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Abstract. A complete list of positive Tits-sincere one-peak posets is provided by
applying combinatorial algorithms and computer calculations using Maple and Python.
The problem whether any square integer matrix A ∈ Mn(Z) is Z-congruent to its transpose
Atr is also discussed. An affirmative answer is given for the incidence matrices CI and the
Tits matrices ĈI of positive one-peak posets I.

1. Introduction. In this paper, we continue our study [8] of positive
one-peak posets, in close connection with the results of Bondarenko and
Stepochkina [3]–[5], and we freely use the terminology and notation intro-
duced in [8], [22], [23], and [30]–[35]. Given m ≥ 1, we denote by Mm(Z)
the Z-algebra of all square m by m integer matrices, and by E ∈ Mm(Z)
the identity matrix. By a poset J ≡ (J,�) we mean a set J endowed with a
partial order relation �. Obviously, J is uniquely determined by its incidence
matrix CJ ∈ MJ(Z) ≡ Mm(Z), where m = |J |, that is, the integer square
m×m matrix

(1.1) CJ = [cij ]i,j∈J with cij =

{
1 for i � j,
0 for i 6� j.

Throughout, we make the identifications MJ(Z) ≡Mm(Z) and ZJ ≡ Zm.
Following [22] and [23], a poset I is called a one-peak poset if I has a

unique maximal element ∗. Throughout we assume that I is a one-peak
poset of the form I = {1, . . . , n, ∗ = n+ 1}, with a unique maximal element
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∗ = n+ 1, and

(1.2) ĈI =

[
Ctr
T −u
0 1

]
∈Mn+1(Z), with u =

[
1...
1

]
,

is the Tits matrix of I, where CT ∈MT (Z) = Mn(Z) is the incidence matrix
of the poset T = I \{∗} = {1, . . . , n} (see [22]–[30]). The Tits quadratic form
q̂I : ZI → Z of I is defined by
(1.3)
q̂I(x) = x2

1 + · · ·+x2
n +x2

n+1 +
∑
i≺j≤n

xixj − (x1 + · · ·+xn)xn+1 = x · ĈI ·xtr.

We denote by qI , qI : ZI ≡ Zn+1 → Z the incidence quadratic form and the
Euler quadratic form of I defined by

(1.4)
qI(x) =

∑
j∈I

x2
j +

∑
i≺j

xixj = x · CI · xtr,

qI(x) = x · CI · xtr,

where CI = C−1
I ∈Mn+1(Z) is the Euler matrix of I (see [22]–[30]). Follow-

ing [7]–[8] and [17]–[18], we call I positive if each (or some) of the forms q̂I ,
qI , and qI is positive, that is, q̂I(v) > 0 for any v = (v1, . . . , vn, vn+1) ∈ Zn+1.

The poset I is defined to be Tits-sincere if q̂I has a sincere Tits root
v ∈ ZI , that is, a vector v ∈ ZI such that q̂I(v) = 1 and with all coordinates
non-zero (see [8], [12], [16], [22]). Given a poset I, we denote by sI the number
of sincere Tits roots of I, that is, of q̂I .

In [7]–[8], we have studied the positive one-peak posets I in relation to
the simply-laced Dynkin diagrams presented in Table 1.5.

Table 1.5. Simply-laced Dynkin diagrams

Am : •1−−−−•2−−−−•3−−−− . . . −−−−•−−−−•m (m vertices, m ≥ 1)

Dm :
•2
|

•1−−−−•3−−−−•4−−−− . . . −−−−•−−−−•m (m vertices, m ≥ 4)

E6 :
•4
|

•1−−−−•2−−−−•3−−−−•5−−−−•6

E7 :
•4
|

•1−−−−•2−−−−•3−−−−•5−−−−•6−−−−•7

E8 :
•4
|

•1−−−−•2−−−−•3−−−−•5−−−−•6−−−−•7−−−−•8
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It is shown in [8] (see also [14] and [31]–[35]) that, given a positive one-peak
poset I, there is a unique simply-laced Dynkin diagram ∆I ∈ {An+1, Dn+1,
E6, E7, E8} (called the Coxeter–Dynkin type of I) such that the Coxeter
polynomial

coxI(t) := det(tE + CI · C−tr
I ) = det(tE + ĈI · Ĉ−tr

I )

= det(tE + C−1
I · C

tr
I ) ∈ Z[t]

of I (see [30]) coincides with the Coxeter polynomial F∆I (t) of the diagram
∆I , where
(1.6)

F∆(t) :=



tm + tm−1 + · · ·+ t2 + t+ 1, c∆ = m+ 1, for ∆ = Am,
tm + tm−1 + t+ 1, c∆ = 2(m− 1), for ∆ = Dm,
t6 + t5 − t3 + t+ 1, c∆ = 12, for ∆ = E6,

t7 + t6 − t4 − t3 + t+ 1, c∆ = 18, for ∆ = E7,

t8 + t7 − t5 − t4 − t3 + t+ 1, c∆ = 30, for ∆ = E8,

m ≥ 1 for ∆ = Am and m ≥ 4 for ∆ = Dm, and c∆ is the Coxeter number
of ∆.

The main result of the paper is the following analogue of Kleiner’s theo-
rem [12] (see also [22, Section 10.1], compare with [36]).

Theorem 1.7. Let I ≡ (I,�) be a finite positive one-peak poset that is
Tits-sincere, and let ∆I be the Coxeter–Dynkin type of I.

(a) |I| ≤ 8.
(b) If ∆I = An+1 then |I| = n+ 1 ≤ 3 and I is one of the posets

0A∗0 : ∗, 0A∗1 : •→ ∗, 0A∗2 :
•
↘∗
↗•

,

and, up to multiplication by −1, the vectors 0w0 = (1), 0w1 = (1, 1),
and 0w2 = (1, 1, 1) are the only sincere Tits roots of 0A∗0, 0A∗1, and
0A∗2, respectively.

(c) If ∆I = Dn+1 then |I| = n+1 ≤ 5, I is one of the posets listed in (c1)–
(c8) below, together with their sincere Tits roots, up to multiplication
by −1:

(c1) D∗3 :

2 3 4
•−−−−−→•−−−−−→?

