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ELEMENTARY PROOFS OF SOME BASIC

SUBTEMPERATURE THEOREMS

BY

NEIL A. WATSON (Christchurch)

Abstract. We present simple elementary proofs of several theorems about tem-
peratures and subtemperatures. Most of these are concerned with mean values over
heat spheres, heat balls, and modified heat balls, with applications to proving Harnack
theorems and the monotone approximation of subtemperatures by smooth subtemper-
atures.

The basic theorems about classical subharmonic functions have been
proved using only simple elementary techniques. However, the same cannot
be said for the basic theorems about subtemperatures (subharmonic func-
tions related to the heat equation, subparabolic functions). The harmonic
space approach of Bauer [1] requires at the outset the knowledge that the
regular sets for the heat equation form a basis for the Euclidean topology,
and avoids results which can naturally be derived from Green’s formula.
The heat ball approach, begun by Watson in [15], also requires considerable
knowledge of regular points at an early stage. The subparabolic function
approach of Doob [4] is based upon the Poisson integral formula for solu-
tions of the heat equation on a rectangle, and quickly becomes entangled in
excessively complicated details.

The present paper is motivated by a desire to make the subject as ac-
cessible as possible. It is therefore partly an expository article and partly
a research paper. Most of the results have been published before, but most
of the proofs have not. The attempt to provide easy elementary proofs has
led to some new theorems. Some very simple proofs which have appeared
before are included for completeness.

As in [15], the approach is based on heat balls because they are much
too important to ignore. Let

W (x, t) =

{
(4πt)−n/2 exp(−‖x‖2/(4t)) if t > 0,
0 if t ≤ 0
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be the fundamental solution of the heat equation

Θu ≡
n∑

i=1

∂2u

∂x2i
− ∂u

∂t
= 0

on R
n+1 = {(x, t) : x ∈ R

n, t ∈ R}. Then, for any point (x0, t0) ∈ R
n+1 and

any number c > 0, the set

Ω(x0, t0; c) = {(y, s) :W (x0 − y, t0 − s) > (4πc)−n/2}
is called the heat ball with centre (x0, t0) and radius c. It is a convex domain
contained in the circular cylinder

{(y, s) : ‖x0 − y‖2 < 2nce−1, t0 − c < s < t0}.
The boundary of the heat ball, namely

{(x0, t0)}∪
{
(y, s) : ‖x0−y‖ =

(
2n(t0−s) log

c

t0 − s

)1/2
, t0−c ≤ s < t0

}
,

is the corresponding heat sphere.
Throughout this paper, E denotes an arbitrary open subset of R

n+1,
and C2,1(E) denotes the class of all functions u on E such that the par-
tial derivatives ∂2u/∂xi∂xj (i, j ∈ {1, . . . , n}) and ∂u/∂t all exist and are
continuous on E.
Our starting point is Green’s formula for the heat equation

(1)
\\
D

(vΘw − wΘ∗v) dy ds =
\
∂D

(〈v∇xw − w∇xv, νx〉 − vwνt) dσ,

in which D is a bounded open set whose boundary is piecewise smooth,

Θ∗v =
n∑

i=1

∂2v

∂y2i
+
∂v

∂s
,

〈 , 〉 denotes the inner product in R
n,

∇xw =
(
∂w

∂x1
, . . . ,

∂w

∂xn

)
,

ν = (νx, νt) is the outward unit normal to ∂D, and σ denotes surface area
measure on ∂D. (See, for example, [16, p. 43].) The special case where v = 1,
that is,

(2)
\\
D

Θw dy ds =
\
∂D

(〈∇xw, νx〉 − wνt) dσ,

is also important. The first five theorems are all derived from Green’s for-
mula. They are concerned with the mean values of functions in C2,1(E) over
heat spheres. These mean values, described in detail below, are the ones that
characterize temperatures (solutions of the heat equation) among the con-
tinuous functions, and which were used to define subtemperatures in [15].
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Theorems 2 and 5, as well as part of Theorem 3, specialize to the case of
functions u such that Θu ≥ 0, which are the smooth subtemperatures. In
Theorem 2 these functions are characterized in terms of their mean values
over heat spheres; in Theorem 3 their mean values are shown to be increas-
ing functions of the radius; and in Theorem 5 a convexity property of their
means is established. The section ends with an elementary evaluation of the
mean values of translates of W .
The next section contains analogues of the above-mentioned properties

for the mean values of functions u ∈ C2,1(E) such that Θu ≥ 0 over the heat
balls themselves. These volume means, however, have serious deficiencies
when applied to general subtemperatures, due to the unboundedness of the
kernel. So, in the following section, volume mean values over modified heat
balls are developed. This is done by considering a fuction u ∈ C2,1(E) as a
function on R

m × E that does not depend on the first m variables, taking
the volume mean in R

m × E, and integrating out the extra variables. The
modified heat ball Ωm(x0, t0; c) has the form

{(x0, t0)}

∪
{
(y, s) : ‖x0 − y‖ =

(
2(m+ n)(t0 − s) log

c

t0 − s

)1/2
, t0 − c ≤ s < t0

}
.

The kernel is bounded if m ≥ 3, and has a smooth extension by zero to the
whole of Rn+1 if m ≥ 5. The properties of the original volume means carry
over to the modified volume means. But if m ≥ 5, the modified means are
much better for dealing with functions that are merely locally integrable.
The key to this is Theorem 10, a new result which leads to a mean value
characterization of temperatures in the class of locally integrable functions,
and later to a new proof of the Harnack monotone convergence theorem.
In the subsequent section we define “m-subtemperatures” for every

non-negative integer m, using the volume means over modified heat balls
Ωm(x0, t0; c). So the subtemperatures of [15] are 0-subtemperatures. We
prove that the limit of a decreasing sequence of m-subtemperatures is it-
self an m-subtemperature if a mild finiteness condition is satisfied, and that
m-subtemperatures are locally integrable functions, for all m ≥ 0. The Har-
nack monotone convergence theorem for temperatures follows from these
results and the characterization of temperatures among the locally inte-
grable functions. Bauer’s form of the Harnack inequality [1] is deduced as a
consequence.
The final section contains further evidence thatm-subtemperatures with

m ≥ 5 are preferable to those with m = 0. A theorem on the mono-
tone approximation of m-subtemperatures by smooth subtemperatures is
proved for m ≥ 5. This enables us to deduce that the mean values of m-
subtemperatures over heat spheres, heat balls, and modified heat balls, have
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similar properties to those of smooth subtemperatures. We also show that
the class of all m-subtemperatures is independent of m for m ≥ 5. Every-
thing is proved by elementary methods.

For many results whose proofs require a mean value inequality, such as
the maximum principle [15], the precise form of the kernel is immaterial.
It therefore appears that the most elementary approach to the subject is
obtained by taking m ≥ 5 from the outset.
We now introduce the important mean values over heat spheres. For each

x ∈ R
n and t > 0, we put

Q(x, t) = ‖x‖2(4‖x‖2t2 + (‖x‖2 − 2nt)2)−1/2;
we also put Q(0, 0) = 1. The restriction to the heat sphere ∂Ω(x0, t0; c) of
the function (x, t) 7→ Q(x0 − x, t0 − t) is continuous (see Lemma 1 below),
and is positive except for a zero at (0, c). We write τ(c) = (4πc)−n/2 for all
c > 0, and put

M(u;x0, t0; c) = τ(c)
\

∂Ω(x0,t0;c)

Q(x0 − x, t0 − t)u(x, t) dσ

for any function u such that the integral exists. We require the following
details about Q.

Lemma 1. Let (y, s) ∈ ∂Ω(x0, t0; c). Then
(i) Q(x0 − y, t0 − s)→ 1 as (y, s)→ (x0, t0), and
(ii) τ(c)Q(x0 − y, t0 − s) = −〈∇xW (x0 − y, t0 − s), νx(y, s)〉.

Proof. (i) Putting x = x0 − y and t = t0 − s, we have

Q(x, t) =

(
4t2

‖x‖2 +
(
1− 2nt‖x‖2

)2)−1/2

=

(
2t

n log(c/t)
+

(
1− 1

log(c/t)

)2)−1/2

→ 1 as t→ 0.

(ii) A routine calculation.

