ON SELF-INJECTIVE ALGEBRAS OF FINITE REPRESENTATION TYPE

BY

MARTA BŁASZKIEWICZ and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract. We describe the structure of finite-dimensional self-injective algebras of finite representation type over a field whose stable Auslander–Reiten quiver has a sectional module not lying on a short chain.

Introduction. Throughout the paper, by an algebra we mean a basic indecomposable finite-dimensional associative K-algebra with an identity over a (fixed) field K. For an algebra A, we denote by $\text{mod} A$ the category of finite-dimensional right A-modules, and by D the standard duality $\text{Hom}_K(-,K)$ on $\text{mod} A$. We denote by Γ_A the Auslander–Reiten quiver of A, and by τ_A and τ^{-1}_A the Auslander–Reiten translations $D\text{Tr}$ and $\text{Tr}D$, respectively. We will not distinguish between an indecomposable module in $\text{mod} A$ and the vertex of Γ_A corresponding to it. An algebra A is called self-injective if $A \cong D(A)$ in $\text{mod} A$, that is, the projective modules in $\text{mod} A$ are injective. In the representation theory of self-injective algebras an important role is played by the self-injective algebras A which admit Galois coverings of the form $\hat{B} \rightarrow \hat{B}/G = A$, where \hat{B} is the repetitive category of an algebra B and G is an admissible group of automorphisms of \hat{B} (see [22], [29]).

We are concerned with the problem of describing the Morita equivalence classes of self-injective algebras of finite representation type, that is, the self-injective algebras A for which $\text{mod} A$ admits only finitely many indecomposable modules up to isomorphism. For K algebraically closed, the problem was solved in the early 1980’s by Riedtmann (see [4], [16], [17], [18]) via the combinatorial classification of the Auslander–Reiten quivers of self-injective algebras of finite representation type over K. Equivalently, Riedtmann’s classification can be presented as follows (see [22] Section 3): a non-simple self-injective algebra A over an algebraically closed field K is of finite representation type if and only if A is a socle deformation of an orbit algebra \hat{B}/G, where B is a tilted algebra of Dynkin type A_n ($n \geq 1$).

2010 Mathematics Subject Classification: Primary 16D50, 16G10, 16G60.
Key words and phrases: self-injective algebra, tilted algebra, repetitive algebra, Auslander–Reiten quiver, short chain.
\(D_n\ (n \geq 4), \ E_6, \ E_7, \ E_8,\) and \(G\) is an admissible infinite cyclic group of automorphisms of \(\hat{B}\). It was conjectured in [29, Problem 2.4] that a non-simple self-injective algebra \(A\) over an arbitrary field \(K\) is of finite representation type if and only if \(A\) is a socle deformation of an orbit algebra \(\hat{B}/G\), where \(B\) is a tilted algebra of Dynkin type \(A_n\ (n \geq 1), \ E_6, \ E_7, \ E_8, \ F_4\) or \(G_2\). This is currently an exciting open problem. An important known result towards solution of this problem is the Riedtmann–Todorov description of the stable Auslander–Reiten quivers of self-injective algebras of finite representation type over an arbitrary field (see [16], [31], [30, Section IV.15]). We also refer to [28] for related results on stable equivalences of self-injective algebras of finite representation type.

The main aim of the paper is to show that a non-simple self-injective algebra \(A\) of a finite representation type whose stable Auslander–Reiten quiver admits a section with good behaviour in the module category \(\text{mod} A\) is isomorphic to an orbit algebra \(\hat{B}/G\), where \(B\) is a tilted algebra of Dynkin type and \(G\) is an infinite cyclic group of automorphisms of \(\hat{B}\).

For basic background on the representation theory applied in this paper we refer to [1] and [30].

1. The main result and related background. Let \(B\) be an algebra and \(1_B = e_1 + \cdots + e_n\) a decomposition of the identity of \(B\) into a sum of pairwise orthogonal primitive idempotents. We associate to \(B\) a self-injective locally bounded \(K\)-category \(\hat{B}\), called the repetitive category of \(B\) (see [11], [20]). The objects of \(\hat{B}\) are \(e_{m,i}, m \in \mathbb{Z}, i \in \{1, \ldots, n\}\), and the morphism spaces are defined as follows:

\[
\hat{B}(e_{m,i}, e_{r,j}) = \begin{cases}
eq & r = m, \\
D(e_iBe_j), & r = m + 1, \\
0, & \text{otherwise}. \end{cases}
\]

Observe that \(e_jBe_i = \text{Hom}_B(e_iB, e_jB), D(e_iBe_j) = e_jD(B)e_i\) and

\[
\bigoplus_{(r,i) \in \mathbb{Z} \times \{1, \ldots, n\}} \hat{B}(e_{m,i}, e_{r,j}) = e_jB \oplus D(Be_j)
\]

for any \(r \in \mathbb{Z}\) and \(j \in \{1, \ldots, n\}\). We denote by \(\nu_{\hat{B}}\) the Nakayama automorphism of \(\hat{B}\) defined by

\[
\nu_{\hat{B}}(e_{m,i}) = e_{m+1,i} \quad \text{for all } (m, i) \in \mathbb{Z} \times \{1, \ldots, n\}.
\]

An automorphism \(\varphi\) of the \(K\)-category \(\hat{B}\) is said to be:

- **positive** if for each pair \((m, i) \in \mathbb{Z} \times \{1, \ldots, n\}\) we have \(\varphi(e_{m,i}) = e_{p,j}\) for some \(p \geq m\) and some \(j \in \{1, \ldots, n\}\);
• **rigid** if for each pair \((m, i) \in \mathbb{Z} \times \{1, \ldots, n\}\) there exists \(j \in \{1, \ldots, n\}\) such that \(\varphi(e_{m,i}) = e_{m,j}\);
• **strictly positive** if it is positive but not rigid.

Then the automorphisms \(\nu^r_{\hat{B}}, r \geq 1\), are strictly positive automorphisms of \(\hat{B}\).