↗
•
1

w3 = (1, 1,−1, 1),

(c2) D∗4 :

2 3 4 5
•−−−−−→•−−−−−→• −−−−−→?

↗
•
1

w4 = (1, 1, 1,−1, 1),
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(c3) D̂∗2 � A1 :

1 2 4
•−−→•−−→?
↘ ↗
•
3

w2
1 = (−1, 1, 1, 1),

(c4) D̂∗3 � A1 :

1 2 3 5
•−−−−−→•−−−−−→• −−−−−→?

↗
•
4

� w3
1 = (−1, 1, 1, 1, 1),

(c5) 0D∗2 � A1 :

1•
↘

2•−−→ ? 4

↗
3•

0w
2
1

0w
2
1

=

=

(1, 1, 1, 1),

(1, 1, 1, 2),

(c6) 0D∗2 � A2 :

1•
↘

2•−−→ ? 5

↗
3 • −−→ • 4

0w
2
2 = (1, 1, 1, 1, 2),

(c7) 1D∗3 � A1 :
1•−−→ •

3
−−→ ? 5

↗ ↗
2 • 4•

1w
3
1 = (1, 1,−1, 1, 1),

(c8) 0D∗3 � A1 :

1 2 5
•−−→•−−→?
↘ ↗ ↑
• •
3 4

0w
3
1 = (−1, 1, 1, 1, 1).

(d) If ∆I = E6 then I is one of the posets P1, . . . ,P8,P10, . . . ,P13 listed
in Table 1.8 below. If ∆I ∈ {E7,E8} then I is one of the 154 posets
P17, . . . ,P193 listed in Tables 6.2–6.3 of [8], and distinguished by the
symbol ©sI, with sI ≥ 1, where sI is the number of sincere Tits roots
of I.

(e) The number of positive one-peak posets that are Tits-sincere equals
177.

(f) Assume that v = (v1, . . . , vn, v∗) ∈ Zn+1 is a Tits root of a positive
one-peak poset I, that is, q̂I(v) = 1 and v∗ 6= 0. Then

max{|v1|, . . . , |vn|, |v∗|} =



1 if ∆I = An+1, n ≥ 0,
2 if ∆I = Dn+1, n ≥ 3,
3 if ∆I = E6,
4 if ∆I = E7,
6 if ∆I = E8.

The proof of Theorem 1.7 is presented in Section 3. Part (a) is proved by
computer calculations using combinatorial algorithms constructing the set
of sincere Tits roots, for any positive poset I.

As a byproduct of our Coxeter spectral analysis (see [32]–[35]) of positive
posets and their Coxeter–Dynkin types given in [8], we get in Theorem 1.10
a refinement of a result obtained by Horn and Sergeichuk [11] (see also [10],
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Table 1.8. Positive Tits-sincere one-peak posets P1, . . . ,P8, P10, . . .P13 of Coxeter–
Dynkin type E6

P1 P2 P3 self-dual P4 P5 P6

1

2

3

4

5

∗
5

2

1

3

4

∗
3

1

4

2

5

∗

2

4

1

3

5

∗

1

2 3

4 5

∗

1

2

3 54

∗

4 6 6 6 6 6

P7 self-dual P8 P10 P11 P12 P13

1

4

2

3

5

∗

1

2

3

54

∗

1 2

3 45

∗

1 2

4

3

5

∗

1

2 3

4 5

∗

2

4

1

3

5

∗

4 4 4 4 2 2

[33]) asserting that every non-singular matrix A ∈Mm(R) is R-congruent to
its transpose Atr and there exists a matrix B ∈ Gl(m,R) such that B2 = E
and

(1.9) Atr = B ·A ·Btr.

The following theorem shows that if A = CI ∈ Mn+1(Z) is the incidence
matrix of a positive one-peak poset I then A is Z-congruent to Atr. Moreover,
by applying numerical and graphical algorithms constructed in [8, Section 7],
we are able to construct (by a computer calculation) a family of matrices
B ∈Mn+1(Z) implementing the Z-congruence of A and Atr.

Theorem 1.10. Let I ≡ (I,�) be a finite positive one-peak poset with
|I| = n + 1. If A ∈ Mn+1(Z) is the incidence matrix CI of I, or its Euler
matrix CI := C−1

I , or its Tits matrix ĈI , then there exists B ∈ Mn+1(Z)
such that B2 = E and (1.9) holds.

The proof is presented in Section 4.
The reader is referred to [1], [2], [6], [15], [19], [20], [22]–[29], [34], and

[36] for applications of finite posets in representation theory of algebras and
coalgebras.

2. Reflections. In the Coxeter analysis of one-peak posets I ≡ (I,�)
we use the following two operations defined in [8] and [21] (see also [24]–[25]).

The reflection-duality I 7→ Ĩ = ŝ∗I associates to any one-peak poset I
with peak ∗ = n + 1 its reflection-dual ŝ∗I := (I,�•), where we set a �• ∗
for i ∈ T := I \ {∗}, and a �• b if b � a in T . The passage I 7→ Ĩ = ŝ∗I can
be visualised as follows:
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�
◦ ◦

◦...
◦ ◦

◦
|◦
|◦

∗T :=I\{∗}I :

�
◦ ◦

◦...
◦ ◦

◦
|◦
|◦

∗ TopĨ = ŝ∗I :

The waist reflection I 7→ δaI associates to the poset

�
◦ ◦

◦...
◦ ◦

•
a

Da •
s1

. . . •
sr

I :

with right waist a ∈ I the one-peak poset

�
◦ ◦

◦...
◦ ◦

Da •
a

•
s1

. . . •
sr

δaI :

called the waist reflection of I at a, where Ea = {i; i � a}, the points
•s1 , . . . , •sr are incomparable with all points ◦j in Ea \ {a} ⊆ δaI, and •a is
the unique maximal element of δaI (see [21]).

We show in the following proposition that the Euler matrix CI = C−1
I

of a poset I with waist a, and the Euler matrix CδaI of the waist reflection
poset δaI, have the forms

(2.1)

CI =



c1 1 · · · c1 a−1 c1 a 0 0 · · · 0 0
...

. . .
...

...
...

...
. . .

