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Abstract. We study the curvature properties of almost Hermitian surfaces with van-
ishing Bochner curvature tensor as defined by Tricerri and Vanhecke. Local structure the-
orems for such almost Hermitian surfaces are provided, and several examples related to
these theorems are given.

1. Introduction. In almost Hermitian geometry, it is both natural and
interesting to discuss the relationship between the almost Hermitian struc-
ture and given curvature conditions. The Bochner curvature tensor B was
defined by Bochner as a formal analogy of the Weyl conformal curvature ten-
sor [4]. Bochner Kähler manifolds, which are Kähler manifolds with vanish-
ing Bochner curvature tensor, have been studied by Kamishima [12], Bryant
[5] and many other authors [7, 8, 20, 28]. Tricerri and Vanhecke [30] studied
the decomposition of the space of all curvature tensors on a Hermitian vec-
tor space from the view-point of unitary representation theory and defined
a Bochner type curvature tensor B(R) for any almost Hermitian manifold
M = (M,J, g) by considering the induced decomposition of the Weyl com-
ponent. We call B(R) the Tricerri–Vanhecke (briefly, TV) Bochner curvature
tensor. Further, we define a TV Bochner flat almost Hermitian manifold as
an almost Hermitian manifold with vanishing TV Bochner curvature tensor.
By an almost Hermitian surface, we mean a four-dimensional almost Her-
mitian manifold. We remark that the tensor field B(R) is invariant under
locally conformal changes of the Riemannian metric g and coincides with
the Bochner tensor if M is Kähler. So, we may easily observe that every
conformally flat almost Hermitian manifold and every Hermitian manifold
which is locally conformally equivalent to a Bochner Kähler manifold are
TV Bochner flat.

Tricerri and Vanhecke also defined a generalized complex space form
as a generalization of complex space forms and proved that a generalized
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complex space form is characterized as an Einstein and weakly ∗-Einstein
TV Bochner flat almost Hermitian manifold. Further, they proved that any
2n(≥ 6)-dimensional generalized complex space form reduces to a complex
space form. Olszak [24] studied four-dimensional generalized complex space
forms and gave a positive answer to a question posed by Tricerri and Van-
hecke ([30, p. 389]). Lemence also discussed four-dimensional generalized
complex space forms and proved that a 4-dimensional generalized complex
space form is a space of constant sectional curvature or a globally conformal
Kähler manifold ([18, Theorem A]) which improves upon Olszak’s result
([24, Theorem 2]).

On the other hand, Euh, Park and Sekigawa [9] classified the local struc-
tures of a TV Bochner flat nearly Kähler manifold. As a result, we see that
a TV Bochner flat nearly Kähler manifold is Bochner Kähler or conformally
flat. In the same paper, they also proved that a 6-dimensional TV Bochner
flat almost Hermitian manifold of type W1 +W4 in the Gray–Hervella clas-
sification [11] is either globally conformally equivalent to a strict nearly
Kähler manifold of positive constant sectional curvature or locally confor-
mally equivalent to a Bochner Kähler manifold. As far as we know, there
is no example of a TV Bochner flat almost Hermitian manifold which is
neither conformally flat nor locally conformally equivalent to a Bochner
Kähler manifold. Based on these observations, the following question natu-
rally arises:

Question. Is every TV Bochner flat almost Hermitian manifold con-
formally flat or locally conformally equivalent to a Bochner Kähler mani-
fold?

In [13], Kamishima studied Bochner flat locally conformal Kähler man-
ifolds. In this paper, we shall study the above question for almost Hermi-
tian surfaces. The paper is organized as follows. In §2 and §3, we prepare
several fundamental concepts and formulas necessary for the arguments
of the present paper. In §4 and §5, we discuss TV Bochner flat almost
Kähler surfaces and TV Bochner flat Hermitian surfaces, respectively, and
give some partial answers to the Question under some additional condi-
tions.

2. Preliminaries. Let M = (M,J, g) be a 2n-dimensional almost Her-
mitian manifold and Ω the Kähler form of M defined by Ω(X,Y )=g(JX, Y )
for X,Y ∈ X(M), where X(M) denotes the Lie algebra of all smooth vector
fields on M . We denote by ∇ and R the Levi-Civita connection and the
curvature tensor of (M,J, g) defined by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z
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for X,Y, Z ∈ X(M). Further, we denote by ρ, ρ∗, τ and τ∗ the Ricci tensor,
the Ricci ∗-tensor, the scalar curvature and the ∗-scalar curvature defined
respectively by