Mean values of smooth functions over heat spheres

Theorem 1. If Ω(x0, t0; c)⊆E, u ∈ C2,1(E), and W0(x, t) =W (x0−x,
t0 − t), then

M(u;x0, t0; c)− u(x0, t0) =
\\

Ω(x0,t0;c)

(W0(y, s)− τ(c))Θu(y, s) dy ds.
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Proof. We apply Green’s formula (1) with D the following truncation of
Ω(c): For any t such that t0 − c < t < t0, we put

Ψ(t) = {(y, s) ∈ Ω(c) : s < t}.
We divide ∂Ψ(t) into two parts:

A(t) = ∂Ψ(t) ∩ (Rn × {t}), B(t) = ∂Ψ(t) \A(t).
Taking D = Ψ(t), v =W0, and w = u in (1), we obtain

(3)
\\
Ψ(t)

W0Θudy ds =
\

∂Ψ(t)

(〈W0∇xu− u∇xW0, νx〉 − uW0νt) dσ,

because Θ∗W0 = 0 on Ψ(t). The right-hand side of (3) can be written as

(4) −
\
A(t)

uW0dσ + τ(c)
\
B(t)

(〈∇xu, νx〉 − uνt) dσ −
\
B(t)

u〈∇xW0, νx〉 dσ,

because νx = 0, νt = 1 on A(t), and W0 = τ(c) on B(t).

As t→ t0− we have

−
\
B(t)

u〈∇xW0, νx〉 dσ →M(u;x0, t0; c)

in view of Lemma 1; and\
B(t)

(〈∇xu, νx〉 − uνt)dσ →
\

∂Ω(c)

(〈∇xu, νx〉 − uνt) dσ =
\\
Ω(c)

Θudy ds

by Green’s formula (2) with w = u and D = Ω(c). We now consider the
integral over A(t) in (4). Writing r = t0 − t and ̺(r) = 2nr log(c/r) for
r > 0, we have\

A(t)

W0 dσ =
\

‖x0−y‖<
√
̺(r)

(4πr)−n/2 exp

(
− ‖x0 − y‖

2

4r

)
dy

=
1

Γ (n/2)

̺(r)/(4r)\
0

sn/2−1e−s ds→ 1−

as r → 0+. Therefore, as t→ t0− ,
∣∣∣
\
A(t)

u(y, t)W0(y, t) dy − u(x0, t0)
∣∣∣

≤
∣∣∣
\
A(t)

(u(y, t)− u(x0, t0))W0(y, t) dy
∣∣∣+
∣∣∣u(x0, t0)

( \
A(t)

W0(y, t) dy − 1
)∣∣∣

≤ sup{|u(y, t)− u(x0, t0)| : ‖x0 − y‖ < ̺(r)}+ o(1) = o(1).
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Taking the limit as t→ t0− in (3), we therefore obtain\\
Ω(c)

W0Θudy ds = −u(x0, t0) + τ(c)
\\
Ω(c)

Θudy ds+M(u;x0, t0; c),

and the result follows.

Theorem 1 was proved by Smyrnélis [14, formula (7)]. It has the following
consequences.

Theorem 2. Let u ∈ C2,1(E). If Θu ≥ 0 on E, then the inequality
(5) u(x0, t0) ≤M(u;x0, t0; c)
holds whenever Ω(x0, t0; c) ⊆ E. Conversely if , given any point (x0, t0) ∈ E
and ε > 0, we can find c < ε such that (5) holds, then Θu ≥ 0 on E.
Proof. If Ω(x0, t0; c) ⊆ E, then by Theorem 1,

M(u;x0, t0; c)− u(x0, t0) =
\\

Ω(x0,t0;c)

(W0(y, s)− τ(c))Θu(y, s) dy ds.

By definition of the heat ball, W0(y, s) > τ(c) if (y, s) ∈ Ω(x0, t0; c). There-
fore if Θu ≥ 0 on E, thenM(u;x0, t0; c) ≥ u(x0, t0). On the other hand, if
Θu < 0 at some point of E, then the continuity of Θu implies that Θu < 0
on some open subset D of E. Then M(u;x0, t0; c) < u(x0, t0) for all c so
small that Ω(x0, t0; c) ⊆ D, so that the conditions for the converse fail to
hold.

Corollary. Let u ∈ C2,1(E). If u is a temperature on E, then the
equality

(6) u(x0, t0) =M(u;x0, t0; c)
holds whenever Ω(x0, t0; c) ⊆ E. Conversely if , given any point (x0, t0) ∈ E
and ε > 0, we can find c < ε such that (6) holds, then u is a temperature
on E.

Proof. Apply Theorem 2 to both u and −u.
Theorem 2 was proved for n = 1 by Pini [13] (the converse under a

stronger condition). The general case is due to Watson [15].
The first part of the corollary was proved for n = 1 by Pini [13], and for

general n by the three authors Fulks [5], Smyrnélis [14], and Kuptsov [8],
apparently independently of each other. The converse, with u assumed to be
merely continuous but with (6) assumed to hold whenever Ω(x0, t0; c) ⊆ E,
was proved by Pini [13] for n = 1, and by Fulks [5] for general n. Subse-
quently Kuptsov [8] proved a weaker version.
Before establishing further theorems, we need to introduce a notation

for the region between two concentric heat spheres.
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Definition. Given a point (x0, t0) ∈ R
n+1, and numbers b, c with 0 <

b < c, we put

A(b, c) = A(x0, t0; b, c) = {(y, s) : τ(c) < W (x0 − y, t0 − s) < τ(b)}
= Ω(c) \Ω(b),

and call it the heat annulus, with centre (x0, t0), inner radius b, and outer
radius c. Observe that ∂A(b, c) = ∂Ω(b) ∪ ∂Ω(c).

Theorem 3. Let u ∈ C2,1(E), let Ω(x0, t0; c) ⊆ E and let W0(x, t) =
W (x0 − x, t0 − t). Then, whenever 0 < b < c,

(7) M(u;x0, t0; c)−M(u;x0, t0; b)
=

\\
Ω(x0,t0;c)

((W0 ∧ τ(b))− τ(c))Θudy ds.

Furthermore, if Θu ≥ 0 on Ω(x0, t0; c), then the function M(u;x0, t0; ·) is
increasing on ]0, c].

Proof. If 0 < b < c, then by Theorem 1,

M(u;x0, t0; c)−M(u;x0, t0; b)
=

\\
Ω(x0,t0;c)

(W0 − τ(c))Θudy ds−
\\

Ω(x0,t0;b)

(W0 − τ(b))Θudy ds

=
\\

A(x0,t0;b,c)

(W0 − τ(c))Θudy ds+
\\

Ω(x0,t0;b)

(τ(b)− τ(c))Θudy ds

=
\\

Ω(x0,t0;c)

((W0 ∧ τ(b))− τ(c))Θudy ds,

which proves (7). If now 0 < a < b ≤ c, and Θu ≥ 0 on Ω(c), then by (7),

M(u;x0, t0; b)−M(u;x0, t0; a) =
\\
Ω(b)

((W0 ∧ τ(a))− τ(b))Θudy ds ≥ 0,

which proves the last part.

Corollary. If u ∈ C2,1(E), Ω(x0, t0; c) ⊆ E, and

λ(γ) =
\\

Ω(x0,t0;γ)

Θudy ds,

then whenever 0 < b < c we have

(8) M(u;x0, t0; c) =M(u;x0, t0; b)−
c\
b

τ ′(γ)λ(γ) dγ.
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Proof. By equality (7), the difference between the means is\\
Ω(x0,t0;c)

((W0 ∧ τ(b))− τ(c))Θudy ds

=

c\
0

((τ(γ) ∧ τ(b))− τ(c)) dλ(γ)

= ((τ(γ) ∧ τ(b))− τ(c))λ(γ)|c0 −
c\
b

τ ′(γ)λ(γ) dλ

= −
c\
b

τ ′(γ)λ(γ) dγ,

which proves (8).

If we make b → 0 in the identity (8), then the continuity of u ensures
thatM(u;x0, t0; b)→ u(x0, t0), so that we obtain

(9) M(u;x0, t0; c) = u(x0, t0)−
c\
0

τ ′(γ)λ(γ) dγ.

If Θu ≥ 0, then (9) is a smooth analogue of Nevanlinna’s First Fundamen-
tal Theorem on subharmonic functions. An exact analogue was proved by
Watson [20].
The last part of Theorem 3 was proved, under milder smoothness con-

ditions and for n = 1 only, by Pini [13]. The extension to general n, under
even milder conditions, was made by Watson [15]. The monotonicity fails
if we assume only that A(x0, t0; b, c) ⊆ E. For example, if (x1, t1) is fixed
with t1 < t0, E = R

n+1 \ {(x1, t1)}, and u(x, t) = W (x− x1, t− t1) for all
(x, t) ∈ E, then Θu = 0 on E and

M(u;x0, t0; c) = τ(c) ∧W (x0 − x1, t0 − t1).
This identity has been proved by Garofalo and Lanconelli [6], Watson [17]
and Brzezina [2, 3]; a new, elementary proof is given after Theorem 5 below.
If b is chosen so that (x1, t1) ∈ Ω(x0, t0; b), then M(u;x0, t0; c) = τ(c) for
all c > b, and τ is strictly decreasing.
However, if we do assume only that A(x0, t0; b, c) ⊆ E, something definite

can still be said. Its proof requires the following result.