...
...

ca−1 1 · · · ca−1 a−1 ca−1 a 0 0 · · · 0 0

ca 1 · · · ca a−1 1 −1 0 · · · 0 0

0 · · · 0 0 1 −1
0 · · · 0 0 1 −1 0
...

. . .
...

...
. . .

. . .
0 · · · 0 0 1 −1
0 · · · 0 0 0 1


,

CδaI =



c1 1 · · · c1 a−1 c1 a 0 0 · · · 0 0
...

. . .
...

...
...

...
. . .

...
...

ca−1 1 · · · ca−1 a−1 ca−1 a 0 0 · · · 0 0

ca 1 · · · ca a−1 1 0 0 · · · 0 0

0 · · · 0 −1 1
0 · · · 0 0 −1 1...

. . .
...

...
. . .

. . .

0

0 · · · 0 0 −1 1
0 · · · 0 0 0 −1 1


.

Proposition 2.2. Let I ≡ (I,�) be a one-peak poset with peak ∗ = n+1.

(a) The poset I is positive if and only if its reflection-dual Ĩ is positive. In
this case the Tits matrices ĈI and ĈĨ are Z-congruent and cox

Ĩ
(t) =

coxI(t).
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(b) Assume that a ∈ I is a waist and I ′a := δaI.
(b1) The matrices in (2.1) are the Euler matrices of I and δaI.
(b2) I is positive (resp. non-negative, principal) if and only if δaI is

positive (resp. non-negative, principal).
(b3) The matrices CI and CδaI are Z-congruent, coxδaI(t) = coxI(t),

and CδaI = B · CI ·Btr, where

(2.3)

B =



1 0 0 · · · 0

0
. . .

0 ...
...

. . .
...

1 0 0 · · · 0

0 · · · 0 1 1 · · · 1

0 · · · 0 0 −1
...

. . .
...

...
0

. .
.

00 · · · 0 0 −1


, Btr =



1 0 0 · · · 0

0
. . .

0 ...
...

. . .
...

1 0 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 1 −1
...

. . .
...

...
0

. .
.

0
0 · · · 0 1 −1


.

Proof. (a) The first statement is a consequence of the equality q̂
Ĩ

= q̂I .
Although the remaining ones follow from [8, Proposition 3.5], we give an
alternative proof by applying Theorem 1.10. For this purpose we note that

Ĉtr
Ĩ

= Ŝtr
∗ ·ĈI ·Ŝ∗, where Ŝ∗ =

[
E 0

utr −1

]
∈Mn+1(Z) and utr = [1, . . . , 1] ∈ Zn.

Since I is positive if and only if Ĩ is positive, Ĉ
Ĩ
is Z-congruent to ĈI , by

Theorem 1.10.
(b) Let CI and CδaI be the matrices in (2.1). Since a direct check yields

CI · CI = E and CδaI · CδaI = E, statement (b1) follows. Alternatively, by
applying [29, Proposition 2.12], one shows that CI is the inverse of CI , and
CδaI is the inverse of CδaI .

(b2) By (b3), the Euler quadratic forms qI and qδaI are Z-equivalent.
Hence (b2) follows.

(b3) By a direct calculation we get

B ·CI =



c1 1 · · · c1 a−1 c1 a 0 0 · · · 0 0
...

. . .
...

...
...

...
. . .

...
...

ca−1 1 · · · ca−1 a−1 ca−1 a 0 0 · · · 0 0

ca 1 · · · ca a−1 1 0 0 · · · 0 0

0 · · · 0 0 −1

0 · · · 0 0
0 −1 1

...
. . .

...
... . .

.
. .

.

0 · · · 0 0 −1 1 0
0 · · · 0 0 −1 1


, B ·CI ·Btr = CδaI .

To prove coxδaI(t) = coxI(t), we note that, as CδaI = B ·CI ·Btr, the Coxeter
matrices of I and δaI are adjoint, and hence their characteristic polynomials
coxI(t) and coxδaI(t) coincide (see [30] and [31]).



90 M. GĄSIOREK AND D. SIMSON

3. Tits-sincere positive posets. The aim of this section is to prove
Theorem 1.7 and present a complete list of all finite positive one-peak posets
that are Tits-sincere. We start with an elementary fact on arbitrary sincere
positive unit forms q : Zm → Z, with m ≥ 2. Here we follow Ovsienko [16]
and Kosakowska [13] (see also [19]).

Proposition 3.1. Let q : Zm → Z, m ≥ 2, be a positive unit form,
bq : Zm × Zm → 1

2 · Z the polarisation of q defined by bq(x, y) = 1
2 · [q(x+ y)

− q(x) − q(y)], v = (v1, . . . , vm) ∈ Zm a root of q, and e1, . . . , em ∈ Zm the
standard basis of the group Zm.

(a) If j ∈ {1, . . . ,m} is such that v 6= ej and v 6= −ej, then

(a1) −1 ≤ ∂q
∂xj

(v) ≤ 1,

(a2) q(v − ej) = 1 if and only if vj 6= 0 and ∂q
∂xj

(v) = 1, and

(a3) q(v + ej) = 1 if and only if vj 6= 0 and ∂q
∂xj

(v) = −1.
(b) If v 6∈ {e1, . . . , em,−e1, . . . ,−em} then there exists j ∈ {1, . . . ,m}

such that vj 6= 0 and ∂q
∂xj

(v) is −1 if vj < 0, and 1 if vj > 0.
(c) If v is sincere, there exists a sincere root v′ = (v′1, . . . , v

′
m) ∈ Zm of

q and an index j ≤ m such that v′j ∈ {−1, 1} and ∂q
∂xj

(v′) = v′j.

Proof. We recall that, given j ≤ m, we have 2bq(v, ej) = ∂q
∂xj

(v).
(a1) Since v 6= ej and v 6= −ej , we have

0 < q(v − ej) = bq(v − ej , v − ej) = q(v)− 2bq(v, ej) + q(ej)

= 2− 2bq(v, ej) = 2− ∂q

∂xj
(v)

and

0 < q(v + ej) = bq(v + ej , v − ej) = 2 + 2bq(v, ej) = 2 +
∂q

∂xj
(v).

Hence, we get −1 ≤ ∂q
∂xj

(v) ≤ 1.