A group \(G\) of automorphisms of \(\hat{B}\) is said to be **admissible** if \(G\) acts freely on the set of objects of \(\hat{B}\) and has finitely many orbits. Then we may consider the orbit category \(\hat{B}/G\) of \(\hat{B}\) with respect to \(G\) whose objects are the \(G\)-orbits of objects in \(\hat{B}\), and the morphism spaces are given by

\[
(\hat{B}/G)(a, b) = \left\{ f_{y,x} \in \prod_{(x,y) \in a \times b} \hat{B}(x,y) \mid g(f_{y,x}) = f_{gy, gx}, \forall g \in G, (x,y) \in a \times b \right\}
\]

for all objects \(a, b\) of \(\hat{B}/G\). Since \(\hat{B}/G\) has finitely many objects and the morphism spaces in \(\hat{B}/G\) are finite-dimensional, we have the associated finite-dimensional, self-injective \(K\)-algebra \(\bigoplus(\hat{B}/G)\) which is the direct sum of all morphism spaces in \(\hat{B}/G\), called the **orbit algebra** of \(\hat{B}\) with respect to \(G\). We will identify \(\hat{B}/G\) with \(\bigoplus(\hat{B}/G)\). For example, for each positive integer \(r\), the infinite cyclic group \((\nu^r_{\hat{B}})\) generated by the \(r\)th power \(\nu^r_{\hat{B}}\) of \(\nu_{\hat{B}}\) is an admissible group of automorphisms of \(\hat{B}\), and we have the associated self-injective orbit algebra

\[
T(B)^{(r)} = \hat{B}/(\nu^r_{\hat{B}}) = \left\{ \begin{bmatrix} b_1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ f_2 & b_2 & 0 & \ldots & 0 & 0 & 0 \\ 0 & f_3 & b_3 & \ldots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & f_{r-1} & b_{r-1} & 0 \\ 0 & 0 & 0 & \ldots & 0 & f_1 & b_1 \\ b_1, \ldots, b_{r-1} \in B, f_1, \ldots, f_{r-1} \in D(B) \end{bmatrix} \right\},
\]

called the **\(r\)-fold trivial extension algebra** of \(B\). In particular, \(T(B)^{(1)} \cong T(B) = B \ltimes D(B)\) is the trivial extension of \(B\) by the injective cogenerator \(D(B)\).

Let \(H\) be a hereditary algebra and \(Q_H\) its valued quiver. Following [3], [9], a module \(T\) in \(\text{mod} \ H\) is called a **tilting module** if \(\text{Ext}^1_H(T, T) = 0\) and \(T\) is a direct sum of \(n\) pairwise non-isomorphic, indecomposable modules, where \(n\) is the rank of the Grothendieck group \(K_0(H)\) of \(H\) (equivalently, the number of vertices of \(Q_H\)). Then the endomorphism algebra \(B = \text{End}_H(T)\) is called a **tilted algebra** of \(H\). Further, the images \(\text{Hom}_H(T, I)\) of indecomposable in-
jective modules \(I \) in \(\text{mod} \, H \) via the functor \(\text{Hom}_H(T, -) : \text{mod} \, H \to \text{mod} \, B \) form a section \(\Delta_T \) of a connected component \(C_T \) of \(\Gamma_B \), called the connecting component of \(\Gamma_B \) determined by \(T \), which connects the torsion-free part \(\mathcal{Y}(T) = \{ Y \in \text{mod} \, B \mid \text{Tor}_1^B(Y, T) = 0 \} \) and the torsion part \(\mathcal{X}(T) = \{ X \in \text{mod} \, B \mid X \otimes_B T = 0 \} \) (see [9]). Moreover, by a criterion of Liu–Skowroński (see [14], [21]), an algebra \(B \) is a tilted algebra of a hereditary algebra \(H \) if and only if the Auslander–Reiten quiver \(\Gamma_B \) of \(B \) admits a connected component \(C \) having a faithful section \(\Delta \) such that \(\text{Hom}_B(U, \tau_B V) = 0 \) for all modules \(U, V \) from \(\Delta \).

Assume now that \(H \) is a hereditary algebra of finite representation type, or equivalently, \(Q_H \) is a Dynkin quiver (see [5], [6], [7]). Then for any tilting module \(T \) in \(\text{mod} \, H \), the associated tilted algebra \(B = \text{End}_H(T) \), called a tilted algebra of Dynkin type, is of finite representation type, and \(\Gamma_B = C_T \).

Further, it follows from [10], [11] that the repetitive category \(\hat{B} \) of a tilted algebra \(B \) of Dynkin type is locally representation-finite in the sense of [8]. In particular, by a theorem of Gabriel [8, Theorem 3.6] the orbit algebra \(A = \hat{B}/G \) of \(\hat{B} \), with respect to an admissible infinite cyclic group \(G \) of automorphisms of \(\hat{B} \), is a self-injective algebra of finite representation type, and the stable Auslander–Reiten quiver \(\Gamma^s_A \) of \(A \) is the orbit quiver \(\mathbb{Z}\Delta/G \), where \(\Delta = Q_H \).

Let \(A \) be a non-simple self-injective algebra of finite representation type. Then by the Riedtmann–Todorov theorem (see [16], [31]) the stable Auslander–Reiten quiver \(\Gamma^s_A \) of \(A \) is isomorphic to the orbit quiver \(\mathbb{Z}\Delta/G \), where \(\Delta \) is a Dynkin quiver and \(G \) is an infinite cyclic group of automorphisms of \(\hat{B} \), is a self-injective algebra of finite representation type, and the stable Auslander–Reiten quiver \(\Gamma^s_A \) of \(A \) is the orbit quiver \(\mathbb{Z}\Delta/G \), where \(\Delta = Q_H \).

Let \(A \) be an algebra. Following [2], [15], a sequence \(N \to M \to \tau_AN \) of non-zero homomorphisms in \(\text{mod} \, A \) with \(N \) indecomposable is called a short chain, and \(M \) is the middle of this chain. We mention that, if \(M \) is a module in \(\text{mod} \, A \) which is not the middle of a short chain, then every indecomposable direct summand \(Z \) of \(M \) is uniquely determined (up to isomorphism) by the simple composition factors (see [15, Corollary 2.2]). It has been recently proved in [12, Theorem] that an algebra \(B \) is a tilted algebra if and only if \(\text{mod} \, B \) contains a sincere module \(M \) which is not the middle of a short chain.
Recall that M is called sincere if every simple module in mod B occurs as a composition factor of M. We also refer to [13] for a description of finite-dimensional modules over algebras which are not the middle of a short chain of modules, using injective and tilting modules over hereditary algebras.

The aim of this paper is to prove the following theorem.

