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ON SUMS OF BINOMIAL COEFFICIENTS MODULO p2

BY

ZHI-WEI SUN (Nanjing)

Abstract. Let p be an odd prime and let a be a positive integer. In this paper we

investigate the sum
∑pa−1
k=0

(
hpa−1
k

)(
2k
k

)
/mk mod p2, where h and m are p-adic integers

with m 6≡ 0 (mod p). For example, we show that if h 6≡ 0 (mod p) and pa > 3, then

pa−1∑
k=0

(
hpa − 1

k

)(
2k

k

)(
−h

2

)k
≡
(

1− 2h

pa

)(
1 + h

((
4− 2

h

)p−1

− 1

))
(mod p2),

where ( ·
· ) denotes the Jacobi symbol. Here is another remarkable congruence: If pa > 3

then
pa−1∑
k=0

(
pa − 1

k

)(
2k

k

)
(−1)k ≡ 3p−1

(
pa

3

)
(mod p2).

1. Introduction. Let p > 3 be a prime. In 1828 Gauss (cf. [BEW,
(9.0.1)]) proved that if p ≡ 1 (mod 4) and p = x2 + y2 with x ≡ 1 (mod 4)
and y ≡ 0 (mod 2) then(

(p− 1)/2

(p− 1)/4

)
≡ 2x (mod p).

In 1862 J. Wolstenholme [W] established the classical congruence

1

2

(
2p

p

)
=

(
2p− 1

p− 1

)
≡ 1 (mod p3).

In 1895 F. Morley [M] showed that(
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3).

Since(
2k
k

)
(−4)k

=

(
−1/2

k

)
≡
(

(p− 1)/2

k

)
(mod p) for all k = 0, 1, . . . , p− 1,

2010 Mathematics Subject Classification: Primary 11B65; Secondary 05A10, 11A07,
11B39, 11E25, 11S99.
Key words and phrases: central binomial coefficients, congruences modulo prime powers.

DOI: 10.4064/cm127-1-3 [39] c© Instytut Matematyczny PAN, 2012



40 Z. W. SUN

it is apparent that

p−1∑
k=0

(
2k

k

)
≡

(p−1)/2∑
k=0

(
(p− 1)/2

k

)
(−4)k = (−3)(p−1)/2 ≡

(
−3

p

)
(mod p),

where ( ··) denotes the Jacobi symbol. In 2006, H. Pan and Z. W. Sun [PS]
derived the congruence

p−1∑
k=0

(
2k

k + d

)
≡
(
p− d

3

)
(mod p) for d = 0, . . . , p

from a sophisticated combinatorial identity. Later Sun and R. Tauraso [ST2]
proved further that

pa−1∑
k=0

(
2k

k

)
≡
(
pa

3

)
(mod p2)

for any a ∈ Z+ = {1, 2, . . .}. Moreover, Sun and Tauraso determined∑p−1
k=0

(
2k
k

)
/mk mod p via the identity

p−1∑
k=0

(
2k

k

)
xp−1−k =

p−1∑
k=0

(
2p

k

)
up−k(x− 2)

(cf. [ST1, (2.1)]), where

u0(x) = 0, u1(x) = 1, and un+1(x) = xun(x)− un−1(x) (n= 1, 2, . . .).

Now we need to introduce Lucas sequences.

Let A,B ∈ Z. The Lucas sequences un = un(A,B) (n ∈ N = {0, 1, . . .})
and vn = vn(A,B) (n ∈ N) are defined by

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 (n = 1, 2, . . .)

and

v0 = 2, v1 = A, and vn+1 = Avn −Bvn−1 (n = 1, 2, . . .).

The characteristic equation x2 −Ax+B = 0 has two roots

α =
A+
√
∆

2
and β =

A−
√
∆

2
,

where ∆ = A2 − 4B. It is well known that for any n ∈ N we have

un =
∑

0≤k<n

αkβn−1−k =

{
(αn − βn)/(α− β) if ∆ 6= 0,

nαn−1 = n(A/2)n−1 if ∆ = 0,

and also vn = αn + βn. If p is a prime then

vp = αp + βp ≡ (α+ β)p = Ap ≡ A (mod p).
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It is also known that

up ≡
(
∆

p

)
(mod p) and up−(∆

p
) ≡ 0 (mod p)

for any prime p not dividing 2B. (See, e.g., [S10, Lemma 2.3].) The reader
may consult [S06] for connections between Lucas sequences and quadratic
fields. If A = a+ 1 and B = a for some integer a 6≡ 0, 1 (mod p) where p is
an odd prime, then ∆ = (a− 1)2 and

up−(∆
p
)

p
=
up−1
p

=
1

a− 1
· a

p−1 − 1

p
.

