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HOLOMORPHICALLY PSEUDOSYMMETRIC KÄHLER METRICS
ON CPn

BY

WŁODZIMIERZ JELONEK (Kraków)

Abstract. The aim of this paper is to present examples of holomorphically pseu-
dosymmetric Kähler metrics on the complex projective spaces CPn, where n ≥ 2.

1. Introduction. The aim of this paper is to give new examples of holo-
morphically pseudosymmetric Kähler metrics on complex projective spaces.
Holomorphically pseudosymmetric Kähler manifolds were defined by Z. Ol-
szak [O-1] in 1989 and studied in [D], [H], [Y]. A Kähler manifold (M, g, J) is
called holomorphically pseudosymmetric (HP Kähler) if its curvature tensor
R satisfies the condition R.R = φΠ.R, where R,Π act as derivations of the
tensor algebra,

Π(U, V )X = 1
4(g(V,X)U − g(U,X)V + g(JV,X)JU

− g(JU,X)JV − 2g(JU, V )JX)

is the Kähler type curvature tensor of constant holomorphic sectional curva-
ture, and φ ∈ C∞(M) is a smooth function. A Riemannian manifold (M, g)
is called semisymmetric if R.R = 0 (see [Sz-1], [Sz-2]). Until recently, ex-
amples of compact, holomorphically pseudosymmetric but not semisymmet-
ric Kähler manifolds were not known. The first examples of compact, simply
connected HP Kähler manifolds which are not semisymmetric were given by
the author in [J-2]. These manifolds turned out to be QCH Kähler manifolds,
i.e., Kähler manifolds admitting a smooth, two-dimensional, J-invariant dis-
tribution D such that the holomorphic curvature K(π) = R(X, JX, JX,X)
of any J-invariant 2-plane π ⊂ TxM , where X ∈ π and g(X,X) = 1, de-
pends only on the point x and the number |XD| =

√
g(XD, XD), where XD

is the orthogonal projection of X onto D. In this case we have

R(X, JX, JX,X) = φ(x, |XD|)

2010 Mathematics Subject Classification: 53C55, 53C25.
Key words and phrases: Kähler manifold, holomorphically pseudosymmetric Kähler man-
ifold, QCH Kähler manifold.

DOI: 10.4064/cm127-1-9 [127] c© Instytut Matematyczny PAN, 2012



128 W. JELONEK

where φ(x, t) = a(x)+ b(x)t2+ c(x)t4 and a, b, c are smooth functions on M .
Also R = aΠ+bΦ+cΨ for certain curvature tensors Π,Φ, Ψ ∈

⊗4X∗(M) of
Kähler type (see [G-M-1], [G-M-2], [J-1]). In the present paper we construct
QCH Kähler metrics on the manifolds CPn − {p0}, where p0 ∈ CPn, and
show that these metrics extend smoothly to HP Kähler metrics on CPn.

2. QCH Kähler manifolds. We set h = g ◦ (pD×pD), where pD is the
orthogonal projection onto D. We denote by Ω = g(J ·, ·) the Kähler form
of (M, g, J), and by ω the Kähler form of D, i.e. ω(X,Y ) = h(JX, Y ). We
now recall some results of Ganchev and Mihova [G-M-1]. Let R(X,Y )Z =
([∇X ,∇Y ]−∇[X,Y ])Z and write

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

We shall identify (1, 3) tensors with (0, 4) tensors in this way. If R is the
curvature tensor of a QCH Kähler manifold (M, g, J), then

R = aΠ + bΦ+ cΨ,

where a, b, c ∈ C∞(M) and Π is the standard Kähler tensor of constant
holomorphic curvature,

Π(X,Y, Z, U) = 1
4(g(Y,Z)g(X,U)− g(X,Z)g(Y,U)

+ g(JY, Z)g(JX,U)− g(JX,Z)g(JY, U)− 2g(JX, Y )g(JZ,U)),

the tensor Φ is defined as follows:

Φ(X,Y, Z, U) = 1
8(g(Y,Z)h(X,U)− g(X,Z)h(Y,U)

+ g(X,U)h(Y, Z)− g(Y, U)h(X,Z) + g(JY, Z)ω(X,U)

− g(JX,Z)ω(Y,U) + g(JX,U)ω(Y,Z)− g(JY, U)ω(X,Z)

− 2g(JX, Y )ω(Z,U)− 2g(JZ,U)ω(X,Y )),

and
Ψ(X,Y, Z, U) = −ω(X,Y )ω(Z,U) = −(ω ⊗ ω)(X,Y, Z, U).

3. HP metrics on complex projective spaces. Let

φ : CPn+1 − {[0, . . . , 0, 1]} → CPn

be the holomorphic mapping defined as follows:

CPn+1 − {[0, . . . , 0, 1]} 3 [z0, z1, . . . , zn]

→ φ([z0, z1, . . . , zn]) = [z0, z1, . . . , zn−1] ∈ CPn.

We shall show that φ is the projection onto the base of a holomorphic line
bundle whose total space is H = CPn+1 − {[0, . . . , 0, 1]}. Consider the map-
ping φi : H|Ui

→ Ui × C where Ui = {[z0, z1, . . . , zn−1] ∈ CPn : zi 6= 0},
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H|Ui
= φ−1(Ui), defined by

φi([z0, z1, . . . , zn]) = ([z0, z1, . . . , zn−1], zn/zi).