(a2) If vj 6= 0 and 2bq(v, ej) = ∂q
∂xj

(v) = 1, we get

q(v − ej) = bq(v − ej , v − ej) = q(v)− 2bq(v, ej) + q(ej) = 1− 1 + 1 = 1.

Since the inverse implication follows in a similar way, (a2) is proved.
(a3) If 2bq(v, ej) = ∂q

∂xj
(v) = −1, then 2bq(−v, ej) = −1 and we get

q(v + ej) = q(−v − ej) = 1, by (a2) applied to the root −v.
(b) Assume that m ≥ 2, q : Zm → Z is a positive unit form, and v 6∈

{e1, . . . , em,−e1, . . . ,−em} is a root of q. We associate to v = (v1, . . . , vm) ∈
Zm the vector ε = (ε1, . . . , εm) with εj = 1 if vj ≥ 0, and εj = −1 if vj < 0.
Obviously, the vector

w := vε = (v1ε1, . . . , vmεm) ∈ Zm
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is a positive root of the unit form

qε(z) := q(z · εtr) = q(z1ε1, . . . , zmεm)

and w 6∈ {e1, . . . , em}. The equality 2 = 2qε(w) = 2bqε(w,w) yields

2 = w1 ·
∂qε

∂x1
(w) + · · ·+ wn ·

∂qε

∂xn
(w).

Since the root w is positive and w 6∈ {e1, . . . , em}, by (a) applied to qε

and w, we have −1 ≤ ∂qε

∂xj
(w) ≤ 1 for j = 1, . . . ,m. Hence, there exists

j ∈ {1, . . . ,m} such that wj > 0 and ∂qε

∂xj
(w) = 1. Since w = vε, we see that

∂q
∂xj

(v) is −1 if vj < 0, and 1 if vj > 0.
(c) Assume that v is sincere. Then w := vε is a sincere positive root

of qε. It follows that w 6∈ {e1, . . . , em,−e1, . . . ,−em} and, by (b), there exists
j ∈ {1, . . . ,m} such that wj > 0 and ∂qε

∂xj
(w) = 1. If wj = 1, we are done. If

wj ≥ 2, the vector w − ej < w is a sincere positive root of qε, by (a2).
Continuing this procedure as in [13, Corollary 4.7], we find a sincere

positive root w′ = (w′1, . . . , w
′
m) ∈ Zn of qε and j ∈ {1, . . . ,m} such that

w′j = 1 and ∂qε

∂xj
(w′) = w′j = 1. Hence it follows easily that the vector

v′ = w′ · εtr = (w′1ε1, . . . , w
′
mεm) ∈ Zm

satisfies the required conditions.

Corollary 3.2. If m ≥ 3 and q : Zm → Z is a sincere positive unit
form, then there exist a sincere root v = (v1, . . . , vm) ∈ Zn of q and j ∈
{1, . . . ,m} such that

• vj ∈ {−1, 1} and ∂q
∂xj

(v) = vj, and
• the vector v(j) = (v1, . . . , vj−1, vj+1, . . . , vm) ∈ Zm−1 is a sincere root
of the jth restriction q(j) : Zm−1 → Z of q.

Proof. By Proposition 3.1(c), there exists a sincere root v = (v1, . . . , vm)

∈ Zm of q with vj ∈ {−1, 1} and ∂q
∂xj

(v) = vj for some j ∈ {1, . . . ,m}. Then
Proposition 3.1(a) yields q(v − vj · ej) = 1, that is, the non-zero vector

v − vjej = (v1, . . . , vj−1, 0, vj+1, . . . , vm) ∈ Zm

is a root of q. It follows that v(j) = (v1, . . . , vj−1, vj+1, . . . , vm) ∈ Zm−1 is
sincere and q(j)(v(j)) = q(v − vjej) = 1. Hence the corollary follows.

In the proof of Theorem 1.7, we essentially use the following result that
will also be applied in [18] in an algorithmic procedure constructing all one-
peak posets I (and their Coxeter types) such that the Tits form q̂I is almost
P -critical, that is, q̂I is not positive and the restriction q̂(j) is positive for any
j ∈ I \{∗}. This class of posets is described by Bondarenko and Stepochkina
in [4] and [5].
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Proposition 3.3. There is no one-peak poset I = {1, . . . , n, ∗ = n+ 1}
such that the following three conditions are satisfied:

(i) the Tits quadratic form q̂I : ZI → Z is positive,
(ii) |I| ≥ 9, and
(iii) there is an almost sincere Tits root of q̂I , that is, a vector u =

(u1, . . . , un, un+1) ∈ ZI such that u1 6= 0, . . . , un 6= 0 and q̂I(u) = 1.

Proof. We apply induction on n = |I|−1 ≥ 8. In case n = 8, we show by
a computer calculation that there is no one-peak poset I with nine elements
and satisfying (i) and (iii).

We do it by applying Algorithms 5.2 and 5.5 below as follows. First,
running Algorithm 5.2, we calculate the set posit[9] of all one-peak positive
posets I with |I| = 9. Then we generate the list roots9 that contains the
roots of q̂I(x) for every I ∈ posit[9]. The last step is a routine computer
check that there is no u = (u1, . . . , u9) ∈ roots9 with u1 6= 0, . . . , u8 6= 0.
The complete computing time we need is about 15 min.

To prove the inductive step, assume that the proposition is proved for one-
peak posets I ′ with |I ′| = n ≥ 9, and assume, to the contrary, that I is a one-
peak poset such that |I| = n+ 1 ≥ 10, the Tits quadratic form q̂I : ZI → Z
is positive, and there is an almost sincere Tits root u = (u1, . . . , un, un+1)
of q̂I . We consider two cases.

Case 1. Assume that u is not sincere, that is, un+1 = 0. Since q̂I is
assumed to be positive, the form q̂

(∗)
I = qT is positive and the vector ǔ =

(u1, . . . , un) ∈ ZT is a sincere root of qT , where T = I \{∗}. By Corollary 3.2,
there exists a sincere root w = (w1, . . . , wn) ∈ Zn of qT , with wj ∈ {−1, 1}
for some j ∈ {1, . . . , n}, and the vector

w(j) = (w1, . . . , wj−1, wj+1, . . . , wn) ∈ Zn−1

is a sincere root of the jth restriction q(j)
T : Zn−1 → Z of qT , where n−1 ≥ 8.