In the paper [S10] the author proved that for any odd prime p and integer
m 6≡ 0 (mod p) we have

p−1∑
k=0

(
2k
k

)
mk

≡
(
m(m− 4)

p

)
+ u

p−(m(m−4)
p

)
(m− 2, 1) (mod p2).

See also [SSZ] and [S11a] for related results on p-adic valuations.
For a sequence {an}n≥0 of complex numbers, its dual sequence is given

by {a∗n}n≥0, where

a∗n =

n∑
k=0

(
n

k

)
(−1)kak (n = 0, 1, . . .).

It is well known that (a∗n)∗ = an for all n ∈ N (see [GKP, (5.48)], and also
[S03]). Let p be an odd prime and let m be an integer not divisible by p.
Clearly

p−1∑
k=0

(
p− 1

k

)
(−1)k

(
2k
k

)
mk

≡
p−1∑
k=0

(
2k
k

)
mk

(mod p)

since
(
p−1
k

)
≡ (−1)k (mod p) for all k = 0, 1, . . . , p − 1. As

∑p−1
k=0

(
2k
k

)
/mk

mod p2 has been determined, it is natural to seek for the determination of∑p−1
k=0

(
p−1
k

)(
2k
k

)
/(−m)k mod p2, which is the main goal of this paper.

Let p be an odd prime. When p ≡ 3 (mod 4), the author [S11b] noted
that

p−1∑
k=0

(
2k
k

)2
8k

≡ 0 (mod p)

and conjectured further that
p−1∑
k=0

(
p− 1

k

) (2k
k

)2
(−8)k

≡ 0 (mod p2).

In [S11b, (1.11)] it was shown that
∑p−1

k=0

(
p−1
k

)(
2k
k

)3
/(−64)k ≡ 0 (mod p2)

if p > 3 and p ≡ 3 (mod 4). Inspired by these, we are led to think that it
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is really worth studying
∑p−1

k=0

(
p−1
k

)(
2k
k

)
/(−m)k mod p2 (with m a p-adic

integer not divisible by p), which might behave better than
∑p−1

k=0

(
2k
k

)
/mk

mod p2 in some cases.
We shall state our main results in the next section and provide some

lemmas in Section 3. Section 4 is devoted to the proofs of our theorems.

2. The main results. For a prime p we use Zp to denote the ring of
p-adic integers; if h ∈ Zp and h 6≡ 0 (mod p) then we denote the quotient
(hp−1 − 1)/p ∈ Zp by qp(h) and call it a Fermat quotient. For m,n ∈ N, the
Kronecker symbol δm,n means 1 or 0 according as m = n or not.

Now we state our main results and give some corollaries.

Theorem 2.1. Let p be an odd prime and let a ∈ Z+. Let h be a p-adic
integer with h 6≡ 0 (mod p), and (2h 6≡ 1 (mod p) or pa > 3). Then

(2.1)

pa−1∑
k=0

(
hpa − 1

k

)(
2k

k

)(
−h

2

)k

≡
(

1− 2h

pa

)(
1 + h

((
4− 2

h

)p−1
− 1

))
(mod p2).

Corollary 2.1. Let p be an odd prime and let a ∈ Z+. Then

(2.2)

pa−1∑
k=0

(
pa − 1

k

) (2k
k

)
(−2)k

≡ (−1)(p
a−1)/22p−1 (mod p2).

Proof. Simply apply Theorem 2.1 with h = 1.

Remark 2.1. Let m ∈ Z and n ∈ Z+. Later we will show that

(2.3)

n−1∑
k=0

(
n− 1

k

)(
2k

k

)
(−1)kmn−1−k

=

b(n−1)/2c∑
k=0

(
n− 1

k

)(
n− 1− k

k

)
(m− 2)n−1−2k.

Thus, for any prime p > 3, by applying Morley’s congruence (cf. [M], [C]
and [P]) (

p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3)

we get
p−1∑
k=0

(
p− 1

k

) (2k
k

)
(−2)k

≡ (−1)(p−1)/22p−1 (mod p3),

which is a refinement of (2.2) in the case a = 1.
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Corollary 2.2. Let p > 3 be a prime and let a ∈ Z+. Then

(2.4)

pa−1∑
k=0

(
2pa − 1

k

)(
2k

k

)
(−1)k ≡

(
pa

3

)
(2 · 3p−1 − 1) (mod p2)

and

(2.5)

pa−1∑
k=0

(
pa + k

k

) (2k
k

)
(−2)k

≡
(

3

pa

)
(1− p(qp(2) + qp(3))) (mod p2).