Theorem 4. Let u ∈ C2,1(E), let A(x0, t0; b, c) ⊆ E, and let W0(x, t) =
W (x0 − x, t0 − t). Then

M(u;x0, t0; c)−M(u;x0, t0; b) =
\\

A(x0,t0;b,c)

W0Θudy ds

− τ(c)κ(c) + τ(b)κ(b),
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where

κ(a) =
\

∂Ω(x0,t0;a)

(〈∇xu, νx〉 − uνt) dσ

for a ∈ {b, c}.
Proof. We abbreviate the proof, as it is essentially similar to that of

Theorem 1. For any t such that t0 − b < t < t0, we put

Ψ(t) = {(y, s) ∈ A(x0, t0; b, c) : s < t}.
We divide ∂Ψ(t) into three parts:

T (t) = ∂Ψ(t) ∩ (Rn × {t}),
U(a, t) = {(y, s) ∈ ∂Ω(x0, t0; a) : s < t} for a ∈ {b, c}.

Taking D = Ψ(t), v =W0 and w = u in Green’s formula (1), we get\\
Ψ(t)

W0Θudy ds = −
\
T (t)

uW0 dσ + τ(c)
\

U(c,t)

(〈∇xu, νx〉 − uνt) dσ

− τ(b)
\

U(b,t)

(〈∇xu, νx〉 − uνt) dσ

−
\

U(c,t)

〈∇xW0, νx〉u dσ +
\

U(b,t)

〈∇xW0, νx〉u dσ.

The right-hand side tends to

τ(c)κ(c)− τ(b)κ(b) +M(u;x0, t0; c)−M(u;x0, t0; b)
as t→ t0− , because

T
T (t)

uW0 dy → 0. The result follows.

Theorem 4 does not seem to have been stated explicitly before, but its
proof appears within the proof of [19, Theorem 4]. Two applications follow.

Theorem 5. Let u ∈ C2,1(E), let A(x0, t0; b, c) ⊆ E, and suppose that
Θu ≥ 0 on A(x0, t0; b, c). Then there is a convex function φ such that
M(u;x0, t0; a) = φ(τ(a)) for all a ∈ [b, c].
Proof. Let α, β be numbers such that b ≤ α < β ≤ c. Applying Theo-

rem 4 to u on A(x0, t0;α, β), we obtain

M(β)−M(α) =
\\

A(α,β)

W0Θudy ds− τ(β)κ(β) + τ(α)κ(α),

whereM(γ) =M(u;x0, t0; γ) for γ ∈ {α, β}. By Green’s formula (2), with
D = A(α, β) and w = u,

κ(β)− κ(α) =
\\

A(α,β)

Θudy ds,
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so that

M(β)−M(α) =
\\

A(α,β)

W0Θudy ds− τ(α)(κ(β)− κ(α))− κ(β)(τ(β)− τ(α))

=
\\

A(α,β)

(W0 − τ(α))Θudy ds− κ(β)(τ(β)− τ(α)).

It follows that, if b ≤ p < q < r ≤ c, then
M(r)−M(q)
τ(r)− τ(q) −

M(q)−M(p)
τ(q)− τ(p)

=
\\
A(q,r)

(
W0 − τ(q)
τ(r)− τ(q)

)
Θudy ds− κ(r)−

\\
A(p,q)

(
W0 − τ(p)
τ(q)− τ(p)

)
Θudy ds+ κ(q)

=
\\
A(q,r)

(
W0 − τ(q)
τ(r)− τ(q) − 1

)
Θudy ds−

\\
A(p,q)

(
W0 − τ(p)
τ(q)− τ(p)

)
Θudy ds

=
\\
A(q,r)

(
W0 − τ(r)
τ(r)− τ(q)

)
Θudy ds+

\\
A(p,q)

(
τ(p)−W0
τ(q)− τ(p)

)
Θudy ds.

By definition of the heat annulus, τ(β) < W0 < τ(α) on A(α, β), so that
both of the last two integrands are negative. Hence

M(r)−M(q)
τ(r)− τ(q) ≤

M(q)−M(p)
τ(q)− τ(p)

whenever b ≤ p < q < r ≤ c, which means that M is a convex function
of τ .

Theorem 5 was proved (under milder conditions) by Watson in [17], [18]
and [19], using three different methods. The method used here is the simplest
of the three.
The case where u is a temperature is particularly nice.

Corollary. Let u ∈ C2,1(E), let A(x0, t0; b, c) ⊆ E, and let u be a
temperature on A(x0, t0; b, c). Then there are real numbers α, β such that

M(u;x0, t0; a) = ατ(a) + β
whenever b ≤ a ≤ c.
Proof. Apply Theorem 5 to both u and −u.
Example. Given two points (x0, t0), (x

∗, t∗) ∈ R
n+1 with t∗ < t0, we

evaluate the mean value of W ∗(x, t) = W (x− x∗, t− t∗) over ∂Ω(x0, t0; c),
for every c > 0. Our methods are more elementary than any used before.
Let c0 be the positive number such that (x

∗, t∗) ∈ ∂Ω(x0, t0; c0), or
W (x0 − x∗, t0 − t∗) = τ(c0). If 0 < c < c0, then W

∗ is a temperature on an
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open superset of Ω(x0, t0; c), so that

M(W ∗;x0, t0; c) =W ∗(x0, t0) = τ(c0)
by the Corollary to Theorem 2.

Now consider the case where c > c0. The Corollary to Theorem 5 shows
thatM(W ∗;x0, t0; c) = ατ(c)+β for some α, β ∈ R. Since τ(c)→ 0 as c→
∞, and the means are nonnegative, we have β ≥ 0. We can use Theorem 4
to show that α = 1, a process which involves the evaluation of

κ(a) =
\

∂Ω(x0,t0;a)

(〈∇xW ∗, νx〉 −W ∗νt) dσ

for a > c0. To achieve this, we go back to Green’s formula. Given a > c0,
we choose r, ̺ > 0 such that the closed cylinder C = B(x∗, r)× [t∗, t∗+̺] ⊆
Ω(a). We apply Green’s formula (2) with D = Ω(x0, t0; a) \ C = Ω(a) \ C
and w =W ∗. This gives

0 =
\

∂Ω(a)

(〈∇xW ∗, νx〉 −W ∗νt) dσ −
\
∂C

(〈∇xW ∗, νx〉 −W ∗νt) dσ.

We evaluate the limit of the latter integral as ̺→ 0. Let
T = B(x∗, r)× {t∗ + ̺} and L = ∂B(x∗, r)× [t∗, t∗ + ̺],

so that this integral can be written as

−
\
T

W ∗ dσ +
\
L

〈∇xW ∗, νx〉 dσ.

Now,

lim
̺→0

\
L

〈∇xW ∗, νx〉 dσ = 0

because the integrand is bounded on L. Furthermore,\
T

W ∗ dσ =
\

‖y−x∗‖≤r

W (y − x∗, ̺) dy → 1 as ̺→ 0

([16, p. 3]). It follows that

κ(a) = lim
̺→0

\
∂C

(〈∇xW ∗, νx〉 −W ∗νt) dσ = −1.

We now take E = R
n+1 \ {(x∗, t∗)} and u = W ∗ in Theorem 4, with c >

b > c0. This gives

M(W ∗;x0, t0; c)−M(W ∗;x0, t0; b) = −τ(c)κ(c) + τ(b)κ(b) = τ(c)− τ(b),
which implies that α = 1. Thus

M(W ∗;x0, t0; c) =
{
τ(c0) if 0 < c < c0,
τ(c) + β if c > c0,
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where β ≥ 0. We shall prove that M(W ∗;x0, t0; ·) is a decreasing function
on ]0,∞[, which implies that β = 0 and thatM(W ∗;x0, t0; c0) = τ(c0). To
do this, we approximate W ∗ with an increasing sequence {wk} of functions
in C2,1(Rn+1) such that Θwk ≤ 0 for every k. This sequence is constructed
in the following way. Let ψ be a continuously differentiable function on R

such that ψ(t) = 0 for all t ≤ 1/2, ψ(t) = 1 for all t ≥ 1, and ψ′(t) ≥ 0 for
all t ∈ R. Put

wk(x, t) =W
∗(x, t)ψ(k(t− t∗))

whenever (x, t) ∈ R
n+1 and k ∈ N. Since ψ(k(t − t∗)) = 0 for all t ≤

t∗ + 1/(2k), each function wk is in C
2,1(Rn+1). Furthermore,

Θwk(x, t) = −W ∗(x, t)kψ′(k(t− t∗)) ≤ 0
for all (x, t) ∈ R

n+1. Theorem 3 shows that each function M(wk;x0, t0; ·)
is decreasing. Furthermore, since ψ is an increasing function, the sequence
{wk} is increasing; and since ψ(k(t− t∗)) = 1 for all t ≥ t∗ + 1/k, we have

lim
k→∞

wk =W
∗.