Obviously, the vector

ŵ(j) = (w1, . . . , wj−1, wj+1, . . . , wn, 0) ∈ Zn

is an almost sincere root of the positive Tits form q̂I′ = q̂
(j)
I of the one-peak

subposet I ′ := I \ {j}, because

q̂I′(ŵ
(j)) = q̂

(j)
I (ŵ(j)) = q

(j)
T (w(j)) = 1.

Since |I ′| = |I|−1 ≥ 9, we get a contradiction with the induction hypothesis.

Case 2. Assume that u is sincere, that is, un+1 6= 0. Since q̂I is assumed
to be positive, there exists a sincere root w = (w1, . . . , wn+1) ∈ Zn+1 of q̂I
with wj ∈ {−1, 1}, for some j ∈ {1, . . . , n+ 1}, and the vector

w(j) = (w1, . . . , wj−1, wj+1, . . . , wn+1) ∈ Zn
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is a sincere root of the jth restriction q̂
(j)
I : Zn → Z, by Corollary 3.2. If

j = n + 1, we are in the situation of Case 1, and we get a contradiction.
Assume that j ≤ n. Then the vector

ŵ(j) = (w1, . . . , wj−1, 0, wj+1, . . . , wn, wn+1) ∈ Zn

is a sincere root of the positive Tits form q̂I′ = q̂
(j)
I of the one-peak subposet

I ′ := I \ {j} of I, because q̂I′(w(j)) = q̂
(j)
I (w(j)) = 1. Since |I ′| = |I| − 1 ≥ 9,

we again get a contradiction with the induction hypothesis, and the proof is
complete.

Proof of Theorem 1.7. Let I be one-peak poset with n + 1 = |I| ≥ 1
such that the Tits form q̂I : Zn → Z is sincere and positive. By [8, Theorem
5.2], there exists a Dynkin diagram ∆I ∈ {An+1,Dn+1,E6,E7,E8} (uniquely
determined by I and called the Coxeter–Dynkin type of I) such that the
Coxeter polynomial coxI(t) ∈ Z[t] of I coincides with the Coxeter polynomial
F∆I (t) of the diagram ∆I . Moreover, if ∆I = E6 then I is one of the posets
P1, . . . ,P8,P10, . . . ,P13 listed in Table 1.8; if ∆I ∈ {E7,E8} then I is one of
the posets P17, . . . ,P193 listed in [8, Tables 6.2–6.3], where each sincere poset
is distinguished by the symbol ©sI with sI ≥ 1. Hence (d) follows.

Assume that ∆I ∈ {An+1,Dn+1}. By [8, Theorem 5.2], I is one of the
posets in [8, Table 1.6], By a computer calculation we show that, for n + 1
= |I| ≤ 6, the only positive Tits-sincere one-peak posets I with ∆I ∈
{An+1,Dn+1} are those described in (b) and (c). Moreover, we show that
there is no positive Tits-sincere one-peak poset I and |I| = m of type
∆I = An+1 with 4 ≤ n ≤ 9 vertices, or of type ∆I = Dn+1 with 6 ≤ n ≤ 9
vertices.

We do this by applying Algorithms 5.2, 5.5, and 5.6 as follows. First,
running Algorithm 5.2, we calculate the sets posit[1], . . . ,posit[9] of all
one-peak positive posets I with |I| = 1, . . . , 9. Then we generate the list
candidates of I such that ∆I ∈ {An,Dn} and I ∈ posit[n] for 1 ≤ n ≤ 9.
Using Algorithm 5.5 we calculate the set of roots of the Tits form q̂I for
every I ∈ candidates. The final step is a routine computer check that the
only Tits-sincere posets I ∈ candidates are those described in (b) and (c).
The complete computing time we need is about 16 min.

(a) Apply Proposition 3.3.
(e) Apply statement (c) and [8, Tables 6.1–6.3].
(f) Assume that v = (v1, . . . , vn, v∗) ∈ ZI ≡ Zn+1 is a Tits root of a

positive one-peak poset I, that is, q̂I(v) = 1 and v∗ 6= 0. Then the support
Iv := {i ∈ I; vi 6= 0} of v contains ∗ and is a one-peak subposet of I.
The restriction q̂Iv := q̂|Iv : ZIv → Z is sincere and the sincere vector
v̌ = (v̌j) ∈ ZIv , with v̌j = vj for all j ∈ Iv, is a root of q̂Iv , because
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q̂Iv(v̌) = q̂(v) = 1. Since q̂Iv is positive, the poset Iv is one of the posets

0A∗0 : ∗, 0A∗1 : •→ ∗, 0A∗2 :
•
↘∗
↗•

,

or (c1)–(c8) listed in (c), or one of the Tits-sincere posets listed in [8, Tables
6.1–6.3]. Since, for each such poset, a complete list of all sincere Tits roots
is generated by a computer calculation (using Algorithm 5.5 to calculate the
list of all roots and then choosing the sincere ones), statement (f) follows by
a case by case inspection of the lists of sincere Tits roots given in [9].

4. A congruence of a matrix with its transpose. We recall from
Horn and Sergeichuk [11] (see also [10]) that every non-singular matrix A ∈
Mm(R) is R-congruent to its transpose Atr and there exists B ∈ Gl(m,R)
such that B2 = E and Atr = B · A · Btr. Moreover, B can be chosen to be
orthogonal.

In the proof of Proposition 2.2 we need a refinement of this theorem
which leads to the following question:

Problem 4.1. For any A ∈ Gl(m,Z) find B ∈Mm(Z) such that B2 = E
and Atr = B ·A ·Btr.

Although we are not able to solve this problem for arbitrary A ∈ Gl(n,Z),
we get in Theorem 1.10 an affirmative solution of 4.1 for a class of matrices
connected to one-peak positive posets I, including the incidence matrices
A = CI . Moreover, we give an algorithm that constructs a matrix S ∈
Mn+1(Z) such that S2 = E and Ctr

I = S · CI · Str for any such poset I with
|I| = n+ 1 (see Algorithm 4.5).