Proof. Just put h = 2 and h = −1 in (2.1) and note that
(−x

k

)
=

(−1)k
(
x+k−1

k

)
.

Corollary 2.3. Let p be an odd prime and let a ∈ Z+. Then

(2.6)

pa−1∑
k=0

(
2pa + k

k

)(
2k

k

)
(−1)k ≡

(
pa

5

)
(3− 2 · 5p−1) (mod p2).

Proof. Simply apply (2.1) with h = −2.

Our next result is more general than Theorem 2.1.

Theorem 2.2. Let p be an odd prime and let m ∈ Z with p -m. Set
∆ = m(m− 4) and let h ∈ Zp. Then

(2.7)

pa−1∑
k=0

(
hpa − 1

k

) (
2k
k

)
(−m)k

≡
(

∆

pa−1

)(
1− hm

2

)
up−(∆

p
)(m− 2, 1) +

(
∆

pa

)
(1 + h((m− 4)p−1 − 1))

−
{
h(m− 4) (mod p2) if pa = 3 and 3 |m− 1,

0 (mod p2) otherwise.

In particular, if hm ≡ 2 (mod p) then

(2.8)

pa−1∑
k=0

(
hpa − 1

k

) (
2k
k

)
(−m)k

≡
(
∆

pa

)
(1 + h((m− 4)p−1 − 1))

+

{
m− 4 (mod p2) if pa = 3 and 3 |m− 1,

0 (mod p2) otherwise.

Corollary 2.4. Let p be an odd prime and let a ∈ Z+. If pa > 3, then

(2.9)

pa−1∑
k=0

(
pa − 1

k

)(
2k

k

)
(−1)k ≡ 3p−1

(
pa

3

)
(mod p2).
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If p 6= 3, then

(2.10)

pa−1∑
k=0

(
pa − 1

k

) (2k
k

)
(−3)k

≡
(
pa

3

)
(mod p2).

Proof. Just apply (2.7) with h = 1 and m ∈ {1, 3} and note that
(−1)n−1un(1, 1) = un(−1, 1) =

(
n
3

)
for n ∈ N.

Corollary 2.5. Let p 6= 2, 5 be a prime and let a ∈ Z+. Then

pa−1∑
k=0

(
pa − 1

k

)(
2k

k

)
≡
(
pa

5

)
(5p−1 − 3Fp−( p

5
)) (mod p2)(2.11)

and

pa−1∑
k=0

(
pa − 1

k

) (2k
k

)
(−5)k

≡
(
pa

5

)
(1− 3Fp−( p

5
)) (mod p2),(2.12)

where {Fn}n≥0 is the well-known Fibonacci sequence defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, . . .).

Proof. Observe that

(−1)n−1un(−3, 1) = un(3, 1) = F2n = FnLn,

where Ln = vn(1,−1). By [SS, Corollary 1] (or the proof of Corollary 1.3
of [ST1]), if p 6= 2, 5 then Lp−( p

5
) ≡ 2

(p
5

)
(mod p2). In view of this, if we

apply (2.7) with h = 1 and m ∈ {−1, 5} then we obtain the desired result.

To conclude this section we raise four conjectures based on our compu-
tation via Mathematica.

Conjecture 2.1. Let p be an odd prime and let h be an integer with
h ≡ (p+ 1)/2 (mod p). If pa > 3 with a ∈ Z+, then

pa−1∑
k=0

(
hpa − 1

k

)(
2k

k

)
(−h/2)k ≡ 0 (mod pa+1).

Also, for any n ∈ Z+,

1

n

n−1∑
k=0

(
hn− 1

k

)(
2k

k

)
(−h/2)k ∈ Zp.

Conjecture 2.2. Let p be an odd prime.

(i) If p ≡ 1 (mod 8), then

p−1∑
k=0

(
2k

k

)2uk(2,−1)

(−8)k
≡

p−1∑
k=0

(
2k

k

)2kvk(2,−1)

(−8)k
≡ 0 (mod p2).



SUMS OF BINOMIAL COEFFICIENTS MODULO p2 45

If p ≡ 7 (mod 8), then

p−1∑
k=0

(
p− 1

k

)(
2k

k

)2uk(2,−1)

8k
≡ 0 (mod p2).

