ≥ (1− α)qmm−10 (−E(0)) > 0,

and consequently there exists a t0 ≥ 0 such that

L(t) ≥ L(t0) > 0 for t ≥ t0,(17)

where we can take t0 = 0 if

L(0) = (−E(0))1−α + (1− α)m−10

\
Ω

eΦ(x)|u1|
l−2u1u0 dx > 0.(18)

Next we estimate
∣

∣

∣

\
Ω

eΦ(x)|ut|
l−2utu dx

∣

∣

∣
≤ ‖eΦ(x)/lut‖

l−1
l ‖e

Φ(x)/lu‖l

≤ B2‖e
Φ(x)/lut‖

l−1
l ‖e

Φ(x)/(p+2)u‖p+2

where

B2 =
( \
Ω

eΦ(x) dx
)
p+2−l
l(p+2)
.

Therefore

L(t)1/(1−α) ≤ 2α/(1−α){(−E(t)) + (m−10 |G(t)|)
1/(1−α)}

≤ 2α/(1−α){(−E(t))

+ (B2m
−1
0 ‖e

Φ(x)/lut‖
l−1
l ‖e

Φ(x)/(p+2)u‖p+2)
1/(1−α)}

≤ 2α/(1−α)
{

qm(−E(t)) +
l − 1

l(1− α)
‖eΦ(x)/lut‖

l
l

+
1− lα

l(1− α)
(B2m

−1
0 ‖e

Φ(x)/(p+2)u‖p+2)
l/(1−lα)

}

where we have used the Young inequality in the last step. Moreover, since

l

1− lα
< p+ 2 (l < β + 2) and (−E(0))−1/(p+2)‖eΦ(x)/(p+2)u‖p+2 ≥ 1,

we have, from (9),

(19) L(t)1/(1−α) ≤ 2α/(1−α)
{

qm(−E(t)) +
l − 1

l(1− α)
‖eΦ(x)/lut‖

l
l

+
1− lα

l(1− α)
(B2m

−1
0 )
l/(1−lα)(−E(0))

−(1− l
(1−lα)(p+2)

)
‖eΦ(x)/(p+2)u‖p+2p+2

}

≤ m1H(t)

where
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m1 = 2
α/(1−α)max

{

1,
l − 1

(l +mq(l − 1))(1− α)
,

2(p+ 2)(p+ 2− qm)−1
1− lα

l(1− α)
(B2m

−1
0 )
l/(1−lα)(−E(0))

−(1− l
(1−lα)(p+2)

)
}

.

Thus, a combination of (16) and (19) leads to

L′(t) ≥ (1− α)(m0m1)
−1L(t)1/(1−α).(20)

A simple integration of (20) over (t0, t) then yields

L(t) ≥ {L(t0)
−α/(1−α) − α(m0m1)

−1(t− t0)}
−(1−α)/α(21)

for some t ≥ t0. As L(t0) > 0, (21) shows that L becomes infinite in a time

Tmax ≤ T0 = m0m1(α)
−1L(t0)

−α/(1−α) + t0.

Corollary 2.1. Under the assumptions of Theorem 2.1, suppose that

L(0) ≡ (−E(0))1−α + (1− α)m−10

\
Ω

eΦ(x)|u1|
l−2u1u0 dx > 0.

Then the lifespan T of the solution satisfies T ≤ m0m1(α)
−1L(0)−α/(1−α),

where α, m0 and m1 are positive constants as above.

Remark 2.1. 1. We may replace |ut|
βut by a(x)|ut|

βut, where a∈L
∞(Ω)

satisfies a(x) ≥ a0 > 0.
2. The same method works as well for a system of the form
{

(|ut|
l−2ut)t −M(‖A

1/2u‖22 + ‖B
1/2v‖22)Au+ a1(x)|ut|

βut = µ1|u|
pu,

(|vt|
l′−2vt)t −M(‖A

1/2u‖22 + ‖B
1/2v‖22)Bv + a2(x)|vt|

βvt = µ2|v|
pv,

where

Au = e−Φ(x) div(eΦ(x)|∇xu|
q−2∇xu), ‖A1/2u‖2 =

\
Ω

eΦ(x)|∇xu|
q dx,

Bv = e−Ψ(x) div(eΨ(x)|∇xv|
q′−2∇xv), ‖B

1/2v‖2 =
\
Ω

eΨ(x)|∇xv|
q′ dx,

with µ1 > 0, a1(x) > λ1 > 0, µ2 > 0 and a2(x) > λ2 > 0 where λ1 and λ2
are two positive constants (we can take µ2 = a2 ≡ 0 or µ2 > 0 and a2 ≡ 0).
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