Proof of Theorem 1.10. Assume that I is a one-peak poset. It is shown in
[30] that the matrices CI , CI , and ĈI are Z-congruent to each other. Thus
it is sufficient to prove the theorem for the Tits matrix ĈI of I, because
one easily shows that if A,A′ ∈ Gl(n,Z) are Z-congruent, then A has the
property 4.1 if and only if A′ does. Now we split the proof into two steps.

1◦ First consider the case when the poset is a one-peak Dynkin quiver Q,
with n+1 vertices. It is easy to see that the transpose Ctr

Q of its Euler matrix
is the Euler matrix CQop of the quiver Qop opposite to Q. By applying
reflection arguments (as in the proof of [8, Proposition 3.5(b)]) one can find
S ∈Mn+1(Z) such that S2 = E and Ctr

Q = CQop = S · CQ · Str.
Assume that Q is the Dynkin quiver of type Am and Q′ is the Dynkin

quiver of type Dm obtained from the diagrams Am and Dm of Table 1.5
by replacing any edge j •−−−−•j+1 with the arrow j •−−−−→•j+1. Then the
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matrices Sm ∈Mm(Z) and S′m ∈Mm(Z) given by

(4.2) Sm =



0 0 . . . 0 1

0 0 . . . 1 0

...
... . .

. ...
...

0 1 . . . 0 0

1 0 . . . 0 0


, S′m =



1 0 0 0 0 . . . 0 0

0 1 0 0 0 . . . 0 0

1̂ 1̂ 1̂ 1̂ 1̂ . . . 1̂ 1̂

0 0 0 0 0 . . . 0 1

0 0 0 0 0 . . . 1 0

...
...

...
...

... . .
. ...

...

0 0 0 0 1 . . . 0 0

0 0 0 1 0 . . . 0 0


,

with 1̂ = −1, satisfy the required conditions and detSm = (−1)(m(m+3))/2,
detS′m = (−1)(m(m+3)−2)/2. Note that the matrices can be read off from the
configurations [8, Table 7.3] as in [8, Example 7.6].

Assume next that Q is the Dynkin quiver of type E6, Q′ is the Dynkin
quiver of type E7, and Q′′ is the Dynkin quiver of type E8, obtained from
the diagrams E6, E7 and E8 of Table 1.5 by replacing any edge j•−−−−•j+1

with the arrow j•−−−→•j+1. Then the matrices S ∈M6(Z), S′ ∈M7(Z), and
S′′ ∈M8(Z) given by
(4.3)

S=



0 1 0 0 0 0

1 0 0 0 0 0

1̂ 1̂ 1̂ 1̂ 1̂ 1̂

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, S′=



0 1 0 0 0 0 0

1 0 0 0 0 0 0

1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0


, S′′=



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0


,

with 1̂ = −1, detS = −1, detS′ = −1, detS′′ = 1, satisfy the required
conditions.

2◦ Finally, consider the case of a general positive one-peak poset. By
[8, Theorem 5.2], there exists a Dynkin quiver Q = QI ∈ {An+1, Dn+1, E6,
E7, E8} such that the Coxeter polynomial coxI(t) coincides with the Coxeter
polynomial FQ(t) of Q, the Tits matrix ĈI of I is Z-congruent to the Euler
matrix CQ, and ĈI = B1 · CQ · Btr

1 for some Z-invertible B1 ∈ Mn+1(Z). It
follows that Ĉtr

I = B1 ·C
tr
Q ·Btr

1 and, in view of the equality Ctr
Q = S ·CQ ·Str

proved in 1◦, we get
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Ĉtr
I = B1 · S ·CQ · Str ·Btr

1 = B1 · S ·B−1
1 · ĈI ·B

−tr
1 · Str ·Btr

1 = B · ĈI ·Btr

where B = B1 · S · B−1
1 . The equality S2 = E yields B2 = E and the proof

is complete.

Remark 4.4. There is an alternative way of constructing the matrix B,
presented in [8, Example 7.6] for the Tits-sincere poset P10. The method
explained there can be converted to an algorithm as follows.

Algorithm 4.5.

Input: The incidence matrix CI ∈Mn+1(Z) of a given positive one-peak
poset I.

Output: A matrix B ∈Mn+1(Z) such that Ctr
I = B ·CI ·Btr and B2 = E.

Step 1. Calculate the incidence quadratic form qI : ZI ≡ Zn+1 → Z,
qI(x) = x·CI ·xtr, the Coxeter transformation ΦI : ZI → ZI , ΦI(v) = v·CoxI ,
where CoxI = −CI · (C−1

I )tr, the Coxeter polynomial coxI(t), and determine
the Coxeter–Dynkin type ∆I of I.

Step 2. Compute the finite set RqI of roots of qI using Algorithm 5.5.
Step 3. Split the set RqI of roots of qI : ZI → Z into ΦI -orbits.
Step 4. Construct the ΦI -mesh translation quiver Γ (RqI , ΦI) of roots of

qI by applying the mesh toroidal algorithm described in [31, Proposition 4.5]
and [32]–[33] (see also [6]).

Step 5. By using [8, Table 7.3], fix a principal Coxeter ΦI -orbit configu-
ration ΓCII of type ∆I in the ΦI -mesh translation quiver Γ (RqI , ΦI). Next,
fix a mesh quiver isomorphism h′ : Γ

Ǧ∆I
∆I

→ ΓCII and construct a matrix

B′ =


h′(e1)

...

h′(en)

 ∈Mn+1(Z)

such that Ǧ∆I = B′ · CI ·B′tr.
Step 6. Construct ΦIop = Φ−1

I and the ΦIop-mesh translation quiver
Γ (RqIop , ΦIop) of roots of qIop : Zn → Z, qIop(x) = x · Ctr

I · xtr, by reversing
all arrows in the ΦI -mesh translation quiver Γ (RqI , ΦI).

Step 7. By using [8, Table 7.3], fix a principal Coxeter ΦIop-orbit config-
uration ΓC

tr
I

Iop of type ∆I in the ΦIop-mesh translation quiver Γ (RqIop , ΦIop).

Then fix a mesh quiver isomorphism h′′ : Γ
Ǧ∆I
∆I

→ Γ
CItr
I and construct a
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matrix

B′′ =


h′′(e1)

...

h′′(en)

 ∈Mn+1(Z)

such that Ǧ∆I = B′′ · Ctr
I ·B′′tr.