Hence, by the monotone convergence theorem,

M(W ∗;x0, t0; ·) = lim
k→∞
M(wk;x0, t0; ·),

and the latter function is decreasing. We deduce that β = 0 and that
M(W ∗;x0, t0; c0) = τ(c0) =W ∗(x0, t0). Hence

M(W ∗;x0, t0; c0) =W ∗(x0, t0) ∧ τ(c)
for all c > 0.

Mean values of smooth subtemperatures over heat balls. Hence-
forth, if u ∈ C2,1(E) and Θu ≥ 0 on E, we shall call u a smooth subtemper-
ature on E.
The essential properties of the mean values of smooth subtemperatures

over heat spheres, given in Theorems 2, 3 and 5 above, carry over to mean
values over heat balls. We get from one to the other by integration, and there
are uncountably many different possibilities for the kernel in the heat ball
case. For a discussion of an infinity of the options, see [21]. Unfortunately,
the most natural choice of kernel is not the simplest kernel, and there is no
choice that yields a bounded kernel. For most purposes the choice of kernel
is not important, so we choose the simplest.
Given a function u on the heat ball Ω(x0, t0; c) for which the integral

exists, we define the volume mean value of u by

(10) V(u;x0, t0; c) =
n

2
c−n/2

c\
0

r(n/2)−1M(u;x0, t0; r) dr.



SUBTEMPERATURE THEOREMS 123

To express the integral in rectangular coordinates, we need to know the
Jacobian. If J is defined on R

n × ]0,∞[ by

J(x, t) = 2nt exp

(
−‖x‖

2

2nt

)
(4‖x‖2t2 + (‖x‖2 − 2nt)2)−1/2,

then\\
Ω(x0,t0;c)

u(y, s) dy ds =

c\
0

( \
∂Ω(x0,t0;r)

u(y, s)J(x0 − y, t0 − s) dσ(y, s)
)
dr,

by [15, Lemma 3]. Since the kernel Q for the mean value over the heat sphere
satisfies

Q(x, t) =
‖x‖2
2nt
exp

(‖x‖2
2nt

)
J(x, t),

and r = (t0−s) exp(‖x0−y‖2/(2n(t0−s))) whenever (y, s) ∈ ∂Ω(x0, t0; r)\
{(x0, t0)}, we obtain

(11) V(u;x0, t0; c) = τ(c)
\\

Ω(x0,t0;c)

‖x0 − y‖2
4(t0 − s)2

u(y, s) dy ds.

We now present variants of Theorems 2, 3, and 5 for the volume means.

Theorem 6. Let u ∈ C2,1(E). If Θu ≥ 0 on E, then the inequality
(12) u(x0, t0) ≤ V(u;x0, t0; c)
holds whenever Ω(x0, t0; c) ⊆ E. Conversely if , given any point (x0, t0) ∈ E
and ε > 0, we can find c < ε such that (12) holds, then Θu ≥ 0 on E.
Proof. Suppose that Ω(x0, t0; c) ⊆ E. If u is a smooth subtemperature

on E, then u(x0, t0) ≤M(u;x0, t0; b) whenever 0 < b ≤ c, by Theorem 2. It
therefore follows from (10) that

V(u;x0, t0; c) ≥
n

2
c−n/2

c\
0

r(n/2)−1u(x0, t0) dr = u(x0, t0),

so that (12) holds. For the converse, if Θu < 0 at some point of E, then
the continuity of Θu implies that Θu < 0 on an open subset D of E. If
Ω(x0, t0; c) ⊆ D, then u(x0, t0) > M(u;x0, t0; b) whenever 0 < b ≤ c, by
Theorem 2. It now follows from (10) that V(u;x0, t0; b) < u(x0, t0) whenever
0 < b ≤ c, so that the condition in the converse fails to hold.
Corollary. Let u ∈ C2,1(E). If u is a temperature on E, then (12)

holds with equality whenever Ω(x0, t0; c) ⊆ E. Conversely if , given any point
(x0, t0) ∈ E and ε > 0, we can find c < ε such that (12) holds with equality ,
then u is a temperature on E.
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The authors who first calculated the mean values of smooth subtempera-
tures over heat balls, all chose different kernels. This is of no consequence in
the context of Theorem 6, and is therefore ignored in the following remarks.

Theorem 6 was first proved, with the converse condition strengthened
to have (12) hold for all Ω(x0, t0; c) ⊆ E, by Pini [13] for n = 1. Then the
corollary alone was proved for general n, with a similar strengthening of
the converse condition, by Smyrnélis [14]. Then Watson proved the theorem
as above (but with a milder smoothness condition) in [15]. Subsequently
Kuptsov proved the same version that Smyrnélis had done, in [8].

Theorem 7. If u is a smooth subtemperature on E, and (x0, t0) ∈ E,
then the function V(u;x0, t0; ·) is increasing on the set of c > 0 such that
Ω(x0, t0; c) ⊆ E.
Proof. If 0 < b < c and Ω(x0, t0; c) ⊆ E, then by (10),
V(u;x0, t0; c)− V(u;x0, t0; b)

=
n

2
c−n/2

c\
0

r(n/2)−1(M(u;x0, t0; r)−M(u;x0, t0; br/c)) dr,

and the integrand is positive by Theorem 3.

Theorem 7 was proved in the case n = 1 by Pini [13], under a milder
smoothness condition. For a general n, it was proved by Watson, in [17] for
a different kernel, in [21] for the present one, under yet milder smoothness
conditions.

Theorem 8. Let u ∈ C2,1(E), let Ω(x0, t0; c) ⊆ E, and suppose Θu ≥ 0
on Ω(x0, t0; c). Then there is a convex function φ such that V(u;x0, t0; a) =
φ(τ(a)) for all a ∈ ]0, c].
Proof. The result is a consequence of Theorem 5 and (10). First observe

that, if α, β, γ, r are strictly positive, then

τ(β)− τ(α) = (r/γ)n/2(τ(βr/γ)− τ(αr/γ)).
It follows that, if 0 < α < β < γ ≤ c, V(a) = V(u;x0, t0; a) and M(a) =
M(u;x0, t0; a), then by (10),
V(γ)− V(β)
τ(γ)− τ(β) −

V(β)− V(α)
τ(β)− τ(α)

=
n

2
γ−n/2

γ\
0

(M(r)−M(βr/γ)
τ(γ)− τ(β) − M(βr/γ)−M(αr/γ)

τ(β)− τ(α)

)
r(n/2)−1 dr

=
n

2

γ\
0

(M(r)−M(βr/γ)
τ(r)− τ(βr/γ) −

M(βr/γ)−M(αr/γ)
τ(βr/γ)− τ(αr/γ)

)
r−1 dr.
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By Theorem 5, the last integrand is negative. Therefore,

V(γ)− V(β)
τ(γ)− τ(β) ≤

V(β)− V(α)
τ(β)− τ(α)

whenever 0 < α < β < γ ≤ c, which means that V is a convex function
of τ .

Theorem 8 was proved, under milder conditions, by Watson in [17] for
a different kernel, in [21] for the present one. The method used here is the
same as in [21].
Specializing to the case where u is a temperature, we obtain a result

analogous to the Corollary to Theorem 5.

Corollary. Let u ∈ C2,1(E), let Ω(x0, t0; c) ⊆ E, and let u be a
temperature on Ω(x0, t0; c). Then there are real numbers α and β such that

V(u;x0, t0; a) = ατ(a) + β
whenever 0 < a ≤ c.

Modified heat balls. The kernel for the heat ball, given in formula
(11), is unbounded near the centre of the ball. For most purposes this does
not cause problems, but for some it causes substantial ones. We now con-
sider a family of modified heat balls indexed by an integer m ≥ 1. As m
increases, the kernel’s behaviour improves. For m ≥ 3 the kernel is bounded,
while for m ≥ 5 it has a smooth extension by zero to the whole of R

n+1.
Theorem 10 below gives the key results, and is new. An application is given
to the characterization of temperatures.
Let m be an integer, m ≥ 1. Given (x0, t0) ∈ R

n+1 and c > 0, we put

Ωm(x0, t0; c)

=

{
(y, s) : (t0 − s)−(m+n)/2 exp

(
−‖x0 − y‖

2

4(t0 − s)

)
> c−(m+n)/2

}

=

{
(y, s) : ‖x0 − y‖2 < 2(m+ n)(t0 − s) log

(
c

t0 − s

)
, 0 < t0 − s < c

}
.