ρ(X,Y ) = tr(Z 7→ R(Z,X)Y ), ρ∗(X,Y ) = tr(Z 7→ R(X, JZ)JY ),

τ = trQ, τ∗ = trQ∗,

where Q and Q∗ are the Ricci operator and the Ricci ∗-operator defined
by g(QX,Y ) = ρ(X,Y ) and g(Q∗X,Y ) = ρ∗(X,Y ) for X,Y ∈ X(M),
respectively. We may easily check that ρ∗(X,Y ) = ρ∗(JY, JX) for all X,Y ∈
X(M), and ρ∗ = ρ if M is a Kähler manifold. An almost Hermitian manifold
M is called a weakly ∗-Einstein manifold if ρ∗ = τ∗

2ng on M ; it is called a
∗-Einstein manifold if τ∗ is constant. We denote by N the Nijenhuis tensor
of J defined by

N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ]

for X,Y ∈ X(M). It is well-known that the almost complex structure J of M
is integrable if and only if N vanishes identically on M [21]. We now recall
the following conditions on the curvature tensor of an almost Hermitian
manifold M = (M,J, g):

(G1) R(X,Y, Z, U) = R(X,Y, JZ, JU),

(G2) R(X,Y, Z, U)−R(JX, JY, Z, U)

= R(JX, Y, JZ, U) +R(JX, Y, Z, JU),

(G3) R(X,Y, Z, U) = R(JX, JY, JZ, JU)

for X,Y, Z, U ∈ X(M) [10]. Then we easily observe that (G1)⇒(G2)⇒(G3).
We note that if an almost Hermitian manifold M satisfies (G3), then the
Ricci tensor ρ and the Ricci ∗-tensor ρ∗ are both J-invariant (and hence, in
particular, ρ∗ is symmetric).

An almost Hermitian manifold is called an almost Kähler manifold if the
Kähler form Ω is closed (equivalently, S

X,Y,Z
g((∇XJ)Y, Z) = 0 for X,Y, Z ∈

X(M), where S
X,Y,Z

denotes the cyclic sum over X, Y and Z, namely, (M,Ω)

is a symplectic manifold). An almost Hermitian manifold is called a Her-
mitian manifold if the almost complex structure J is integrable. In partic-
ular, four-dimensional almost Kähler manifolds and four-dimensional Her-
mitian manifolds are called almost Kähler surfaces and Hermitian surfaces
respectively. We now recall the definition of the TV Bochner curvature ten-
sor B(R) of a 2n-dimensional almost Hermitian manifold M = (M,J, g)
[9, 30]:
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B(R) = R− 1
4(n+ 2)(n− 2)

g4 ρ+
2n− 3

4(n− 1)(n− 2)
g ? ρ

− 1
4(n+ 2)(n− 2)

g4 (ρJ) +
1

4(n− 1)(n− 2)
g ? (ρJ)

+
2n2 − 5

4(n+ 1)(n+ 2)(n− 2)
g4 ρ∗ − 2n− 1

4(n+ 1)(n− 2)
g ? ρ∗

+
3

4(n+ 1)(n+ 2)(n− 2)
g4 (ρ∗J)− 3

4(n+ 1)(n− 2)
g ? (ρ∗J)

+
3nτ − (2n2 − 3n+ 4)τ∗

16(n+ 1)(n+ 2)(n− 1)(n− 2)
g4 g − τ − τ∗

8(n− 1)(n− 2)
g ? g

for n ≥ 3, and

B(R) = R+
1
2
g ? ρ+

1
12
{
g4 ρ∗ − g ? ρ∗ − g4 (ρ∗J)(2.1)

+ g ? (ρ∗J)
}

+
3τ∗ − τ

96
g4 g − τ + τ∗

16
g ? g

for n = 2, where for any (0, 2)-tensors a and b, we set

(a? b)(x, y, z, w)
= a(x, z)b(y, w)− a(x,w)b(y, z) + b(x, z)a(y, w)− b(x,w)a(y, z),

ā(x, y) = a(x, Jy)

for x, y, z, w ∈ TpM , p ∈M , and

a4 b = a? b+ ā? b̄+ 2ā⊗ b̄+ 2b̄⊗ ā.

Further, the Weyl curvature tensor is given by

(2.2) W = R+
1

2n− 2
g ? ρ− τ

2(2n− 1)(2n− 2)
g ? g.

Let {ei} be an orthonormal basis of TpM at any point p ∈ M . In this
paper, we shall adopt the following notational convention:

Rijkl = g(R(ei, ej)ek, el),
Rī jkl = g(R(Jei, ej)ek, el),

· · · · · ·
Rī j̄ k̄ l̄ = g(R(Jei, Jej)Jek, Jel),

ρij = ρ(ei, ej), . . . , ρī j̄ = ρ(Jei, Jej),

ρ∗ij = ρ∗(ei, ej), . . . , ρ∗ī j̄ = ρ∗(Jei, Jej),

Jij = g(Jei, ej), ∇iJjk = g((∇eiJ)ej , ek),
Nijk = g(N(ei, ej), ek),



ALMOST HERMITIAN SURFACES 37

and so on, where the Latin indices run over the range 1, . . . , 2n. We set

(2.3) G =
∑
i,j

(ρ∗ij − ρ∗ji)2.