Theorem 1.1. Let A be a non-simple finite-dimensional basic indecomposable self-injective algebra of finite representation type over a field K. The following statements are equivalent:

(i) mod A admits a pure sectional module M which is not the middle of a short chain.

(ii) A is isomorphic to a self-injective orbit algebra $\hat{B}/(\rho \nu^2 \hat{B})$, where B is a tilted algebra of the form $B = \text{End}_H(T)$ with H a hereditary algebra of Dynkin type and T is a tilting module in mod H without indecomposable projective direct summands, and ρ is a positive automorphism of \hat{B}.

We note that the module category mod H of a hereditary algebra H of Dynkin type admits a tilting module T without indecomposable projective direct summands if and only if H is not a Nakayama algebra, or equivalently, the quiver Q_H of H is not an equioriented quiver

\[\bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \]

of type \mathbb{A}_n ($n \geq 1$).

2. Self-injective algebras of Dynkin type. Let B be a triangular algebra (the quiver Q_B has no oriented cycles) and e_1, \ldots, e_n be pairwise orthogonal primitive idempotents of B with $1_B = e_1 + \cdots + e_n$. We identify B with the full subcategory B_0 of the repetitive category \hat{B} given by the objects $e_{0,i}$, $1 \leq i \leq n$. For a sink i of Q_B, the reflection S_i^+B of B at i is the full subcategory of \hat{B} given by the objects

\[e_{0,j}, \quad 1 \leq j \leq n, \quad j \neq i, \quad \text{and} \quad e_{1,i} = \nu_{\hat{B}}(e_{0,i}). \]

Then the quiver $Q_{S_i^+B}$ of S_i^+B is the reflection $\sigma_i^+Q_B$ of Q_B at i (see [11]).

Observe that $\hat{B} = S_i^+B$. By a reflection sequence of sinks of Q_B we mean a sequence i_1, \ldots, i_t of vertices of Q_B such that i_s is a sink of $\sigma_{i_s-1}^+ \cdots \sigma_{i_1}^+ Q_B$ for all s in $\{1, \ldots, t\}$. Moreover, for a sink i of Q_B, we denote by T_i^+B the full subcategory of \hat{B} given by the objects

\[e_{0,j}, \quad 1 \leq j \leq n, \quad \text{and} \quad e_{1,i} = \nu_{\hat{B}}(e_{0,i}). \]

Observe that T_i^+B is the one-point extension $B[I_B(i)]$ of B by the indecomposable injective B-module $I_B(i)$ at the vertex i. By a finite-dimensional
\(\widehat{B}\)-module we mean a contravariant \(K\)-linear functor \(M\) from \(\widehat{B}\) to the category of \(K\)-vector spaces such that \(\sum_{x \in \text{ob} \, \widehat{B}} \dim_K M(x)\) is finite. We denote by \(\text{mod} \, \widehat{B}\) the category of all finite-dimensional \(\widehat{B}\)-modules. Finally, for a module \(M\) in \(\text{mod} \, \widehat{B}\), we denote by \(\text{supp}(M)\) the full subcategory of \(\widehat{B}\) formed by all objects \(x\) with \(M(x) \neq 0\), and call it the support of \(M\).

The following consequence of results proved in \cite{10}, \cite{11} describes the supports of finite-dimensional indecomposable modules over the repetitive categories \(\widehat{B}\) of tilted algebras \(B\) of Dynkin type.

Theorem 2.1. Let \(B\) be a tilted algebra of Dynkin type and \(n\) the rank of \(K_0(B)\). Then there exists a reflection sequence \(i_1, \ldots, i_n\) of sinks of \(Q_B\) such that the following statements hold:

(i) \(S_{i_n}^+ \cdots S_{i_1}^+ = \nu_{\widehat{B}}(B)\).

(ii) For every indecomposable non-projective module \(M\) in \(\text{mod} \, \widehat{B}\), \(\text{supp}(M)\) is contained in one of the full subcategories of \(\widehat{B}\) given by

\[\nu^m_{\widehat{B}}(S_{i_r}^+ \cdots S_{i_1}^+ B), \quad r \in \{1, \ldots, n\}, \ m \in \mathbb{Z}.\]

(iii) For every indecomposable projective module \(P\) in \(\text{mod} \, \widehat{B}\), \(\text{supp}(P)\) is contained in one of the full subcategories of \(\widehat{B}\) given by

\[\nu^m_{\widehat{B}}(T_{i_r}^+ S_{i_{r-1}}^+ \cdots S_{i_1}^+ B), \quad r \in \{1, \ldots, n\}, \ m \in \mathbb{Z}.\]

The aim of this section is to prove the following theorem playing a prominent role in the proof of Theorem 1.1.

Theorem 2.2. Let \(B\) be a tilted algebra \(\text{End}_H(T)\) of Dynkin type, \(\Delta_T\) the canonical section of \(\Gamma_B\) given by the images \(\text{Hom}_H(T,I)\) of indecomposable injective \(H\)-modules \(I\) via the functor \(\text{Hom}_H(T,-)\): \(\text{mod} \, H \rightarrow \text{mod} \, \widehat{B}\), and \(M_T\) the direct sum of indecomposable \(B\)-modules lying on \(\Delta_T\). Moreover, let \(\varphi\) be a strictly positive automorphism of \(\widehat{B}\), \(A = \widehat{B}/(\varphi)\), and \(F^\varphi_\lambda\): \(\text{mod} \, \widehat{B} \rightarrow \text{mod} \, A\) the associated push-down functor. The following statements are equivalent:

(i) \(F^\varphi_\lambda(M_T)\) is not the middle of a short chain in \(\text{mod} \, A\).

(ii) \(\varphi = \rho \nu^2_B\) for a positive automorphism \(\rho\) of \(\widehat{B}\).