Thus Ωm(x0, t0; c) is the projection onto R
n+1 of a heat ball in R

m+n+1.
Let u ∈ C2,1(E), and put
(13) û(ξ, x, t) = u(x, t) for all ξ ∈ R

m and (x, t) ∈ E.
Then û ∈ C2,1(Rm × E), and we can apply the above theorems to û. Note
that the volume mean formula (11), when applied to û, becomes

V(û; ξ0, x0, t0; c)

= (4πc)−(m+n)/2
\\\

Ω(ξ0,x0,t0;c)

‖ξ0 − η‖2 + ‖x0 − y‖2
4(t0 − s)2

û(η, y, s) dη dy ds.
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Since û(η, y, s) = u(y, s) does not depend on η, we can integrate out η and
obtain a volume mean for u, which we denote by Vm(u;x0, t0; c). Thus
Vm(u;x0, t0; c)

= (4πc)−(m+n)/2
\\

Ωm(x0,t0;c)

( \
‖ξ0−η‖<R

‖ξ0 − η‖2+‖x0 − y‖2
4(t0 − s)2

dη

)
u(y, s) dy ds,

where

R = R(x0 − y, t0 − s) = (2(m+ n)(t0 − s) log(c/(t0 − s))− ‖x0 − y‖2)1/2.
The innermost integral can be evaluated explicitly, and the simplicity of the
chosen kernel facilitates the calculation. We have\
‖ξ0−η‖<R

‖ξ0 − η‖2 + ‖x0 − y‖2
4(t0 − s)2

dη = σm

R\
0

r2 + ‖x0 − y‖2
4(t0 − s)2

rm−1 dr

=
ωmR

m

4(t0 − s)2
(

m

m+ 2
R2 + ‖x0 − y‖2

)
,

where σm is the surface area of the unit sphere in R
m, and ωm is the volume

it encloses. Hence

Vm(u;x0, t0; c) =
\\

Ωm(x0,t0;c)

Km,c(x0 − y, t0 − s)u(y, s) dy ds,

where

Km,c(x0 − y, t0 − s)

=
ωm(4πc)

−(m+n)/2

2(m+ 2)
R(x0−y, t0−s)m

(
m(m+ n)

(t0 − s)
log

(
c

t0 − s

)
+
‖x0 − y‖2
(t0 − s)2

)

is a continuous, positive function of (y, s) on Ωm(x0, t0; c) \ {(x0, t0)}, and
is zero on ∂Ωm(x0, t0; c) \ {(x0, t0)}.
If m is sufficiently large, then the function (y, s) 7→ Km,c(x0 − y, t0 − s)

has a continuous extension by zero at (x0, t0). For if

‖x0 − y‖2 < 2(m+ n)(t0 − s) log(c/(t0 − s)),
then

0 < R(x0 − y, t0 − s)2 < 2(m+ n)(t0 − s) log(c/(t0 − s)),
so that

Km,c(x0 − y, t0 − s) ≤ A(t0 − s)(m−2)/2(log c/(t0 − s))(m+2)/2

for some positive constant A which depends only on c, m and n. It follows
that if m ≥ 3 then Km,c(x0 − y, t0 − s) → 0 as s → t0. In particular, the
kernel is bounded if m ≥ 3.
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The idea for modifying the heat ball to get a bounded kernel is due to
Kuptsov [8]. It has also been used by Garofalo and Lanconelli [6]. In both
papers a Harnack inequality was proved using the boundedness of the kernel.

Given any function u ∈ C2,1(E), we can define û by (13) and apply
Theorems 6–8 to û. We thus obtain the following results about the modified
volume means of u.

Theorem 9. Let u ∈ C2,1(E), and let m be an integer , m ≥ 1.
(i) If u is a smooth subtemperature on E, then the inequality

(14) u(x0, t0) ≤ Vm(u;x0, t0; c)
holds whenever Ωm(x0, t0; c) ⊆ E. Conversely if , given any point (x0, t0)
∈ E and ε > 0, we can find c < ε such that (14) holds, then u is a smooth
subtemperature on E.

(ii) If u is a smooth subtemperature on E, and (x0, t0) ∈ E, then
the function Vm(u;x0, t0; ·) is increasing on the set of c > 0 such that
Ωm(x0, t0; c) ⊆ E.
(iii) If u is a smooth subtemperature on Ωm(x0, t0; c) and Ωm(x0, t0; c)

⊆ E, then there is a convex function φm such that Vm(u;x0, t0; a) =
φm(τm(a)) whenever 0 < a ≤ c, where τm(a) = (4πa)−(m+n)/2.

Proof. Given u ∈ C2,1(E), we define û by (13), and denote by Θ̂ the
heat operator in R

m+n+1.

(i) Suppose that Θu ≥ 0 on E, and that Ωm(x0, t0; c) ⊆ E. Then

Θ̂û = Θu ≥ 0 on R
m ×E, and Ω(ξ0, x0, t0; c) ⊆ R

m ×E for every ξ0 ∈ R
m.

Applying Theorem 6 to û ∈ C2,1(Rm × E), we obtain
u(x0, t0) = û(ξ0, x0, t0) ≤ V(û; ξ0, x0, t0; c) = Vm(u;x0, t0; c).

Conversely, suppose that we are given (x0, t0) ∈ E and ε > 0, and that
c < ε is chosen so that (14) holds. Then, whenever ξ0 ∈ R

m, we have

û(ξ0, x0, t0) = u(x0, t0) ≤ Vm(u;x0, t0; c) = V(û; ξ0, x0, t0; c),

and another application of Theorem 6 to û shows that Θ̂û ≥ 0 on R
m × E.

Hence Θu ≥ 0 on E.
(ii) If Θu ≥ 0 on E and (x0, t0) ∈ E, then Θ̂û ≥ 0 on R

m × E.
Therefore, by Theorem 7, for any ξ0 ∈ R

m the function V(û; ξ0, x0, t0; ·) =
Vm(u;x0, t0; ·) is increasing on the set of c > 0 such that Ω(ξ0, x0, t0; c) ⊆
R
m × E, equivalently Ωm(x0, t0; c) ⊆ E.
(iii) If Ωm(x0, t0; c) ⊆ E and Θu ≥ 0 on Ωm(x0, t0; c), then for any

ξ0 ∈ R
m we have Ω(ξ0, x0, t0; c) ⊆ R

m × E and Θ̂û ≥ 0 on Ω(ξ0, x0, t0; c).
Therefore, by Theorem 8 applied to û, there is a convex function φm such
that Vm(u;x0, t0; a) = V(û; ξ0, x0, t0; a) = φm(τm(a)) whenever 0 < a ≤ c.
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Theorem 10. Let u be a locally integrable function on E, let m be an
integer with m ≥ 5, let c > 0, and let

Ec = {(y, s) : Ωm(y, s; c) ⊆ E}.
If uc is defined for all (x, t) ∈ Ec by

uc(x, t) = Vm(u;x, t; c),
then uc ∈ C2,1(Ec) and uc → u locally in L1 as c → 0. Furthermore, if
there is an integer p ≥ 0 such that
(15) u(x, t) ≤ Vp(u;x, t; b)
whenever Ωp(x, t; b) ⊆ E, then uc is a smooth subtemperature. (Here, and
below , V0 = V and Ω0 = Ω.)
Proof. Let D be a bounded open set with D ⊆ E, and put

Dc = {(y, s) : Ωm(y, s; c) ⊆ D}.
Then u is integrable on D, and the first part of the theorem will follow if
we prove that uc ∈ C2,1(Dc). Put

̺(r, t) = (2(m+ n)t log(c/t)− r2)1/2

whenever r ∈ R and 0 < t < c. In addition, put

λc(r, t) =





αc̺(r, t)

m

(
m(m+ n)