Then φi ◦ φ−1j (x, z) = φi([z0, z1, . . . , zn]), where x = [z0, z1, . . . , zn−1] and
zn = zjz. Moreover φi([z0, z1, . . . , zn])=(x, zn/zi)=(x, zjz/zi)=(x, zzj/zi).
It follows that the transition functions for our bundle are φij(x) = zj/zi.
Consequently, the bundle H is isomorphic to the line hyperplane bundle
over CPn. Hence CPn+1 arises from the line hyperplane bundle over CPn
by adding a point to its total space. We have c1(CPn−1) = nα, where α ∈
H2(CPn−1,Z) is an indivisible integral class. Let p : P → CPn−1 be a circle
bundle over CPn−1 classified by α. Then P is a principal S1 bundle. Let θ be
a connection form of P . Then

[
dθ
2π

]
= p∗α in H2(P,R). It follows that CPn,

where n ≥ 2, can be described as the quotient of the product [0, L] × P
by the equivalence relation in which {0} × P is identified with [0, . . . , 0, 1],
and two points (L, s), (L, q) are related if p(s) = p(q). Let gCPn−1 be the
Fubini–Study metric on CPn−1 and let θ be the standard connection form
on P . The metric

g = dt2 + f(t)2θ ⊗ θ + h(t)2gCPn−1

on the product [0, L]× P extends to a smooth metric on CPn if the smooth
functions f, h on [0, L] are also positive on (0, L) as well as odd at 0 and
satisfy f ′(0) = h′(0) = 1 while f is odd at L with f ′(L) = −1, and h is even
at L with h(L) 6= 0. This metric is Kähler if f = hh′, and also admits a
holomorphic Killing vector field with a Kähler–Ricci potential h2 (see [J-1],
[D-M-1], [D-M-2]).

Theorem 3.1. Consider an analytic real function Q on R, which is pos-
itive on [0, 1), even at 0 and such that Q(0) = 1, Q′(0) = 0, Q(1) = 0,
Q′(1) = −2. Let a function h satisfy the equation h′ =

√
Q(h) and h′′ =

1
2Q
′(h), h(0) = 0, h′(0) = 1. Then, for n ≥ 2,

g = dt2 + (h′(t)h(t))2θ ⊗ θ + h(t)2gCPn−1

extends to a smooth, Kähler metric on CPn, which is a QCH Kähler metric
on CPn − {[0, . . . , 0, 1]}.

Proof. We shall show that h is odd at 0. It suffices to show that h(2k)(0)
= 0 for every k ∈ N. For k = 0, 1 this equality is true. Assume that it holds
for l < k. Note that h(3) = 1

2Q
′′(h)h′. Consequently,

2h(2k)(0) = (Q′′(h)h′)(2k−3)(0).

We first show that dl

dtl
(Q(h))(0) = 0 for all odd l < 2k. This holds for k = 1,

since d
dt(Q(h))(0) = Q′(0)h′(0) = 0. Next
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dl

dtl
(Q(h))(0) =

dl−1

dtl−1
(Q′(h)h′) =

l−1∑
p=0

Cpl−1
dp

dtp
(Q′(h))(0)

(
dl−1−p

dtl−1−p
h

)
(0) = 0.

Hence

2h(2k)(0) =

2k−3∑
l=0

C l2k−3
dl

dtl
(Q(2)(h))(0)h(2k−2−l)(0) = 0,

where C l2k−3 = (2k−3)!
l!(2k−3−l)! , since for l odd we have dl

dtl
(Q(2)(h))(0) = 0, and

for l even we have h(2k−2−l)(0) = 0 by induction assumption. Hence if Q is
an analytic function which is positive on [0, 1), even at 0 and such that

(1) Q(0) = 1, Q′(0) = 0, Q(1) = 0, Q′(1) = −2
and h satisfies h′′ = 1

2Q
′(h), h(0) = 0, h′(0) = 1 then h′ =

√
Q(h), L =∫ 1

0 dh/
√
Q(h) and the metric

g = dt2 + (h′(t)h(t))2θ ⊗ θ + h(t)2gCPn−1

is a Kähler metric on CPn, which is a QCH metric on CPn − {[0, . . . , 0, 1]}
(see [J-1]; note that we write h = r

√
n and s = 2

n since in our case k = 1).
Hence this metric is a HP metric on a dense, open subset of CPn, which
means that it is a HP metric on the whole of CPn. In fact R.R = φΠ.R,
where φ = −4h′′/h = −2Q′(h)/h (see [J-2]). Note that in [J-2] there is a
sign mistake and the formula for a+ b

2 should read

a+
b

2
= 4

(
(r′)2

r2
− f ′r′

fr

)
= −4r

′′

r
.

However the fact that a + b/2 changes sign in the case considered in [J-2]
remains true. The function φ = a + b/2 depends only on t and extends
smoothly to the whole of CPn. We have

(2) φ([0, . . . , 0, 1]) = − lim
h→0

2Q′(h)

h
= −2Q′′(0).

Let us consider as an example the family of polynomials

Qα(t) = 1 + (α− 1)t2 − 2αt4 + αt6.

Note that for α > −4 every polynomial Qα is positive on [0, 1) and satisfies
conditions (1). Let α > −4 and hα be a solution of the problem

h′′α =
1

2
Q′α(hα), hα(0) = 0, h′α(0) = 1.

Then we obtain a family of HP metrics gα = dt2 + (h′α(t)hα(t))
2θ ⊗ θ +

hα(t)
2gCPn−1 on CPn. Note that for α = 0 we get h0(t) = sin t and we

obtain the standard symmetric metric on CPn (see [P, p. 17]). We also have
φα = −2Q′α(ha)/hα = 4(−(α−1)+4αh2α−3αh4α). If α ∈ (−3, 1) then φα > 0
and consequently we get examples of compact HP Kähler manifolds with
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φ > 0. If α ∈ {−3, 1} then φα ≥ 0. Z. Olszak [O-2] proved that a compact
HP Kähler manifold which has φ ≥ 0 and constant scalar curvature must
be locally symmetric. Our examples show that the assumption of constant
scalar curvature in Olszak’s theorem is necessary.
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