(ii) If p ≡ 1 (mod 12), then

p−1∑
k=0

(
2k

k

)2uk(4, 1)

4k
≡ 0 (mod p2).

If p ≡ 11 (mod 12), then

p−1∑
k=0

(
p− 1

k

)(
2k

k

)2 vk(4, 1)

(−4)k
≡ 0 (mod p2).

Recall that any prime p ≡ 1, 3 (mod 8) can be uniquely written as x2+2y2

with x, y ∈ Z+, and any prime p ≡ 1 (mod 3) can be uniquely written in
the form x2 + 3y2 with x, y ∈ Z+. (See, e.g., [Co, p. 7].) The following two
conjectures are related to Conjecture 2.2 and look more difficult.

Conjecture 2.3. Let p be a prime with p ≡ 1, 3 (mod 8). Write p =
x2 + 2y2 with x, y ∈ Z so that x ≡ 1 (mod 4), and y ≡ 1 (mod 4) if p ≡ 3
(mod 8). Then

p−1∑
k=0

(
2k

k

)2kuk(2,−1)

(−8)k
≡ p

4x
− x

2
(mod p2)

and

p−1∑
k=0

(
2k

k

)2 vk(2,−1)

(−8)k
≡ 4x− p

x
(mod p2).

If p ≡ 1 (mod 8), then

4

p−1∑
k=0

(
2k

k

)2kuk(2,−1)

32k
≡

p−1∑
k=0

(
2k

k

)2kvk(2,−1)

32k

≡ (−1)(p−1)/8+(x−1)/4
(
p

x
− 2x

)
(mod p2),

and we can determine x mod p2 via the congruence

(−1)(x−1)/4x ≡ (−1)(p−1)/8

2

p−1∑
k=0

(
2k

k

)2 (k + 1)vk(2,−1)

32k
(mod p2).
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If p ≡ 3 (mod 8), then

p−1∑
k=0

(
2k

k

)2uk(2,−1)

(−8)k
≡ (−1)(p−3)/8+(x−1)/4

(
p

2x
− 2x

)
(mod p2),

p−1∑
k=0

(
2k

k

)2kvk(2,−1)

(−8)k
≡ (−1)(p−3)/8+(x−1)/42

(
x+

p

x

)
(mod p2),

p−1∑
k=0

(
2k

k

)2kuk(2,−1)

32k
≡ 1

2

p−1∑
k=0

(
2k

k

)2kvk(2,−1)

32k
≡ −y (mod p2),

p−1∑
k=0

(
2k

k

)2uk(2,−1)

32k
≡ 2y − p

4y
(mod p2).

Conjecture 2.4. Let p > 3 be a prime.

(i) If p ≡ 1 (mod 12) and p = x2 +3y2 with x, y ∈ Z and x ≡ 1 (mod 4),
then

(−1)(p−1)/4
p−1∑
k=0

(
2k

k

)2 vk(4, 1)

4k
≡

p−1∑
k=0

(
2k

k

)2 vk(4, 1)

64k
≡ 4x− p

x
(mod p2);

also we can determine x mod p2 by

p−1∑
k=0

(
2k

k

)2 (k + 2)vk(4, 1)

4k
≡ (−1)(p−1)/4 4x (mod p2)

as well as
p−1∑
k=0

(
2k

k

)2 (k − 1)vk(4, 1)

64k
≡ −2x (mod p2).

(ii) If p ≡ 7 (mod 12) and p = x2+3y2 with x, y ∈ Z and y ≡ 1 (mod 4),
then

p−1∑
k=0

uk(4, 1)

64k

(
2k

k

)2

≡ 2y − p

6y
(mod p2),

p−1∑
k=0

(
2k

k

)2uk(4, 1)

4k
≡ (−1)(p+1)/4

(
4y − p

3y

)
(mod p2),

p−1∑
k=0

(
2k

k

)2 vk(4, 1)

4k
≡ (−1)(p−3)/4

(
12y − p

y

)
(mod p2),

p−1∑
k=0

(
2k

k

)2kvk(4, 1)

4k
≡ (−1)(p+1)/4

(
20y − 8p

y

)
(mod p2),
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and also

y ≡
p−1∑
k=0

(
2k

k

)2kuk(4, 1)

64k
≡ 1

4

p−1∑
k=0

(
2k

k

)2kvk(4, 1)

64k

≡ (−1)(p+1)/4

22

p−1∑
k=0

(
2k

k

)2 (k + 7)uk(4, 1)

4k
(mod p2).