Proof. It follows from Theorem 2.1 that \(\widehat{B}\) is a locally representation-finite locally bounded category \cite{8}, that is, for any indecomposable module \(N\) in \(\text{mod} \, \widehat{B}\) the number of objects \(x\) in \(\widehat{B}\) with \(N(x) \neq 0\) is finite. Then, applying \cite{8} Theorem 3.6], the push-down functor \(F^\varphi_\lambda\): \(\text{mod} \, \widehat{B} \rightarrow \text{mod} \, A\) is a Galois covering of module categories preserving almost split sequences. In particular, for any indecomposable modules \(X\) and \(Y\) in \(\text{mod} \, \widehat{B}\), \(F^\varphi_\lambda(X)\) and \(F^\varphi_\lambda(Y)\) are indecomposable modules in \(\text{mod} \, A\), and \(F^\varphi_\lambda\) induces \(K\)-linear
isomorphisms
\[\bigoplus_{r \in \mathbb{Z}} \text{Hom}_{\hat{B}}(X, \varphi^r Y) \xrightarrow{\sim} \text{Hom}_A(F_{\hat{X}}^\varphi(X), F_{\hat{X}}^\varphi(Y)), \]
\[\bigoplus_{r \in \mathbb{Z}} \text{Hom}_{\hat{B}}(\varphi^r X, Y) \xrightarrow{\sim} \text{Hom}_A(F_{\hat{X}}^\varphi(X), F_{\hat{X}}^\varphi(Y)). \]

Here, \(\varphi^r X \) and \(\varphi^r Y \) denote the shifts of \(X \) and \(Y \) by the automorphism of mod \(\hat{B} \) induced by \(\varphi^r \).

Assume that \(F_{\hat{X}}^\varphi(M_T) \) is the middle of a short chain in mod \(A \). Then there is an indecomposable non-projective module \(N \) in mod \(A \), indecomposable direct summands \(U \) and \(V \) of \(F_{\hat{X}}^\varphi(M_T) \), and non-zero homomorphisms \(N \to U \) and \(V \to \tau_A N \). Therefore, there exist indecomposable direct summands \(X \) and \(Y \) of \(M_T \), an indecomposable non-projective module \(Z \) in mod \(\hat{B} \), and non-zero homomorphisms \(Y \to \tau_B Z \) and \(Z \to \varphi^r X \) in mod \(\hat{B} \) with \(r \geq 1 \) such that \(F_{\hat{X}}^\varphi(X) = F_{\hat{X}}^\varphi(\varphi^r X) = U \), \(F_{\hat{X}}^\varphi(Y) = V \), and \(F_{\hat{X}}^\varphi(Z) = N \). Observe that for modules \(L, L' \) in mod \(\hat{B} \), \(\text{Hom}_{\hat{B}}(L, L') \neq 0 \) implies that supp(\(L \)) and supp(\(L' \)) have a common object. Since supp(\(M_T \)) = \(B = B_0 \) and \(Y \) is a direct summand of \(M_T \), we conclude that supp(\(Y \)) is contained in \(B \).

Similarly, \(\varphi^r X \) is a direct summand of \(\varphi^r M_T \) and supp(\(\varphi^r M_T \)) = \(\varphi^r B \), and so supp(\(\varphi^r X \)) is contained in \(\varphi^r B \). Applying now Theorem 2.1, we infer that supp(\(\tau_B Z \)) is contained in \(B \) or one of the full subcategories \(S_{i_1}^+ \cdots S_{i_n}^+ \) for some \(p \in \{1, \ldots, n-1\} \) and the corresponding reflection sequence \(i_1, \ldots, i_n \) of sinks of \(Q_B \). Note that \(B = \nu_B^{-1}(\nu_B(B)) = \nu_B^{-1}(S_{i_1}^+ \cdots S_{i_n}^+) \). Then it follows that supp(\(Z \)) is contained in \(S_{i_1}^+ \cdots S_{i_n}^+ B \) or in \(S_{i_1}^+ \cdots S_{i_n}^+ = \nu_B(B) \) (if \(p = n-1 \)). Hence \(\text{Hom}_{\hat{B}}(Z, \varphi^r X) \neq 0 \) forces that supp(\(\varphi^r X \)) is contained in a full subcategory of \(\hat{B} \) of one of the forms \(S_{i_1}^+ \cdots S_{i_n}^+ B \) for \(r \in \{1, \ldots, n\} \), or \(\nu_B(S_{i_1}^+ \cdots S_{i_n}^+) \) for \(q \in \{1, \ldots, n-1\} \). This shows that supp(\(\varphi^r X \)) = \(\varphi^r(\text{supp}(X)) \) is contained in the full subcategory \(T_{i_1}^+ \cdots T_{i_n}^+ \) of \(\hat{B} \) given by the objects of \(B \) and \(\nu_B(B) \). Summing up, we have proved that if \(\varphi = \rho \nu_B^2 \) for a positive automorphism \(\rho \) of \(\hat{B} \), then \(F_{\hat{X}}^\varphi(M_T) \) is not the middle of a short chain in mod \(A \). Therefore, (ii) implies (i).

Assume now that \(\varphi \) is not of the form \(\rho \nu_B^2 \) for a positive automorphism \(\rho \) of \(\hat{B} \). Then \(\varphi B \) is a full subcategory of \(T_{i_1}^+ \cdots T_{i_n}^+ \) of \(\hat{B} \) given by the objects of \(B \) and \(\nu_B(B) \). Take an indecomposable direct summand \(X \) of \(M_T \). Then \(\varphi X \) is an indecomposable direct summand \(\varphi M_T \), and so supp(\(\varphi X \)) is a full subcategory of supp(\(\varphi M_T \)) = \(\varphi(\text{supp} M_T) = \varphi B \). Thus supp(\(\varphi X \)) is a full subcategory of \(T_{i_1}^+ \cdots T_{i_n}^+ B \). We have two cases to consider.

Assume first that supp(\(\varphi X \)) contains an object \(j \) which is not in \(B \). Then \(j = \nu_B(i) \) for some object \(i \) of \(B \). Take the indecomposable projective-
injective \(\hat{B} \)-module \(P_{\hat{B}}(j) \) at \(j \). Clearly, we have \(\text{Hom}_{\hat{B}}(P_{\hat{B}}(j), \varphi X) \neq 0 \). In fact, since \(X \) is not a projective-injective \(\hat{B} \)-module, \(\varphi X \) is not a projective-injective \(\hat{B} \)-module, and hence \(\text{Hom}_{\hat{B}}(P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j), \varphi X) \neq 0 \). Clearly then \(\text{Hom}_{\hat{B}}(P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j), \varphi MT) \neq 0 \). Observe also that we have in \(\text{mod } B \) a canonical almost split sequence

\[
0 \to \text{rad } P_{\hat{B}}(j) \to (\text{rad } P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j)) \oplus P_{\hat{B}}(j) \to P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j) \to 0,
\]