1

t
log

c

t
+
r2

t2

)
if r2 < 2(m+ n)t log

c

t
,

0 otherwise,

where αc = ωm(4πc)
−(m+n)/2/(2(m+ 2)). Then

Vm(u;x, t; c) =
\\

Rn+1

λc(‖x− y‖, t− s)u(y, s) dy ds,

so that uc will belong to C
2,1(Dc) if λ ∈ C2,1(R2). Routine calculations

show that there are constants a1, . . . , a9 such that

D1λc(r, t) = αc̺(r, t)
m−2

(
a1
r

t
log

c

t
+ a2

r3

t2

)
,

D21λc(r, t) = αc̺(r, t)
m−4

(
a3
r2

t
log

c

t
+ a4

(
log

c

t

)2
+ a5

r4

t2

)
,

D2λc(r, t) = αc̺(r, t)
m−2

(
a6
1

t

(
log

c

t

)2
+ a7
1

t
log

c

t
+ a8

r2

t2
log

c

t
+ a9

r4

t3

)

whenever r2 < 2(m+n)t log(c/t). Therefore, becausem ≥ 5, all these deriva-
tives tend to zero as (r, t) approaches any point (R, T ) where R2 = 2(m+n)
×T log(c/T ) and T > 0. Furthermore, whenever r2 < 2(m+n)t log(c/t) we
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have

λc(r, t) ≤ At(m−2)/2
(
log

c

t

)(m+2)/2
,

|D1λc(r, t)| ≤ At(m−3)/2
(
log

c

t

)(m+1)/2
,

|D21λc(r, t)| ≤ At(m−4)/2
(
log

c

t

)m/2
,

|D2λc(r, t)| ≤ At(m−4)/2
(
log

c

t

)m/2(
1 + log

c

t

)
,

for some constant A. Since m ≥ 5, it follows that all these functions tend to
zero as t→ 0+, so that λ ∈ C2,1(R2). The first part of the theorem follows.
To prove that uc → u locally in L1 as c → 0, we need only show that

the family {φc : c > 0} of functions given by
φc(y, s) = λc(‖y‖, s)

is an approximate identity. Since φc ≥ 0, and\\
Rn+1

φc(y, s) dy ds = Vm(1; 0, 0; c) = 1

by Theorem 9(i), and the support of φc is contained in the set

B(0, (2(m+ n)c/e)1/2)× [0, c],
the result follows.

Finally, suppose that there is an integer p ≥ 0 such that (15) holds
whenever Ωp(x, t; b) ⊆ E. To prove that uc is a smooth subtemperature, it
suffices to show that, given any point (x, t) ∈ Ec and any ε > 0, we can find
b < ε such that

uc(x, t) ≤ Vp(uc;x, t; b),
in view of Theorem 6 (if p = 0) or Theorem 9(i) (if p ≥ 1). Given D as
above, suppose that Ωp(x, t; a) ⊆ Dc and that 0 < b < a. Then

Vp(uc;x, t; b)
=

\\
Ωp(x,t;b)

Kp,b(x− y, t− s)
( \\
Ωm(y,s;c)

Km,c(y − z, s− r)u(z, r) dz dr
)
dy ds

=
\\

Ωp(x,t;b)

Kp,b(x− y, t− s)

×
( \\
Ωm(0,0;c)

Km,c(−z,−r)u(z + y, r + s) dz dr
)
dy ds
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=
\\

Ωm(0,0;c)

Km,c(−z,−r)

×
( \\
Ωp(x,t;b)

Kp,b(x− y, t− s)u(y + z, s+ r) dy ds
)
dz dr

=
\\

Ωm(0,0;c)

Km,c(−z,−r)

×
( \\
Ωp(x+z,t+r;b)

Kp,b(x+ z − y, t+ r − s)u(y, s) dy ds
)
dz dr

≥
\\

Ωm(0,0;c)

Km,c(−z,−r)u(x+ z, t+ r) dz dr

=
\\

Ωm(x,t;c)

Km,c(x− z, t− r)u(z, r) dz dr = uc(x, t).

The change in the order of the integrals is justified by Fubini’s theorem. For,
if M = maxKm,c then\\
Ωp(x,t;b)

Kp,b(x− y, t− s)
( \\
Ωm(y,s;c)

Km,c(y − z, s− r)|u(z, r)| dz dr
)
dy ds

≤M
\\

Ωp(x,t;b)

Kp,b(x− y, t− s)
( \\
Ωm(y,s;c)

|u(z, r)| dz dr
)
dy ds

≤M
\\
D

|u(z, r)| dz dr Vp(1;x, t; b) <∞.

As an immediate application of Theorem 10, we give a new characteri-
zation of temperatures within the class of locally integrable functions.

Theorem 11. Let u be a locally integrable function on E, let m be an
integer with m ≥ 5, and suppose that
(16) u(x, t) = Vm(u;x, t; b)
whenever Ωm(x, t; b) ⊆ E. Then u is a temperature on E.
Proof. For each c > 0, define the set Ec and function uc as in The-

orem 10. Then that theorem implies that uc is a smooth subtemperature
on Ec, in view of (16). Since −u satisfies the same conditions as u, the func-
tion −uc = (−u)c = −(uc) is also a smooth subtemperature on Ec. Hence
uc is a temperature on Ec. Since uc = u on Ec, by (16), it follows that u is
a temperature on

⋃
c>0Ec = E.

An analogous result using averages over (n + 1)-dimensional intervals
was claimed by Doob [4, p. 276].
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General subtemperatures. We now consider non-smooth subtemper-
atures. For each integer m ≥ 0, we define “m-subtemperatures” associated
with the modified heat balls Ωm. The case m = 0 corresponds to the sub-
temperatures defined in [15]. We prove some basic properties for all m ≥ 0,
and use them in conjunction with Theorem 11 to prove Harnack theorems
for temperatures.

First we recall an important class of subsets of E.

Notation. Given a point (x0, t0) ∈ E, we denote by Λ(x0, t0;E)
the set of all points (x1, t1) ∈ E with t1 < t0 which have the follow-
ing property: There exists a polygonal path γ : [0, 1] → E such that
γ(0) = (x0, t0), γ(1) = (x1, t1), and if ord denotes the projection map-
ping from γ([0, 1]) onto {0}×R, then ord ◦ γ is strictly decreasing. In other
words, (x0, t0) can be joined to (x1, t1) by a polygonal path in E along which
the time variable is strictly decreasing.

Definition. Let m be an integer with m ≥ 0, and let u be a func-
tion on E. We call u an m-subtemperature on E if it satisfies the following
conditions:

(δ1) −∞ ≤ u(x, t) < +∞ for all (x, t) ∈ E;
(δ2) u is upper semicontinuous on E;

(δ3) given any point (x1, t1) ∈ E, there is a point (x0, t0) ∈ E such that
(x1, t1) ∈ Λ(x0, t0;E) and u(x0, t0) > −∞;
(δ4) u(x, t) ≤ Vm(u;x, t; c) whenever Ωm(x, t; c) ⊆ E.

Note that (δ1) and (δ2) together imply that u is locally bounded above
on E, so that the integrals in (δ4) always exist and are never +∞.
Theorem 6 (if m = 0) or Theorem 9(i) (if m ≥ 1) tells us that a function

u ∈ C2,1(E) is an m-subtemperature if and only if it is a smooth subtem-
perature.

The next theorem exhibits a fundamental property of subtemperatures.
The case m = 0 was proved in [15], using a similar technique.

Theorem 12. Let m be an integer with m ≥ 0. Let {uk} be a decreasing
sequence of m-subtemperatures on E, with limit u. If u(x0, t0) > −∞ for
some (x0, t0) ∈ E, then u is an m-subtemperature on Λ(x0, t0;E).

Proof. It is immediate that u satisfies (δ1) and (δ2). For (δ4), ifΩm(x, t; c)
⊆ E then

uk(x, t) ≤ Vm(uk;x, t; c)
for all k, so that the monotone convergence theorem yields

u(x, t) ≤ Vm(u;x, t; c).



132 N. A. WATSON

In particular, we can choose c0 such that Ωm(x0, t0; c0) ⊆ E and
−∞ < u(x0, t0) ≤ Vm(u;x0, t0; c0).

Hence u(y, s) is finite for almost all (y, s) ∈ Ωm(x0, t0; c0).
Put Λ = Λ(x0, t0;E). Given any point (x1, t1) ∈ Λ , let γ denote a polygo-

nal path from (x0, t0) to (x1, t1) in E whose projection onto {0}×R is strictly
decreasing. Consider that connected part of the trace of γ in Ωm(x0, t0; c0)
which has (x0, t0) as one endpoint, and label the other endpoint (x2, t2).
Choose a point (x3, t3) ∈ Ωm(x0, t0; c0) such that u(x3, t3) > −∞ and
(x2, t2) ∈ Λ(x3, t3;Λ). Then (x1, t1) ∈ Λ(x3, t3;Λ), and (δ3) holds. Hence
u is an m-subtemperature on Λ.