3. Some lemmas. Recall that the harmonic numbers Hn (n ∈ N) are
defined by Hn =

∑
0<k≤n 1/k. The reader may consult [S12a] and [S12b] for

some fundamental congruences involving harmonic numbers.

Lemma 3.1. Let p be an odd prime and let a ∈ Z+. Let m ∈ Z with
p -m. If p |m− 4 then

(3.1)

pa−1∑
k=1

pa−1Hk

mk

(
2k

k

)
≡ 2δa,1 (mod p).

If m 6≡ 4 (mod p), then

(3.2)

pa−1∑
k=1

pa−1Hk

mk

(
2k

k

)
≡ −

(
m(m− 4)

pa

) p−1∑
k=1

(
2k
k

)
k(4−m)k

(mod p).

Proof. For k = 1, . . . , (pa − 1)/2, we have( (pa−1)/2
k

)(
2k
k

)
/(−4)k

=

( (pa−1)/2
k

)(−1/2
k

) =
k∏

j=1

(pa − 1)/2− j + 1

−1/2− j + 1

=
k∏

j=1

(
1− pa

2j − 1

)
≡ 1 (mod p).

If k ∈ {(pa + 1)/2, . . . , pa − 1}, then 2k − pa ∈ {1, . . . , k − 1} and hence(
2k

k

)
=

(
pa + (2k − pa)

k

)
≡
(
pa

0

)(
2k − pa

k

)
= 0 (mod p)

with the help of Lucas’ congruence (cf. [St, p. 44]). So, for any k =
0, . . . , pa − 1 we have

(3.3)

(
2k

k

)
≡ (−4)k

(
(pa − 1)/2

k

)
(mod p).

Therefore
pa−1∑
k=1

pa−1Hk

mk

(
2k

k

)
≡

(pa−1)/2∑
k=1

(
(pa − 1)/2

k

)
(−4/m)k(pa−1Hk) (mod p).

(Note that pa−1Hk =
∑k

j=1 p
a−1/j ∈ Zp for every k = 1, . . . , pa − 1.)
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For each k ∈ N clearly

Hk =
∑

0<j≤k

1�

0

xj−1 dx =

1�

0

∑
0<j≤k

xj−1 dx

=

1�

0

1− xk

1− x
dx =

1�

0

1− (1− t)k

t
dt.

Thus
pa−1∑
k=1

pa−1Hk

mk

(
2k

k

)
≡ pa−1Σ (mod p),

where

Σ :=

1�

0

(pa−1)/2∑
k=0

(
(pa − 1)/2

k

)(
− 4

m

)k 1− (1− t)k

t
dt

=

1�

0

(1− 4/m)(p
a−1)/2 − (1− (1− t)4/m)(p

a−1)/2

t
dt

= −
(pa−1)/2∑

k=1

(
(pa − 1)/2

k

)(
1− 4

m

)(pa−1)/2−k 1�

0

(
4t

m

)k dt

t

= − 1

m(pa−1)/2

(pa−1)/2∑
k=1

(
(pa − 1)/2

k

)
4k

k
(m− 4)(p

a−1)/2−k.

If m ≡ 4 (mod p), then

pa−1Σ = − 1

m(pa−1)/2 ·
pa−1

(pa − 1)/2
4(p

a−1)/2 ≡ 2δa,1 (mod p)

and hence (3.1) holds.

Now assume that m 6≡ 4 (mod p). In view of (3.3),

pa−1Σ ≡ −(m(m− 4))(p
a−1)/2

mpa−1

pa−1∑
k=1

(
2k

k

)
(−1)kpa−1

k(m− 4)k

≡ −
(
m(m− 4)

pa

)
pa−1

pa−1∑
k=1

(
2k
k

)
k(4−m)k

(mod p).

So it suffices to prove that

pa−1
pa−1∑
k=1

(
2k
k

)
knk

≡
p−1∑
k=1

(
2k
k

)
knk

(mod p)
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for any n ∈ Z with p -n. If pa−1 - k then pa−1/k ≡ 0 (mod p). Therefore

pa−1
pa−1∑
k=1

(
2k
k

)
knk

≡ pa−1
p−1∑
j=1

(2pa−1j
pa−1j

)
pa−1jnpa−1j

≡
p−1∑
j=1

(
2j
j

)
jnj

(mod p)

in view of the Lucas congruence.