and then \(\text{rad } P_{\hat{B}}(j) = \tau_{\hat{B}}(P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j)) \). Since \(j = \nu_{\hat{B}}(i) \) for some vertex \(i \) of \(Q_B \), we conclude that \(\text{soc } P_{\hat{B}}(j) \) is the simple \(\hat{B} \)-module \(S_{\hat{B}}(i) \) at \(i \), and consequently \(\text{Hom}_{\hat{B}}(MT, \text{rad } P_{\hat{B}}(j)) \neq 0 \). This shows that \(F_{\chi}^\varphi(M_T) = F_{\chi}^\varphi(\varphi MT) \) is the middle of a short chain

\[
F_{\chi}^\varphi(P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j)) \to F_{\chi}^\varphi(M_T) \to \tau_A F_{\chi}^\varphi(P_{\hat{B}}(j)/\text{soc } P_{\hat{B}}(j))
\]

since \(\tau_A F_{\chi}^\varphi(L) \cong F_{\chi}^\varphi(\tau_{\hat{B}}L) \) for any indecomposable non-projective module \(L \) in \(\text{mod } \hat{B} \).

Assume now that \(\text{supp}(\varphi X) \) is contained in \(B \). Since \(\varphi \) is a strictly positive automorphism of \(\hat{B} \), the support \(\text{supp}(\tau_{\hat{B}}(\varphi X)) \) of \(\tau_{\hat{B}}(\varphi X) \) is also contained in \(B \). Clearly, \(\varphi X \) is an indecomposable \(\hat{B} \)-module which is a successor of an indecomposable direct summand of \(M_T \), because \(X \) is an indecomposable direct summand of \(M_T \). Moreover, every indecomposable module in \(\text{mod } B \) is cogenerated or generated by \(M_T \). Hence \(\text{Hom}_{\hat{B}}(M_T, \tau_{\hat{B}}(\varphi X)) = \text{Hom}_{B}(M_T, \tau_{\hat{B}}(\varphi X)) \neq 0 \). This shows that \(F_{\chi}^\varphi(M_T) \) is the middle of a short chain in \(\text{mod } A \) of the form

\[
F_{\chi}^\varphi(X) \to F_{\chi}^\varphi(M_T) \to \tau_A F_{\chi}^\varphi(X)
\]

because \(F_{\chi}^\varphi(X) \) is an indecomposable direct summand of \(F_{\chi}^\varphi(M_T) \) and \(F_{\chi}^\varphi(\tau_{\hat{B}}(\varphi X)) \cong \tau_A F_{\chi}^\varphi(\varphi X) \cong \tau_A F_{\chi}^\varphi(X) \). Therefore, (i) implies (ii).

3. Self-injective algebras with deforming ideals. In this section we present criteria for self-injective algebras to be orbit algebras of the repetitive categories of algebras with respect to infinite cyclic automorphism groups, playing a fundamental role in the proof of the main theorem.

Let \(A \) be a self-injective algebra. For a subset \(X \) of \(A \), we may consider the left annihilator \(l_A(X) = \{ a \in A \mid ax = 0 \} \) of \(X \) in \(A \) and the right annihilator \(r_A(X) = \{ a \in A \mid xa = 0 \} \) of \(X \) in \(A \). Then by a theorem due to Nakayama (see [30, Theorem IV.6.10]) the annihilator operation \(l_A \) induces a Galois correspondence from the lattice of right ideals of \(A \) to the lattice of left ideals of \(A \), and \(r_A \) is the inverse Galois correspondence to \(l_A \). Let \(I \) be an ideal of \(A \), \(B = A/I \), and \(e \) an idempotent of \(A \) such that \(e + I \) is the identity of \(B \). We may assume that \(1_A = e_1 + \cdots + e_r \) with \(e_1, \ldots, e_r \) pairwise orthogonal primitive idempotents of \(A \), \(e = e_1 + \cdots + e_n \) for some \(n \leq r \), and \(\{ e_i \mid 1 \leq i \leq n \} \) is the set of all idempotents in \(\{ e_i \mid 1 \leq i \leq r \} \) which
are not in I. Then such an idempotent e is uniquely determined by I up to an inner automorphism of A, and is called a residual identity of $B = A/I$. Observe also that $B \cong eAe/eIe$.

We have the following lemma from [27, Lemma 5.1].

Lemma 3.1. Let A be a self-injective algebra, I an ideal of A, and e an idempotent of A such that $l_A(I) = Ie$ or $r_A(I) = eI$. Then e is a residual identity of A/I.

We also recall the following proposition proved in [23, Proposition 2.3].

Proposition 3.2. Let A be a self-injective algebra, I an ideal of A, $B = A/I$, e a residual identity of B, and assume that $IeI = 0$. The following conditions are equivalent:

(i) Ie is an injective cogenerator in $\text{mod } B$.
(ii) eI is an injective cogenerator in $\text{mod } B^{\text{op}}$.
(iii) $l_A(I) = Ie$.
(iv) $r_A(I) = eI$.

Moreover, under these equivalent conditions, we have $\text{soc } A \subseteq I$ and $l_{eAe}(I) = eIe = r_{eAe}(I)$.

The following theorem proved in [25, Theorem 3.8] (sufficiency part) and [27, Theorem 5.3] (necessity part) will be fundamental for our considerations.

Theorem 3.3. Let A be a self-injective algebra. The following conditions are equivalent:

(i) A is isomorphic to an orbit algebra $\hat{B}/(\varphi \nu \hat{B})$, where B is an algebra and φ is a positive automorphism of \hat{B}.
(ii) There is an ideal I of A and an idempotent e of A such that

1. $r_A(I) = eI$;
2. the canonical algebra epimorphism $eAe \to eAe/eIe$ is a retraction.

Moreover, in this case, B is isomorphic to A/I.

Let A be an algebra, I an ideal of A, and e a residual identity of A/I. Following [23], I is said to be a deforming ideal of A if the following conditions are satisfied:

(D1) $l_{eAe}(I) = eIe = r_{eAe}(I)$;
(D2) the valued quiver $Q_{A/I}$ of A/I is acyclic.