It follows from Theorem 12 that, if u is the limit of a decreasing sequence
of smooth subtemperatures on E, then u is an m-subtemperature on E, for
any m ≥ 0, provided that the finiteness condition (δ3) is satisfied. If m ≥ 5,
we can prove a converse result by elementary methods; see Theorem 16
below. The proof requires a preliminary result of interest in itself.

Theorem 13. Let m be an integer with m ≥ 0. If u is an m-subtemper-
ature on E, then u is locally integrable on E.

Proof. Take any point (x1, t1) ∈ E. By (δ3), there is a point (x0, t0)
such that (x1, t1) ∈ Λ(x0, t0;E) and u(x0, t0) > −∞. Let γ : [0, 1] → E
be a polygonal path such that γ(0) = (x0, t0), γ(1) = (x1, t1) and ord◦γ
is strictly decreasing. Since the trace γ∗ of γ is compact, it is a positive
distance from R

n+1 \E. Therefore we can find c0 such that Ωm(x, t; c0) ⊆ E
for all (x, t) ∈ γ∗.
For any point (x, t) = γ(τ) ∈ γ∗, we put

P (x, t) = {(y, s) : ‖x− y‖2 < 2(m+ n)(s− t)}.
Then, if (y, s) ∈ P (x, t) and s − t < c0/e, we have (x, t) ∈ Ωm(y, s; c0).
Suppose that u is not integrable on any neighbourhood of (x, t). If m ≥ 1,
then the kernel Km,c0 > 0 except on ∂Ωm(y, s; c0), so that Vm(u; y, s; c0) =
−∞. If m = 0, then K0,c0 > 0 except on {y} × R, so that if y 6= x then
Vm(u; y, s; c0) = −∞. In either case, it follows from (δ4) that u(y, s) = −∞
for all (y, s) ∈ P (x, t) such that s− t < c0/e and s 6= t. Because γ∗ consists
of finitely many line segments, there is therefore η > 0, independent of
τ ∈ [0, 1], such that u is −∞ almost everywhere on some neighbourhood
of γ(ω) for every ω with (τ − η) ∨ 0 ≤ ω < τ . In particular, if τ − η > 0
then u is not integrable on any neighbourhood of γ(τ − η), so that a repeat
of the above argument shows that u is −∞ almost everywhere on some
neighbourhood of γ(ω) for every ω with (τ − 2η)∨ 0 ≤ ω < τ . Iterating this
argument finitely many times, we conclude that u is −∞ almost everywhere
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on a neighbourhood of γ(ω) for every ω with 0 ≤ ω < τ . It follows from (δ4)
that u(γ(ω)) = −∞ for such ω.
If (x1, t1) could be chosen so that u is not integrable on any neighbour-

hood of (x1, t1), it would then follow that u(x0, t0) = −∞, a contradiction.
It follows that each point of E has a neighbourhood on which u is integrable,
so that u is locally integrable on E.

The case m = 0 of Theorem 13 was proved in [15]. The method here is
new, and much shorter.
We are now able to give an easy proof of the Harnack monotone conver-

gence theorem.

Theorem 14. Let {uk} be an increasing sequence of temperatures on E,
and let u = limk→∞ uk. If u(x0, t0) <∞ for some point (x0, t0) ∈ E, then
u is a temperature on Λ(x0, t0;E), and the convergence is locally uniform
there.

Proof. Put Λ = Λ(x0, t0;E), and let m be an integer with m ≥ 5. Since
{−uk} is a decreasing sequence of m-subtemperatures on E, Theorem 12
shows that−u is anm-subtemperature on Λ. Therefore u is locally integrable
on Λ, by Theorem 13. Furthermore, for every k we have

uk(x, t) = Vm(uk;x, t; b)
whenever Ωm(x, t; b) ⊆ Λ (in particular), by Theorem 9(i). It therefore fol-
lows from the monotone convergence theorem that

u(x, t) = Vm(u;x, t; b)
whenever Ωm(x, t; b) ⊆ Λ. Now Theorem 11 shows that u is a temperature
on Λ. Dini’s Theorem implies that the convergence is locally uniform on Λ.

Following Doob [4, p. 277], we can deduce a form of the Harnack inequal-
ity from the Harnack monotone convergence theorem.

Theorem 15. Let µ be a measure on E, and let S be the intersection
with E of the support of µ. Let A be a compact subset of E such that for each
point (x1, t1) ∈ A there is a point (x0, t0) ∈ S with (x1, t1) ∈ Λ(x0, t0;E).
Then there is a constant κ, which depends only on E, µ and A, such that

max
A

u ≤ κ
\
S

u dµ

for every non-negative temperature u on E.

Proof. Suppose that, given E, µ and A, there is no such constant. Then
for each integer k ≥ 0, there is a non-negative temperature uk on E such
that

max
A

uk ≥ 2k
\
S

uk dµ.
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We may assume that

max
A

uk ≥ 1 and
\
S

uk dµ ≤ 2−k.

Consider the series
∑∞
k=0 uk. Since\
S

∞∑

k=0

uk dµ =

∞∑

k=0

\
S

uk dµ ≤ 2,

the series is convergent µ-a.e. on S, and hence on a dense subset of S. Ap-
plying Theorem 14 to the sequence of partial sums of the series, we see
that if the series is convergent at a point (x0, t0) then it is convergent on
Λ(x0, t0;E) to a temperature. It follows that the series converges to a tem-
perature on the set

⋃
(x,t)∈S Λ(x, t;E), which contains A. Dini’s theorem

implies that the convergence is uniform on A. Therefore the sequence {uk}
is uniformly convergent to zero on A, contrary to the fact that maxA uk ≥ 1
for all k.

Corollary. Let (x0, t0) ∈ E, and let A be a compact subset of the set
Λ(x0, t0;E). Then there is a constant κ, which depends only on E, (x0, t0)
and A, such that

max
A

u ≤ κu(x0, t0)

for every non-negative temperature u on E.

Proof. In Theorem 15, take µ to be the unit mass at (x0, t0).

Harnack theorems for temperatures were proved, in various forms and
using various methods, by Hadamard [7], Pini [12], Moser [10, 11], Bauer
[1], and Kuptsov [8]. The general form in Theorem 15 is due to Bauer [1,
Satz 1.4.4].

The classes of m-subtemperatures for m ≥ 5. We prove that, on
any bounded open set D with D ⊆ E, any m-subtemperature is the limit
of a decreasing sequence of smooth subtemperatures, if m ≥ 5. For smaller
values ofm, we have to add a continuity condition to get the result by similar
methods. We deduce that the class of m-subtemperatures is independent of
m for m ≥ 5. We also deduce that the mean value properties of smooth
subtemperatures carry over to m-subtemperatures, if m ≥ 5.
Using advanced techniques, Garofalo and Lanconelli [6] have shown that

the class of m-subtemperatures is independent of m for all m ≥ 0 in the
case E = R

n+1.

We shall use the following simple result.
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Lemma 2. Let u be an upper semicontinuous function on E such that
u(x, t) <∞ for all (x, t) ∈ E. Then

u(x0, t0) ≥ lim sup
b→0

Vm(u;x0, t0; b)

for each (x0, t0) ∈ E and each m ≥ 0. Furthermore, if u is a p-subtempera-
ture for some integer p ≥ 0, then

u(x0, t0) = lim
b→0
Vp(u;x0, t0; b)

for all (x0, t0) ∈ E.
Proof. Given any real number A > u(x0, t0), we can find a neighbour-

hood N of (x0, t0) such that u(y, s) < A for all (y, s) ∈ N . Therefore,
whenever Ωm(x0, t0; b) ⊆ N , we have

Vm(u;x0, t0; b) ≤ Vm(A;x0, t0; b) = A.
This proves the first part. For the second, condition (δ4) implies that

u(x0, t0) ≤ lim inf
b→0

Vp(u;x0, t0; b),

so that the result follows from the first part.

We now present the aforementioned continuity condition.

Definition. A function u on E is said to be Λ-continuous at a point
(x0, t0) ∈ E if u(x0, t0) is the limit of u(y, s) as (y, s)→ (x0, t0) with (y, s) ∈
Λ(x0, t0;E).

For example, the function W is Λ-continuous at (0, 0).
The next result is a theorem on the monotone approximation of m-sub-

temperatures by smooth ones, which is crucial to our approach. Similar
results were proved earlier, using less elementary methods, by Garofalo and
Lanconelli [6], and by Lanconelli and Pascucci [9].