Step 8. Return B = B′′−1 · B′ and check that Ctr
I = B · CI · Btr and

B2 = E.

5. Algorithms and computing in Python. In this section we outline
the computational algorithms we use in this paper. Their implementations
are available from the authors on request.

The first algorithm is a modified version of [8, Algorithm 7.1] and deter-
mines all positive one-peak posets that have at most nine elements. Assume
that I = ({1, . . . , n, n+1 = ∗},�) is a positive one-peak poset with a unique
maximal element ∗. Without loss of generality, we can assume that the inci-
dence matrix CI is upper triangular. Then 1 ∈ I is a minimal element, the
subposet J = I \ {1} of I is positive, and CI has the triangular form

(5.1) CI =

 1 w

0 CJ

 ∈Mn+1(Z),

where w = [w2, . . . , wn, 1] ∈ Zn and w2, . . . , wn ∈ {0, 1}. It follows that the
description of all one-peak positive posets with n + 1 elements reduces to
the description of posets I with incidence matrix of the shape (5.1), where J
is a positive one-peak poset with n elements and upper triangular incidence
matrix CJ .

Algorithm 5.2.

Input: An integer n ≥ 1.
Output: Finite sets posit[1], . . . ,posit[n] of all one-peak posets such

that I ∈ posit[m] implies |I| = m ≤ n and the quadratic form qI : Zm → Z,
qI(x) = x · CI · xtr, is positive.

Step 1. Initialize posit[1] = [1] ∈M1(Z).
Step 2. For every m from 2 to n:
Step 2.1. Initialize candidatem to be an empty list.
Step 2.2. For every J ∈ posit[m− 1], generate the list WJ of all vectors

w = [w2, . . . , wm−1, 1] ∈ {0, 1}m−1 such that the matrix

CJw =

 1 w

0 CJ

 = [cij ] ∈Mm(Z)
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is the incidence matrix of a poset Jw, that is,

“cij = 1 and cjs = 1 implies cis = 1”, for 1 ≤ i, j, s ≤ n

(in other words, i � j and j � s imply i � s).
Step 2.3. For every J ∈ posit[m − 1] and every w ∈ WJ construct a

matrix CJw ∈ Mm(Z) and add the poset Jw to the list canditatem if the
symmetric matrix CJw +Ctr

Jw
satisfies the Sylvester criterion (or equivalently,

if the quadratic form qJw(x) = x · CJw · xtr is positive definite).
Step 2.4. Construct the set posit[m] by selecting the incidence matrices

CI in the list canditatem of posets I in such a way that the Hasse quivers
H(I) are pairwise non-isomorphic.

Step 3. Return posit[1], . . . ,posit[n].

Remarks. (a) Note that Steps 2.3 and 2.4 can be made simultaneously
by adding to posit[m] only those positive posets I that have Hasse quivers
not isomorphic to the posets that are already in.

(b) In our Python implementation of the algorithm we use the igraph
package (http://igraph.sourceforge.net/) to test quiver isomorphism in Step
2.4 and SymPy package (http://sympy.org/) for matrix algorithms.

(c) Although the time complexity of the algorithm is exponential (no
polynomial algorithm for testing quiver isomorphism is known), it works
pretty fast for small n. The computing time for n = 6, 7, 8, 9 was 0.6, 3.6,
16.2 and 65.9 seconds respectively (on a computer with AMD Athlon(tm) II
X4 630 processor, using Python 2.7.2, igraph 0.5.4 and SymPy 0.7.1).

Now we recall from [31, Algorithm 4.2] and [32, Algorithm 3.7] how the
set Rq of all roots of a positive definite quadratic form q : Zn → Z can be
calculated. As a basis of our algorithm we use the following “positive” version
of the well-known Lagrange theorem which states that every quadratic form
reduces to a canonical form.

Theorem 5.3 (Lagrange). For every permutation {j1, . . . , jn} of
{1, . . . , n}, a positive definite quadratic form q : Zn → Z, q(x1, . . . , xn) =
q11x

2
1 + · · ·+ qnnx

2
n +

∑
i<j qijxixj, reduces to the canonical form

(5.4) q(x1, . . . , xn) = λ1y
2
j1 + · · ·+ λn−1y

2
jn−1

+ λnx
2
jn ,

where λ1, . . . , λn−1, λn are positive rational numbers and yji = cjiixji + · · ·+
cjinxjn, with cij ∈ Q, such that det [cjii] 6= 0.

Proof. Note that each of the coefficients q11, . . . , qnn is positive, because
q(x) is positive definite. We apply induction on n ≥ 1. For n = 1, there is
nothing to prove. Assume that n ≥ 2 and rewrite the form q(x) as

q(x1, . . . , xn) = qj1j1y
2
j1 + q̌(xj2 , . . . , xjn),
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where

yj1 = yj1(xj1 , xj2 , . . . , xjn) := xj1 +
1

2qj1j1
· (qj1j2xj2 + · · ·+ qj1jnxjn),

and
q̌(xj2 , . . . , xjn) = q(x1, . . . , xn)− qj1j1y2

j1

depends only on the indeterminates xj2 , . . . , xjn , and we set qij = qji for
j < i. To finish the proof, it is sufficient to check that the quadratic form
q̌(xj2 , . . . , xjn) is positive definite, because then the inductive hypothesis
applies to q̌(xj2 , . . . , xjn) and we are done.

To show that q̌(xj2 , . . . , xjn) is positive definite assume, to the contrary,
that there exists a non-zero vector u = (uj2 , . . . , ujn) ∈ Rn−1 such that
q̌(u) ≤ 0. If we set

û = (ûj1 , uj2 , . . . , ujn) with ûj1 := −qj1j2uj2 + · · ·+ qj1jnujn ,

then yj1(ûj1 , uj2 , . . . , ujn) = 0 and we get the contradiction

q(ǔ1, . . . , ǔn) = qj1j1yj1(ûj1 , uj2 , . . . , ujn)2 + 4q2
j1j1 · q̌(u) = 4q2

j1j1 · q̌(u) ≤ 0.

Note that in the final step of induction we get yjn = λnxjn with λn > 0, and
consequently

q(x1, . . . , xn) = λ1y
2
j1 + · · ·+ λn−1y

2
jn−1

+ λnx
2
jn .