Assume I is a deforming ideal of A. Then we have a canonical isomorphism of algebras $eAe/eIe \to A/I$ and I can be considered as an (eAe/eIe)-(eAe/eIe)-bimodule. Denote by $A[I]$ the direct sum of K-vector spaces.
(eAe/eIe) ⊕ I with the multiplication

\[(b, x) \cdot (c, y) = (bc, by + xc + xy)\]

for \(b, c \in eAe/eIe\) and \(x, y \in I\). Then \(A[I]\) is a \(K\)-algebra with the identity \((e + eIe, 1_A - e)\), and, by identifying \(x \in I\) with \((0, x) \in A[I]\), we may consider \(I\) as an ideal of \(A[I]\). Observe that \(e = (e + eIe, 0)\) is a residual identity of \(A[I]/I = eAe/eIe \sim A/I\), \(eA[I]e = (eAe/eIe) ⊕ eIe\) and the canonical algebra epimorphism \(eA[I]e \to eA[I]e/eIe\) is a retraction.

The following properties of the algebra \(A[I]\) were established in [23, Theorem 4.1] and [24, Theorem 3].

Theorem 3.4. Let \(A\) be a self-injective algebra and \(I\) a deforming ideal of \(A\). The following statements hold.

(i) \(A[I]\) is a self-injective algebra with the same Nakayama permutation as \(A\) and \(I\) is a deforming ideal of \(A[I]\).

(ii) \(A\) and \(A[I]\) are socle equivalent.

(iii) \(A\) and \(A[I]\) are stably equivalent.

We note that if \(A\) is a self-injective algebra, \(I\) an ideal of \(A\), \(B = A/I\), \(e\) an idempotent of \(A\) such that \(r_A(I) = eI\), and the valued quiver \(Q_B\) of \(B\) is acyclic, then by Lemma 3.1 and Proposition 3.2 \(I\) is a deforming ideal of \(A\) and \(e\) is a residual identity of \(B\).

The following theorem proved in [25, Theorem 4.1] shows the importance of the algebras \(A[I]\).

Theorem 3.5. Let \(A\) be a self-injective algebra, \(I\) an ideal of \(A\), \(B = A/I\) and \(e\) an idempotent of \(A\). Assume that \(r_A(I) = eI\) and \(Q_B\) is acyclic. Then \(A[I]\) is isomorphic to the orbit algebra \(\hat{B}/(\varphi_{\nu_{\hat{B}}})\) for some positive automorphism \(\varphi\) of \(\hat{B}\).

We point out that there are self-injective algebras \(A\) with deforming ideals \(I\) such that the algebras \(A\) and \(A[I]\) are not isomorphic (see [25, Example 4.2]).

The following result proved in [26, Proposition 3.2] describes a situation when the algebras \(A\) and \(A[I]\) are isomorphic.

Theorem 3.6. Let \(A\) be a self-injective algebra with a deforming ideal \(I, B = A/I, e\) a residual identity of \(B\) and \(\nu\) the Nakayama permutation of \(A\). Assume that \(IeI = 0\) and \(e_i \neq e_{\nu(i)}\), for any primitive summand \(e_i\) of \(e\). Then the algebras \(A\) and \(A[I]\) are isomorphic. In particular, \(A\) is isomorphic to the orbit algebra \(\hat{B}/(\varphi_{\nu_{\hat{B}}})\) for some positive automorphism \(\varphi\) of \(\hat{B}\).

4. **Proof of Theorem 1.1.** Let \(A\) be a non-simple, finite-dimensional, basic, indecomposable, self-injective \(K\)-algebra over a field \(K\).
Assume \(\text{mod } A \) admits a pure sectional module \(M \) which is not the middle of a short chain. We will show first that \(A \) is socle equivalent to the self-injective orbit algebra \(\hat{B}/(\varphi_\nu_B) \), where \(B \) is a tilted algebra of the form \(B = \text{End}_H(T) \) for a hereditary algebra \(H \) of Dynkin type and a tilting module \(T \) in \(\text{mod } H \) without indecomposable projective direct summands, and \(\varphi \) is a positive automorphism of \(B \). Let \(\Delta \) be the full-valued subquiver of the stable Auslander–Reiten quiver \(\Gamma_A^s \) of \(M \). We recall that then \(\Gamma_A^s \cong \mathbb{Z}\Delta/G \) for an infinite cyclic group \(G \) of automorphisms of the translation quiver \(\mathbb{Z}\Delta \), and \(\Delta \) is a Dynkin quiver whose underlying graph is the Dynkin type \(\Delta(A) \) of \(A \). Let \(I = r_A(M) \) and \(B = A/I \). Then \(M \) is a faithful, hence sincere, right \(B \)-module which is not the middle of a short chain in \(\text{mod } B \), because \(M \) is not the middle of a short chain in \(\text{mod } A \) (see [13, Proposition 2.3]). So \(B \) is a tilted algebra, by the main result of [12]. Further, \(H = \text{End}_A(M) = \text{End}_B(M) \) is the hereditary algebra, by [13, Corollary 1.2]. Clearly, \(H \) is then a hereditary algebra of Dynkin type with \(Q_H = \Delta^{\text{op}} \). Observe also that \(M \) is a faithful \(B \)-module with \(\text{Hom}_B(M, \tau_B M) = 0 \), and hence \(\text{pd}_B(M) \leq 1 \) and \(\text{Ext}^1_B(M, M) \cong \text{DHom}_B(M, \tau_B(M)) = 0 \) (see [1, Lemma VIII.5.1 and Theorem IV.2.13]). Therefore, \(M \) is a partial tilting \(B \)-module. Since the rank of \(K_0(B) \) coincides with the number of indecomposable direct summands of \(M \), we conclude that \(M \) is a tilting \(B \)-module. Hence, by the Brenner–Butler theorem [1, Theorem VI.3.8], \(M \) is a tilting module in \(\text{mod } H^{\text{op}} \), \(T = D(M) \) is a tilting module in \(\text{mod } H \), \(B \cong \text{End}_H(T) \), and \(M \) is isomorphic to the right \(B \)-module \(\text{Hom}_H(T, D(H)) \). In particular, we conclude that the indecomposable direct summands of \(M \) form the canonical section \(\Delta_T = \Delta \) of the connecting component \(C_T = \Gamma_B \). Moreover, since \(M \) is a pure sectional module in \(\text{mod } A \), we find that no indecomposable injective \(B \)-module is a direct summand of \(M \), or equivalently, the indecomposable direct summands of \(\tau_B^{-1}M \) form another section \(\tau_B^{-1}\Delta_T \) of \(C_T = \Gamma_B \). Finally, we note that \(T \) is a splitting tilting module in \(\text{mod } H \), since \(H \) is a hereditary algebra [1, Corollary VI.5.7]. Then, invoking the description of the indecomposable injective modules in \(\text{mod } B \), given in [1, Proposition VI.5.8], and \(M \cong \text{Hom}_H(T, D(H)) \), we conclude that \(T \) has no indecomposable projective direct summand.