It is evident that G = 0 on M if and only if the Ricci ∗-tensor ρ∗ is sym-
metric. Further, we may note that the symmetry of the Ricci ∗-tensor and
the equality (2n− 1)τ∗− τ = 0 are both preserved by any conformal change
of the metric.

Now, we define 2-forms φ and ψ on M respectively by

(2.4)
φ(X,Y ) = tr(Z 7→ J(∇XJ)(∇Y J)Z),
ψ(X,Y ) = tr(Z 7→ R(X,Y )JZ)

for X,Y, Z ∈ X(M). Then it is well-known that the first Chern form γ of M
is given by

(2.5) 8πγ = −φ+ 2ψ,

and the 2-form γ represents the first Chern class c1(M) of M in the second
de Rham cohomology group.

In the rest of this section, we review some fundamental equalities on an
almost Hermitian surface M = (M,J, g). In addition to the usual identi-
ties on an almost Hermitian manifold of arbitrary dimension, the following
specific identities hold [11, 14]:

(2.6) dΩ = ω ∧Ω (and hence, dω ∧Ω = 0),

where ω is the Lee form of M defined by ω = −δΩ ◦ J ,

2g((∇XJ)Y,Z) = ω(Y )Ω(Z,X) + ω(Z)Ω(X,Y ) + ω(JY )g(X,Z)(2.7)
− ω(JZ)g(X,Y ) + g(N(Y,Z), JX),

ρ∗(X,Y ) + ρ∗(Y,X)− {ρ(X,Y ) + ρ(JX, JY )} =
τ∗ − τ

2
g(X,Y )(2.8)

for X,Y, Z ∈ X(M).
It is well-known that the vector bundle Λ2M of 2-forms onM decomposes

as
Λ2M = RΩ ⊕ Λ0

1,1M ⊕ LM,

where Λ0
1,1M and LM are the vector bundles of the primitive J-invariant and

J-skew-invariant 2-forms on M , respectively. Further, we see that Λ2
+M =

RΩ ⊕ LM and Λ2
−M = Λ0

1,1M hold with respect to the orientation defined
by the volume form dv = 1

2Ω
2. Since g((∇ZJ)JX, JY ) = −g((∇ZJ)X,Y )

on M , we see that

(2.9) ∇Ω = α⊗ Φ+ β ⊗ JΦ
for some local 1-forms α and β, where {Φ, JΦ} is a local basis for LM .
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From (2.3), (2.4), (2.5), (2.8) and (2.9) we have the following integral
formula on a compact almost Hermitian surface [27]:

c1(M)2 =
1

16π2

�

M

{
τ∗2

2
+

1
2
G+

1
2
|ρ− ρ ◦ J |2 − 2

∣∣∣∣ρ− τ

4
g

∣∣∣∣2(2.10)

+
τ∗

2

∑
(∇iJjk)∇īJjk̄ −

∑
ρ∗ji(∇iJab)∇j̄Jab̄

}
dv,

where (ρ ◦ J)(X,Y ) = ρ(JX, JY ) for X,Y ∈ X(M).

3. Some formulas on TV Bochner flat almost Hermitian sur-
faces. In this section, we shall discuss TV Bochner flat almost Hermi-
tian surfaces and give some fundamental formulas for these surfaces. Let
M = (M,J, g) be a TV Bochner flat almost Hermitian surface. Then, by
(2.1), the curvature tensor R of M can be expressed explicitly by

(3.1) R(X,Y, Z, U)

=
1
2
{g(X,U)ρ(Y, Z) + g(Y, Z)ρ(X,U)

− g(X,Z)ρ(Y,U)− g(Y, U)ρ(X,Z)}

+
1
12
{2g(X, JY )(ρ∗(U, JZ)− ρ∗(JZ,U))

+ 2g(Z, JU)(ρ∗(Y, JX)− ρ∗(JX, Y ))

+ g(X, JZ)(ρ∗(U, JY )− ρ∗(JY, U))

+ g(Y, JU)(ρ∗(Z, JX)− ρ∗(JX,Z))

+ g(X, JU)(ρ∗(Y, JZ)− ρ∗(JZ, Y ))

+ g(Y, JZ)(ρ∗(X, JU)− ρ∗(JU,X))}

+
3τ∗ − τ

48
{g(X,U)g(Y, Z)− g(X,Z)g(Y, U)