This finishes the proof.

We can use the canonical form (5.4) to restrict the set Zn of all integer
vectors to the finite set of vectors that contains all the roots of q(x). We do
it as follows.

By Theorem 5.3, given a root v = (v1, . . . , vn) ∈ Zn of a positive def-
inite form (5.4), the equality q(v) = 1 implies λnv2

jn
≤ 1 and therefore

|vjn | ≤
√

1/λn. This observation is used in the following restrictively count-
ing algorithm that computes all roots of a given positive definite quadratic
form (see also [31, Algorithm 4.2] and [32, Algorithm 3.7]).

Algorithm 5.5.

Input: An integer n ≥ 1 and a positive definite quadratic form q(x1, . . .
. . . , xn) = q11x

2
1 + · · ·+ qnnx

2
n +

∑
i<j qijxixj , with qij ∈ Z.

Output: The finite set rootsn ⊂ Zn of all roots of q.

Step 1. Initialize the list restrictions of size n, set q[0](x) = q(x).
Step 2. For every m ∈ {1, . . . , n} do:
Step 2.1. Fix a permutation {j1, . . . , jn} of {1, . . . , n} and interchange

jm and jn elements.
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Step 2.2. For k = 1, . . . , n− 1 calculate

q[k](xjk+1
, . . . , xjn) = q[k−1](xjk , . . . , xjn)

− q[k−1]
jkjk

(
xjk +

q
[k−1]
jkjk+1

xjk+1
+ · · ·+ q

[k−1]
jkjn

xjn

2q
[k−1]
jkjk

)2

,

setting q[k−1]
ij = q

[k−1]
ji for j < i.

Step 2.3. Given q[n−1](xm) = λx2
m, where λ = q

[n−1]
mm , set restrictions[m]

= b
√

1/λc.
Step 3. Return the list containing every vector v = (v1, . . . , vn) = (vj)

∈ Zn such that −restrictions[j] ≤ vj ≤ restrictions[j] and q(v) = 1.

To prove Theorem 1.10 for posets I of Coxeter–Dynkin type E6, we need
the following algorithm.

Algorithm 5.6.

Input: One-peak poset I ∈ {P1, . . . ,P8,P10, . . . ,P13} and the non-sym-
metric Gram matrix ǦE6 ∈ M6(Z) of the Dynkin diagram E6, with vertices
numbered as in Table 1.5.

Output: A Z-invertible matrix B ∈Mn(Z) such that Ĉtr
I = B · ĈI ·Btr,

detB = −1 and B2 = E.

Step 1. Apply [8, Algorithm 7.5] to the matrices ĈI and ǦE6 in order to
obtain B′ ∈M6(Z) such that ǦE6 = B′ · ĈI · B̂′tr.

Step 2. Apply [8, Algorithm 7.5] to the matrices Ĉtr
I and ǦE6 in order

to obtain B′′ ∈M6(Z) such that ǦE6 = B′′ · Ĉtr
I · B̂′′tr.

Step 3. Calculate B = B′′−1 ·B′ and check that detB = −1.

By applying Algorithm 5.6 to each of the posets P1, . . . ,P8,P10, . . . ,P13

in Table 1.8 we get the following corollary that proves Theorem 1.10 for
posets I of Coxeter–Dynkin type E6 (see also [8, Example 7.6]). The proof
for remaining types is analogous; the lists of the corresponding matrices
B = Bj can be found in [9].

Corollary 5.7. Assume that I = Pj ∈ {P1, . . . ,P8,P10, . . . ,P13} (see
Table 1.8). If A = ĈI is the Tits matrix of I and B = Bj ∈ Gl(6,Z) is as in
Table 5.8, then detB = −1, B2 = E, and Atr = B ·A ·Btr.

Proof. Apply Algorithm 5.6 and use the idea of the proof of Theorem
1.6.
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Table 5.1. A list of matrices B = Bj such that Atr = B · A · Btr with A = ĈPj for the
posets Pj ∈ {P1, . . . ,P8,P10, . . . ,P13} of Table 1.8

B1 =



1 0 0 0 0 0

0 0 0 1−1 0

1 1 0 0−1 1

1 1 0 0−1 0

1 0 0 0−1 0

0 0 1−1 0 0


, B2 =



0 1 1−1 1 1

0 1 0 0 0 0

0 0 0 0 1 0

−1 0 0 0 0−1

0 0 1 0 0 0

0−1−1 0−1−1


, B3 =



0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

−1−1−1−1−1−2


,

B4 =



1 0 0 0 0 0

0 1 0 0 0 0

1 0−1 0 0 0

0 1 0−1 0 0

0 0−1−1 1−1

−1−1 0 0 0−1


, B5 =



−1 1 1 1 1 1

0 0 1 1 0 1

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0−1−1−1


, B6 =



1 0 0 0 0 0

1 0 0−1 0 0

0 0 1 0 0 0

1−1 0 0 0 0

1 0 0 0−1 0

−1 0−1 0 0−1


,

B7 =



−1 0 1 0 0 0

0 0 1 0 0 1

0 0 1 0 0 0

−1 0 1 1−1 0

0 0 1 0−1 0

0 1−1 0 0 0


, B8 =



0−1 1 1 1 1

−1 0 1 1 1 1

0 0 0 1 1 1

0 0 0 1 0 0

0 0 1 0 0 1

0 0 0−1 0−1


, B10 =



0 1 1 0 0 1

1 0 0 1 0 1

0 0 1 0 0 0

0 0 0 1 0 0

1 1 0 0−1 1

0 0−1−1 0−1


,

B11 =



1 0 0 0 0 0

1 1 1−1−1 1

0 0 1 0 0 0

1 0 0−1 0 0

0 0 1 0−1 0

−1 0−1 0 0−1


, B12 =



0 1 1 0−1 1

1 1 1−1−1 1

0 0 1 0 0 0

1 0 1 0−1 1

0 1 1−1−1 0

0 0−1 0 0−1


, B13 =



0 1 0 0 0 1

1 0 0 1 0 1

1 1 0 0−1 1

0 0 0 1 0 0

1 1−1 0 0 1

0 0 0−1 0−1


.
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