Theorem 16. Let p be an integer with p ≥ 0, let u be a p-subtemperature
on E, and let D be a bounded open set such that D ⊆ E. Then there is a
decreasing sequence {vk} of smooth subtemperatures on D such that

u(x0, t0) = lim
k→∞

vk(x0, t0)

holds (i) for all (x0, t0) ∈ D if p ≥ 5, and (ii) at every point (x0, t0) of D
where u is Λ-continuous if p ≤ 4.
Proof. If 0 ≤ p ≤ 4, choose any integer m ≥ 5. If p ≥ 5, choose m = p.

Given c > 0, put
Ec = {(y, s) : Ωm(y, s; c) ⊆ E},

and define uc on Ec by putting

uc(x, t) = Vm(u;x, t; c).



136 N. A. WATSON

By Theorem 10, uc ∈ C2,1(Ec) and uc → u locally in L1 as c→ 0. Therefore,
given a closed modified heat ball Ωm(x0, t0; b) ⊆ E, and any c such that
Ec ⊇ Ωm(x0, t0; b), we have
|Vm(uc;x0, t0; b)− Vm(u;x0, t0; b)|

=
∣∣∣

\\
Ωm(x0,t0;b)

Km,b(x0 − y, t0 − s)(uc(y, s)− u(y, s)) dy ds
∣∣∣

≤ max
Rn+1

Km,b
\\

Ωm(x0,t0;b)

|uc(y, s)− u(y, s)| dy ds

→ 0 as c→ 0.
Thus the function Vm(uc;x0, t0; ·) converges pointwise to Vm(u;x0, t0; ·) as
c → 0. Since u satisfies (δ4), the inequality (15) holds whenever Ωp(x, t; b)
⊆ E, so that each function uc is a smooth subtemperature on Ec, by The-
orem 10. Therefore, by Theorem 9(ii), for each (x0, t0) ∈ Ec the function
Vm(uc;x0, t0; ·) is increasing on the set of b such that Ωm(x0, t0; b) ⊆ Ec. It
follows that the function

Vm(u;x0, t0; ·) = lim
c→0
Vm(uc;x0, t0; ·)

is increasing on the set of b such that Ωm(x0, t0; b) ⊆
⋃
c>0Ec = E. There-

fore Vm(u;x0, t0; b) tends to a limit as b→ 0. The conditions in (i) and (ii)
ensure that this limit is u(x0, t0). In case (i) we have m = p, so that the
second part of Lemma 2 shows that the limit is u(x0, t0). In case (ii) we
have m 6= p, so that Lemma 2 shows only that
(17) lim

b→0
Vm(u;x0, t0; b) ≤ u(x0, t0).

Equality follows if u(x0, t0) = −∞. Otherwise, if u is Λ-continuous at
(x0, t0), then for any ε > 0 we can find a half-ball H = {(y, s) : ‖x0−y‖2
+ (t0 − s)2 < r2, s < t0} in which u(y, s) > u(x0, t0) − ε. Whenever
Ωm(x0, t0; b) ⊆ H we have Vm(u;x0, t0; b) ≥ u(x0, t0)−ε, and hence equality
in (17) follows.

Given a bounded open set D such that D ⊆ E, choose a > 0 such that
D ⊆ Ea. Then uc is a smooth subtemperature onD whenever 0 < c < a. Put
vk = u1/k for all k > 1/a. Then for each point (x, t) ∈ D, the function k 7→
vk(x, t) = Vm(u;x, t; 1/k) is decreasing, and limk→∞ vk(x, t) = u(x, t).

Theorem 17. (i) If u is a p-subtemperature on E for some p ≥ 5, then
u is an m-subtemperature on E for all m ≥ 0.
(ii) If u is a p-subtemperature on E for some p ≥ 0, and u is Λ-

continuous at almost every point of E, then u is an m-subtemperature for
all m ≥ 0.
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Proof. (i) Let D be a bounded open set with D ⊆ E. Then u is the limit
of a decreasing sequence of smooth subtemperatures on D, by Theorem 16.
Since u is finite almost everywhere on D by Theorem 13, it follows that u
is an m-subtemperature on D for all m ≥ 0, by Theorem 12. The result
follows.
(ii) In this case, for D as before, there is a decreasing sequence {vk} of

smooth subtemperatures on D which converges to u almost everywhere, by
Theorem 16. Let v = limk→∞ vk onD. Since u is finite almost everywhere, so
is v. Therefore v is anm-subtemperature onD for allm ≥ 0, by Theorem 12.
Furthermore, for any point (x0, t0) ∈ D and any p-subtemperature w on D,
we have

w(x0, t0) = lim
b→0
Vp(w;x0, t0; b),

by Lemma 2. Therefore, because u and v are p-subtemperatures that are
equal almost everywhere on D, we have

u(x0, t0) = lim
b→0
Vp(u;x0, t0; b) = lim

b→0
Vp(v;x0, t0; b) = v(x0, t0).

Thus u = v everwhere on D, so that u is an m-subtemperature on D for all
m ≥ 0. The result follows.
We can now extend several earlier results about smooth subtemperatures

to the case of m-subtemperatures with m ≥ 5.
Theorem 18. Let m and p be integers such that m ≥ 5 and p ≥ 0. Let

u be an m-subtemperature on E, and let (x0, t0) ∈ E.
(i) If Ω(x0, t0; c) ⊆ E, then

(18) u(x0, t0) ≤M(u;x0, t0; c),
the functionM(u;x0, t0; ·) is increasing on ]0, c], and

u(x0, t0) = lim
b→0
M(u;x0, t0; b).

(ii) If A(x0, t0; b, c) ⊆ E, then there is a function φ, which is either
convex or identically −∞, such that

M(u;x0, t0; a) = φ(τ(a))
for all a ∈ [b, c].
(iii) If Ωp(x0, t0; c) ⊆ E, then

u(x0, t0) ≤ Vp(u;x0, t0; c),
the function Vp(u;x0, t0; ·) is increasing on ]0, c],

u(x0, t0) = lim
b→0
Vp(u;x0, t0; b),

and there is a function φp, either convex or identically −∞, such that
Vp(u;x0, t0; a) = φp(τp(a))
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for all a ∈ ]0, c], where τp(a) = (4πa)−(p+n)/2. If p ≥ 3, then φp is finite-
valued.

Proof. (i) Let D be a bounded open superset of Ω(x0, t0; c) with D ⊆ E.
By Theorem 16, there is a decreasing sequence {vk} of smooth subtemper-
atures on D with limit u. By Theorem 2,

vk(x0, t0) ≤M(vk;x0, t0; c)
for all k. Making k → ∞, and using the monotone convergence theo-
rem, we obtain (18). Furthermore, by Theorem 3, for each k the function
M(vk;x0, t0; ·) is increasing on ]0, c], so that the same is true of

M(u;x0, t0; ·) = lim
k→∞
M(vk;x0, t0; ·).

Finally, since u is upper semicontinuous on E, given any real number A >
u(x0, t0) we can find a neighbourhood N of (x0, t0) such that u(y, s) < A
for all (y, s) ∈ N . So whenever Ω(x0, t0; b) ⊆ N we haveM(u;x0, t0; b) ≤ A.
Hence

lim
b→0
M(u;x0, t0; b) ≤ u(x0, t0),

so that equality holds in view of (18).

(ii) Choose b′ and c′ such that 0 < b′ < b, c < c′, and A(x0, t0; b
′, c′)

⊆ E. Let D be a bounded open superset of A(x0, t0; b′, c′) such that D ⊆ E.
By Theorem 16, there is a decreasing sequence {vk} of smooth subtempera-
tures on D with limit u. By Theorem 5, for each k there is a convex function
φk such that

M(vk;x0, t0; a) = φk(τ(a))
for all a ∈ [b′, c′]. Making k → ∞ and using the monotone convergence
theorem, we obtain

M(u;x0, t0; a) = lim
k→∞

φk(τ(a))

for all a ∈ [b′, c′]. Since each φk is convex, limk→∞ φk is convex on ]b
′, c′[ ⊇

[b, c] if it is finite at one point of ]b′, c′[.

(iii) Most of the proof is similar to that of (i) and (ii). For the last
statement, if p ≥ 3 then the kernel Kp,a is bounded, so that

Vp(u−;x0, t0; a) ≤ maxKp,a
\\

Ωp(x0,t0;a)

u−(y, s) dy ds,

where u− denotes the negative part of u. The latter integral is finite by
Theorem 13, so that the function φp ◦ τp = Vp(u;x0, t0; ·) is finite-valued.
The functionM(u;x0, t0; ·) in Theorem 18 is also finite-valued, but the

only known proofs depend on the Riesz decomposition theorem. See Wat-
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son [17] and Brzezina [2, 3]. The volume mean V0(u;x0, t0; ·) is not always
finite-valued, as was shown by Watson [21].
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