Lemma 3.2 (Sun [S10]). Let p be an odd prime and let a ∈ Z+. Let m
be any integer not divisible by p and set ∆ = m(m− 4). Then

pa−1∑
k=0

(
2k
k

)
mk

≡
(
∆

pa

)
+

(
∆

pa−1

)
up−(∆

p
)(m− 2, 1) (mod p2).

Lemma 3.3 (Sun and Tauraso [ST1, Theorem 1.2]). Let p be any prime
and let m be an integer not divisible by p. Then

1

2

p−1∑
k=1

(−1)k
(
2k
k

)
kmk−1 ≡

mp − vp(m,−m)

p
(mod p).

Lemma 3.4. Let p be an odd prime and let m ∈ Z with ∆ = m(m−4) 6≡ 0
(mod p). Then

(3.4)
2

m− 4
· vp(m− 4, 4−m)− (m− 4)p

p

≡ m

2

(
∆

p

)up−(∆
p
)(m− 2, 1)

p
− qp(m− 4) (mod p).

Proof. (i) Let us first show the equality

(3.5)
v2n+1(m− 4, 4−m)

(m− 4)n+1
=
u2n+1(m,m)

mn

for n = 0, 1, . . . . Clearly both sides of (3.5) are 1 when n = 0. Note that

v3(m− 4, 4−m)

(m− 4)2

=
v2(m− 4, 4−m) + v1(m− 4, 4−m)

m− 4

= v1(m− 4, 4−m) + v0(m− 4, 4−m) +
v1(m− 4, 4−m)

m− 4

= m− 4 + 2 + 1 = m− 1 = u2(m,m)− u1(m,m) =
u3(m,m)

m
.
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Also, for n = 2, 3, . . . we have

v2n+1(m− 4, 4−m)

(m− 4)n+1

=
v2n−1(m− 4, 4−m) + v2n(m− 4, 4−m)

(m− 4)n

=
(1 + (m− 4))v2n−1(m− 4, 4−m) + (m− 4)v2n−2(m− 4, 4−m)

(m− 4)n

=
(m− 2)v2n−1(m− 4, 4−m)− (m− 4)v2n−3(m− 4, 4−m)

(m− 4)n

= (m− 2)
v2n−1(m− 4, 4−m)

(m− 4)n
− v2n−3(m− 4, 4−m)

(m− 4)n−1

and

u2n+1(m,m)

mn
=
u2n(m,m)− u2n−1(m,m)

mn−1

=
(m− 1)u2n−1(m,m)−mu2n−2(m,m)

mn−1

=
(m− 1)u2n−1(m,m)− (u2n−1(m,m) +mu2n−3(m,m))

mn−1

= (m− 2)
u2n−1(m,m)

mn−1 − u2n−3(m,m)

mn−2 .

Thus, by induction, (3.5) holds for all n ∈ N.

(ii) By part (i),

up(m,m) =
m(p−1)/2

(m− 4)(p+1)/2
(vp(m−4, 4−m)−(m−4)p)+(m(m−4))(p−1)/2.

Since vp(m− 4, 4−m) ≡ (m− 4)p (mod p) and

∆(p−1)/2 −
(
∆

p

)
= (m−4)(p−1)/2

(
m(p−1)/2−

(
m

p

))
+

(
m

p

)(
(m−4)(p−1)/2−

(
m− 4

p

))
≡
(
∆

p

)(
m

p

)(
m(p−1)/2 −

(
m

p

))
+

(
∆

p

)(
m− 4

p

)(
(m− 4)(p−1)/2 −

(
m− 4

p

))
≡ 1

2

(
∆

p

)
(mp−1 − 1 + (m− 4)p−1 − 1) (mod p2),

we have
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up(m,m)−
(
∆

p

)
≡

(
m
p

)
(m− 4)

(
m−4
p

)(vp(m− 4, 4−m)− (m− 4)p)

+
1

2

(
∆

p

)
(mp−1 − 1 + (m− 4)p−1 − 1)

≡ 1

m− 4

(
∆

p

)
(vp(m− 4, 4−m)− (m− 4)p)

+
p

2

(
∆

p

)
(qp(m) + qp(m− 4)) (mod p2).

On the other hand, by [S10, Lemma 2.4] we have

2up(m,m)−
(
∆

p

)
mp−1 ≡ up(m− 2, 1) + up−(∆

p
)(m− 2, 1) (mod p2).