Let \(e_1, \ldots, e_r \) be a set of pairwise orthogonal, primitive idempotents of \(A \) such that \(1_A = e_1 + \cdots + e_r \) and that \(e = e_1 + \cdots + e_n \), for some \(n \leq r \), is a residual identity of \(B \). We claim that \(I \) is a deforming ideal of \(A \) satisfying \(IeI = 0 \). Observe that the valued quiver \(Q_B \) of \(B = A/I \) is acyclic, because \(B \) is a tilted algebra. Therefore, by Proposition [3.2] it remains to show that \(r_A(I) = eI \).

Denote by \(J \) the trace ideal of \(M \) in \(A \), that is, the ideal of \(A \) generated by the images of all homomorphisms from \(M \) to \(A \) in \(\text{mod } A \), and by \(J' \)
the trace ideal of the left A-module $D(M)$ in A. Observe that I is the left annihilator of $D(M)$ in A.

Lemma 4.1. We have $J \cup J' \subseteq I$.

Proof. First we show that $J \subseteq I$. By definition, there exists an epimorphism $\varphi: M^r \to J$ for some integer $r \geq 1$. Suppose that there exists a homomorphism $f: A \to M$ in mod A with $f(J) \neq 0$. Since M has no projective-injective indecomposable direct summands, the homomorphism f factors through $A/\text{soc} A$. Hence we have in mod A a sequence of homomorphisms

$$
M^r \xrightarrow{\varphi} J \xrightarrow{\omega} A \xrightarrow{\pi} A/\text{soc} A \xrightarrow{g} M
$$

with $g \pi \omega \varphi \neq 0$, where $\omega: J \to A$ is the canonical inclusion homomorphism, $\pi: A \to A/\text{soc} A$ is the canonical epimorphism, and $f = g \pi$. Observe that $g \pi \omega \varphi$ factors through a module from $\text{add}(\tau^{-1}_A M)$, and consequently $\text{Hom}_A(\tau^{-1}_A M, M) \neq 0$. This is a contradiction because M is not the middle of a short chain in mod A. Hence we conclude

$$
J \subseteq \bigcap_{f: A \to M} \ker f = I.
$$

Suppose now that there is a homomorphism $f': A \to D(M)$ in mod A^{op} such that $f'(J') \neq 0$. Then f' factors through $A/\text{soc} A$, because $D(M)$ has no projective-injective indecomposable direct summands. Moreover, we have in mod A^{op} an epimorphism $\varphi': D(M)^s \to J'$ for some integer $s \geq 1$. Hence we obtain in mod A^{op} a sequence of homomorphisms

$$
D(M)^s \xrightarrow{\varphi'} J' \xrightarrow{\omega'} A \xrightarrow{\pi} A/\text{soc} A \xrightarrow{g'} D(M)
$$

with $g' \pi \omega' \varphi' \neq 0$, where $\omega': J' \to A$ is the canonical inclusion homomorphism and $f' = g' \pi$. Observe also that $g' \pi \omega' \varphi'$ factors through a module from $\text{add}(\tau^{-1}_{A^{\text{op}}} M)$, and consequently $\text{Hom}_{A^{\text{op}}}(\tau^{-1}_{A^{\text{op}}} D(M), D(M)) \neq 0$. Since $\tau^{-1}_{A^{\text{op}}} D(M) = \text{Tr} M = D(\tau_A M)$, we conclude that $\text{Hom}_A(M, \tau_A M) \neq 0$. This is again a contradiction, because M is not the middle of a short chain in mod A. Therefore we obtain

$$
J' \subseteq \bigcap_{f': A \to D(M)} \ker f' = I.
$$

Lemma 4.2. We have $l_A(I) = J, r_A(I) = J'$ and $I = r_A(J) = l_A(J')$.

Proof. We prove the lemma only for J, the proof for J' being dual. Since J is a right B-module, we have $JI = 0$, and hence $I \subseteq r_A(J)$. In order to show the converse inclusion, take a monomorphism $u: M \to A^t$ for some integer $t \geq 1$, and let $u_i: M \to A$ be the composite of u with the projection of A^t_A on the ith component. Then there is a monomorphism $v: M \to \bigoplus_{i=1}^t \text{Im} u_i$ induced by u. Moreover, by definition of J, $\bigoplus_{i=1}^t \text{Im} u_i$ is contained in $\bigoplus_{i=1}^t J$.

These steps show that I is contained in $r_A(J)$ and $r_A(J)$ is contained in I. Thus $I = r_A(J)$.
This leads to the inclusions
\[r_A(J) = r_A \left(\bigoplus_{i=1}^{t} J \right) \subseteq r_A(M) = I. \]
Hence \(I = r_A(J) \). Finally, applying a theorem by Nakayama (see [30, Theorem IV.6.10]), we obtain \(J = l_A r_A(J) = l_A(I) \).

Lemma 4.3. We have \(eIe = eJe = eJ'e \). In particular, \((eIe)^2 = 0\).

Proof. Since \(e \) is a residual identity of \(B = A/I \), we have \(B \cong eAe/eIe \). Thus \(M \) is a faithful right \(eAe/eIe \)-module and the direct sum of indecomposable modules forming a section of \(\Gamma_{eAe/eIe} \). Further, it follows from Lemma 4.1 that \(eJe = eJ \) is an ideal of \(eAe \) with \(eJe \subseteq eIe \). Consider the algebra \(B' = eAe/eJ \). Then \(M \) is a sincere right \(B' \)-module which is not the middle of a short chain in \(\text{mod} B' \), because \(B' \) is a factor algebra of \(B \) and \(M \) is not the middle of a short chain in \(\text{mod} B \) [15, Proposition 2.3]. Applying [15, Corollary 3.2] we conclude that \(M \) is a faithful \(B' \)-module. This implies that \(eIe/eJ = \Gamma_{B'}(M) = 0 \), and hence \(eIe = eJe \). In a similar way we show that \(eJe = eJ'e \). Finally, it follows from Lemma 4.2 that \((eIe)^2 = (eJe)(eJe) = eJJe = 0\).

We shall also use the following general lemma on almost split sequences over triangular matrix algebras (see [19, (2.5)], [23, Lemma 5.6]).

Lemma 4.4. Let \(R \) and \(S \) be algebras and \(N \) be an \((S, R)\)-bimodule. Let \(A = \left(\begin{array}{cc} S & N \\ 0 & R \end{array} \right) \) be the matrix algebra defined by the bimodule \(SN_R \). Then an almost split sequence \(0 \to X \to Y \to Z \to 0 \) in \(\text{mod} R \) is an almost split sequence in \(\text{mod} A \) if and only if \(\text{Hom}_R(N, X) = 0 \).

Lemma 4.5. Let \(f \) be a primitive idempotent in \(I \) such that \(fJ \neq fAe \). Then \(K = fAeAf + fJ + fAeAfAe + eAf + eIe \) is an ideal of \(F = (e + f)A(e + f) \), and \(N = fAe/fKe \) is a \(B \)-module such that \(\text{Hom}_B(N, M) = 0 \) and \(\text{Hom}_B(M, N) \neq 0 \).

Proof. It follows from Lemma 4.3 that \(fAeIe \subseteq fJ \). Then the fact that \(K \) is an ideal of \(F \) is a direct consequence of \(f \in I \). Observe also that \(fKe = fJ + fAeAfAe, fKf \subseteq \text{rad}(fAf), eKe = eIe \) and \(eKf = eAf \). We have \(N \neq 0 \). Indeed, if \(fAe = fKe \) then, since \(eAe \subseteq \text{rad}(eAe) \), we obtain \(fAe = fJ + fAe(\text{rad}(eAe)) \), and so \(fAe = fJ \) (Nakayama lemma, [30, Lemma I.3.3]), which contradicts our assumption. Further, \(B = eAe/eIe \) and \((fAe)(eIe) = fAeJ \subseteq fJ \subseteq fKe \), and hence \(N \) is a \(B \)-module. Moreover, \(N \) is also a left module over \(S = fAf/fKf \) and \(A = F/K \) is isomorphic to the triangular matrix algebra \(\left(\begin{array}{cc} S & N \\ 0 & R \end{array} \right) \). Invoking now our assumption that \(M \) is a pure sectional module in \(\text{mod} A \), we conclude that, for any indecomposable direct summand \(X \) of \(M \), we have in \(\text{mod} B \) an almost split sequence \(0 \to X \to Y \to Z \to 0 \) which is also an almost split sequence in
mod A, and so an almost split sequence in mod A. Applying Lemma 4.4, we obtain $\text{Hom}_B(N, M) = 0$. On the other hand, since every indecomposable module in mod B is either generated or cogenerated by M, we conclude that $\text{Hom}_B(M, N) \neq 0$. □

Proposition 4.6. We have $Ie = J$ and $eI = J'$.

Proof. This follows exactly as [23, Proposition 5.9] by applying Lemmas 4.1, 4.2, 4.3, 4.5. □

The following direct consequence of Lemma 4.2 and Proposition 4.6 completes the proof that I is a deforming ideal of A with $IeI = 0$.

Corollary 4.7. We have $r_A(I) = eI$ and $l_A(I) = Ie$.

Applying Theorems 3.4 and 3.5 we conclude that:

1. A is socle equivalent to $A[I]$;
2. A is stably equivalent to $A[I]$;
3. $A[I]$ is isomorphic to a self-injective orbit algebra $\hat{B}/(\varphi \nu_B)$ for some positive automorphism φ of \hat{B}.

Since A and $A[I]$ are socle equivalent, the quotient algebras $A/\text{soc} A$ and $A[I]/\text{soc} A[I]$ are isomorphic, and consequently there is a canonical isomorphism $\Phi: \text{mod}(A/\text{soc} A) \rightarrow \text{mod}(A[I]/\text{soc} A[I])$ of their module categories. Observe also that the indecomposable modules in mod$(A/\text{soc} A)$ (respectively, mod$(A[I]/\text{soc} A[I])$) are precisely the indecomposable non-projective modules in mod A (respectively, mod $A[I]$). Further, for any non-projective indecomposable modules L, N in mod A and non-projective indecomposable modules U, V in mod $A[I]$ we have the equalities of homomorphism spaces $\text{Hom}_A(L, N) = \text{Hom}_{A/\text{soc} A}(L, N)$ and $\text{Hom}_{A[I]}(U, V) = \text{Hom}_{A[I]/\text{soc} A[I]}(U, V)$. We also note that the Auslander–Reiten quiver $\Gamma_{A/\text{soc} A}$ of $A/\text{soc} A$ (respectively, $\Gamma_{A[I]/\text{soc} A[I]}$ of $A[I]/\text{soc} A[I]$) is obtained from Γ_A (respectively, $\Gamma_{A[I]}$) by removing all indecomposable projective modules P, making their radicals P injective modules and the socle factors $P/\text{soc} P$ projective modules, and keeping the indecomposable non-projective modules as well their Auslander–Reiten translations unchanged. Finally, the functor Φ induces a canonical isomorphism of the stable Auslander–Reiten quivers $\Gamma^s_A \sim \Gamma^s_{A[I]}$. Summing up, we conclude that the image $\Phi(M)$ of the pure sectional module in mod A is a pure sectional module M in mod $A[I]$ and is not the middle of a short chain. Applying Theorem 2.2, we conclude that $\varphi \nu_B = \rho \nu^2_B$ for some positive automorphism ρ of \hat{B}. Since, by Theorem 3.4, the Nakayama permutations of A and $A[I]$ are the same, an isomorphism $A[I] \cong \hat{B}/(\rho \nu^2_B)$ forces that $e_i \neq e_{\nu(i)}$ for any primitive direct summand e_i of the common residual identity e of $A/I \cong A[I]/I$. Applying now Theorem 3.6, we conclude that the algebras A and $A[I]$ are isomorphic. Therefore, A is isomorphic to the
orbit algebra $\tilde{B}/(\rho v_B^2)$. This proves the implication $(i) \Rightarrow (ii)$ of Theorem 1.1. The converse implication $(ii) \Rightarrow (i)$ follows from Theorem 2.2.

Acknowledgements. The research of both authors has been supported by the research grant No. 2011/02/A/ST1/00216 of the Polish National Science Center.

REFERENCES

Marta Błaszkiewicz, Andrzej Skowroński
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: marta22@mat.uni.torun.pl
skowron@mat.uni.torun.pl

Received 16 April 2012;
revised 8 May 2012