Thus

2

m− 4

(
∆

p

)
(vp(m− 4, 4−m)− (m− 4)p)

≡ up(m− 2, 1)−
(
∆

p

)
+ up−(∆

p
)(m− 2, 1)−

(
∆

p

)
p qp(m− 4) (mod p2).

In view of this, we have reduced (3.4) to the congruence

(3.6) up(m− 2, 1)−
(
∆

p

)
≡
(
m

2
− 1

)
up−(∆

p
)(m− 2, 1) (mod p2).

Let α and β be the two roots of the equation x2 − (m − 2)x + 1 = 0.
Then

vn(m− 2, 1)2 −∆u2n(m− 2, 1) = (αn + βn)2 − (αn − βn)2 = 4(αβ)n = 4

for all n ∈ N. As up−(∆
p
)(m− 2, 1) ≡ 0 (mod p) we have

vp−(∆
p
)(m− 2, 1)2 − 4 ≡ 0 (mod p2).

By [S10, Lemma 2.3], vp−(∆
p
)(m− 2, 1) ≡ 2 (mod p). So

vp−(∆
p
)(m− 2, 1) ≡ 2 (mod p2).

By induction, (m− 2)un(m− 2, 1)± vn(m− 2, 1) = 2un±1(m− 2, 1) for all
n ∈ Z+. Therefore

2up(m− 2, 1) = (m− 2)up−(∆
p
)(m− 2, 1) +

(
∆

p

)
vp−(∆

p
)(m− 2, 1)

≡ (m− 2)up−(∆
p
)(m− 2, 1) + 2

(
∆

p

)
(mod p2)

and hence (3.6) follows.
The proof of Lemma 3.4 is now complete.
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Combining Lemmas 3.3 and 3.4 we get the following result.

Lemma 3.5. Let p be an odd prime and let m ∈ Z with ∆ = m(m−4) 6≡ 0
(mod p). Then

(3.7)

p−1∑
k=1

(−1)k
(
2k
k

)
k(m−4)k

≡ qp(m−4)−m
2

(
∆

p

)up−(∆
p
)(m−2, 1)

p
(mod p).

4. Proofs of Theorems 2.1–2.2 and (2.3)

Proof of Theorem 2.2. For k = 0, . . . , pa − 1, clearly(
hpa − 1

k

)
(−1)k = (−1)k

∏
0<j≤k

hpa − j
j

=
∏

0<j≤k

(
1− hp

a

j

)
≡ 1− h

∑
0<j≤k

pa

j
= 1− hpaHk (mod p2).

Thus

pa−1∑
k=0

(
hpa − 1

k

) (
2k
k

)
(−m)k

≡
pa−1∑
k=0

(
2k
k

)
mk
− hpa

pa−1∑
k=0

Hk

mk

(
2k

k

)
(mod p2)

and hence

(4.1)

pa−1∑
k=0

(
hpa − 1

k

) (
2k
k

)
(−m)k

+ hpa
pa−1∑
k=0

Hk

mk

(
2k

k

)
≡
(
∆

pa

)
+

(
∆

pa−1

)
up−(∆

p
)(m− 2, 1) (mod p2)

with the help of Lemma 3.2.

If p -m− 4, then by combining (4.1), (3.2) and Lemma 3.5 we get

pa−1∑
k=0

(
hpa − 1

k

) (
2k
k

)
(−m)k

≡
(
∆

pa

)
+

(
∆

pa−1

)
up−(∆

p
)(m− 2, 1)

+ ph

((
∆

pa

)
qp(m− 4)− m

2

(
∆

pa−1

)up−(∆
p
)(m− 2, 1)

p

)
(mod p2)

and hence (2.7) follows. (Note that if pa = 3 and 3 |m − 1 then m ≡ 4
(mod p).) In the case m ≡ 4 (mod p), we have

pa
pa−1∑
k=1

Hk

mk

(
2k

k

)
≡ 2pδa,1 (mod p2)
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by (3.1), and

up−(∆
p
)(m− 2, 1) = up(m− 2, 1)

≡ p
(
m− 2

2

)p−1
+ δp,3 pm

m− 4

3
≡ p+ δp,3(m− 4) (mod p2)

by [S11a, Lemma 2.2]. So (4.1) also implies (2.7) when p |m− 4.
Since up−(∆

p
)(m − 2, 1) ≡ 0 (mod p) by [S10, Lemma 2.3], (2.7) in the

case hm ≡ 2 (mod p) yields (2.8).

Proof of Theorem 2.1. Choose m ∈ Z such that hm ≡ 2 (mod p2).
Clearly p -m. Note that

m− 4 ≡ 2

h
− 4 =

2− 4h

h
(mod p2).

So we get (2.1) by applying (2.8).

Proof of (2.3). For k ∈ N clearly the constant term of

(2− x− x−1)k =
(−1)k

xk
(x− 1)2k

is the central binomial coefficient
(
2k
k

)
. Observe that

n−1∑
k=0

(
n− 1

k

)
(−1)kmn−1−k(2− x− x−1)k = (m− 2 + x+ x−1)n−1.

Equating the constant terms of both sides we obtain
n−1∑
k=0

(
n− 1

k

)(
2k

k

)
(−1)kmn−1−k

=

b(n−1)/2c∑
k=0

(
n− 1

k, k, n− 1− 2k

)
(m− 2)n−1−2k,

which is equivalent to (2.3).

Acknowledgments. The author would like to thank the referee for
helpful comments.

This research was supported by the National Natural Science Foundation
(grant 11171140) of China and the Priority Academic Program Development
of Jiangsu Higher Education Institutions.

REFERENCES

[BEW] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley,
New York, 1998.

[C] L. Carlitz, A theorem of Glaisher , Canad. J. Math. 5 (1953), 306–316.

http://dx.doi.org/10.4153/CJM-1953-035-2


54 Z. W. SUN

[Co] D. A. Cox, Primes of the Form x2 + ny2, Wiley, New York, 1989.
[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed.,

Addison-Wesley, New York, 1994.
[M] F. Morley, Note on the congruence 24n ≡ (−1)n(2n)!/(n!)2, where 2n + 1 is a

prime, Ann. of Math. 9 (1895), 168–170.
[P] H. Pan, On a generalization of Carlitz’s congruence, Int. J. Modern Math. 4

(2009), 87–93.
[PS] H. Pan and Z. W. Sun, A combinatorial identity with application to Catalan

numbers, Discrete Math. 306 (2006), 1921–1940.
[St] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Univ. Press, Cam-

bridge, 1999.
[SSZ] N. Strauss, J. Shallit and D. Zagier, Some strange 3-adic identities, Amer. Math.

Monthly 99 (1992), 66–69.
[SS] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat’s last theorem, Acta

Arith. 60 (1992), 371–388.
[S03] Z. W. Sun, Combinatorial identities in dual sequences, Eur. J. Combin. 24 (2003),

709–718.
[S06] Z. W. Sun, Binomial coefficients and quadratic fields, Proc. Amer. Math. Soc.

134 (2006), 2213–2222.
[S10] Z. W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci.

China Math. 53 (2010), 2473–2488.
[S11a] Z. W. Sun, p-adic valuations of some sums of multinomial coefficients, Acta

Arith. 148 (2011), 63–76.
[S11b] Z. W. Sun, On congruences related to central binomial coefficients, J. Number

Theory 131 (2011), 2219–2238.
[S12a] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140

(2012), 415–428.
[S12b] Z. W. Sun, On harmonic numbers and Lucas sequences, Publ. Math. Debrecen

80 (2012), 25–41.
[ST1] Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients,

Adv. Appl. Math. 45 (2010), 125–148.
[ST2] Z. W. Sun and R. Tauraso, On some new congruences for binomial coefficients,

Int. J. Number Theory 7 (2011), 645–662.
[W] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Appl.

Math. 5 (1862), 35–39.

Zhi-Wei Sun
Department of Mathematics
Nanjing University
Nanjing 210093, People’s Republic of China
E-mail: zwsun@nju.edu.cn
http://math.nju.edu.cn/˜zwsun

Received 24 July 2010;
revised 11 April 2012 (5408)

http://dx.doi.org/10.1016/j.disc.2006.03.050
http://dx.doi.org/10.2307/2324560
http://dx.doi.org/10.1016/S0195-6698(03)00062-3
http://dx.doi.org/10.1090/S0002-9939-06-08262-1
http://dx.doi.org/10.1007/s11425-010-3151-3
http://dx.doi.org/10.4064/aa148-1-5
http://dx.doi.org/10.1016/j.jnt.2011.04.004
http://dx.doi.org/10.1090/S0002-9939-2011-10925-0
http://dx.doi.org/10.1016/j.aam.2010.01.001
http://dx.doi.org/10.1142/S1793042111004393

	Introduction
	The main results
	Some lemmas
	Proofs of Theorems 2.1–2.2 and (2.3)