− 2g(X, JY )g(Z, JU)− g(X, JZ)g(Y, JU)

+ g(Y, JZ)g(X, JU)}

− τ + τ∗

8
{g(X,U)g(Y,Z)− g(X,Z)g(Y,U)}

for X,Y, Z, U ∈ X(M). On the other hand, from (2.2), the Weyl curvature
tensor W is given by
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W (X,Y, Z, U) = R(X,Y, Z, U)(3.2)

− 1
2
{g(X,U)ρ(Y, Z) + g(Y, Z)ρ(X,U)

− g(X,Z)ρ(Y,U)− g(Y,U)ρ(X,Z)}

+
τ

6
{g(X,U)g(Y,Z)− g(X,Z)g(Y,U)}

for X,Y, Z, U ∈ X(M). From (3.1) and (3.2), the Weyl curvature tensor W
is also expressed by

(3.3) W (X,Y, Z, U)

=
τ − 3τ∗

24
{g(X,U)g(Y,Z)− g(X,Z)g(Y,U)}

+
1
12
{2g(X, JY )(ρ∗(U, JZ)− ρ∗(JZ,U))

+ 2g(Z, JU)(ρ∗(Y, JX)− ρ∗(JX, Y ))

+ g(X, JZ)(ρ∗(U, JY )− ρ∗(JY, U))

+ g(Y, JU)(ρ∗(Z, JX)− ρ∗(JX,Z))

+ g(X, JU)(ρ∗(Y, JZ)− ρ∗(JZ, Y ))

+ g(Y, JZ)(ρ∗(X, JU)− ρ∗(JU,X))}

+
3τ∗ − τ

48
{g(X,U)g(Y, Z)− g(X,Z)g(Y, U)

− 2g(X, JY )g(Z, JU)− g(X, JZ)g(Y, JU)

+ g(Y, JZ)g(X, JU)}

for X,Y, Z, U ∈ X(M). First, from (3.1), we have the following theorem.

Theorem 3.1 ([9]). Let M = (M,J, g) be a TV Bochner flat almost Her-
mitian surface. Then the curvature tensor R satisfies the curvature identity

(3.4) R(X,Y, Z, U)−R(JX, JY, Z, U)
−R(X,Y, JZ, JU) +R(JX, JY, JZ, JU)

= R(X, JY, Z, JU)+R(X, JY, JZ,U)+R(JX, Y, JZ, U)+R(JX, Y, Z, JU)

for X,Y, Z, U ∈ X(M).

From Theorem 3.1, we immediately have the following result.
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Corollary 3.2. Let M = (M,J, g) be a TV Bochner flat almost Her-
mitian surface satisfying the condition (G3). Then M satisfies the condi-
tion (G2).

Remark 3.3. It is known that the curvature tensor of any Hermitian
manifold satisfies the curvature identity (3.4) [10]. However, the converse is
not true in general. In fact, Tricerri and Vanhecke [29] gave an example of
a locally flat almost Hermitian surface which is not Hermitian.

The (0, 3)-tensor field C = (Cijk) defined by C = divW is called the
Cotton–York tensor. From (3.2), we obtain immediately

(3.5) Cjkl =
∑
i

∇iWijkl =
1
2

(∇lρjk −∇kρjl)−
1
12
{(∇lτ)gjk − (∇kτ)gjl}.

Let CZ (Z ∈ X(M)) be the 2-form defined by the Cotton–York tensor
CZ(X,Y ) = C(Z,X, Y ) for X,Y ∈ X(M) [1]. From (3.5), we see immedi-
ately that if M is Ricci parallel, the Cotton–York tensor vanishes on M .
We denote by C+

Z the self-dual part of CZ . Further C+ = 0 will mean that
C+
Z = 0 for any Z ∈ X(M). If C+ = 0, then

(3.6)
∑
j,k

CijkNjkl = 0,
∑
j,k

CijkJjk = 0.

From (2.7) and (3.3), by direct calculations, we have the following.

Theorem 3.4. Let M = (M,J, g) be a TV Bochner flat almost Hermi-
tian surface. If the Ricci ∗-tensor ρ∗ is symmetric, then

2Cjik =
1
24
{−∇k(3τ∗ − τ)gji +∇i(3τ∗ − τ)gjk + 2∇j̄(3τ∗ − τ)Jik(3.7)

+∇ī(3τ∗ − τ)Jjk −∇k̄(3τ∗ − τ)Jji}

+
3τ∗ − τ

24

(
3ωj̄Jik +

3
2
ωīJjk −

3
2
ωk̄Jji +

3
2
ωigjk −

3
2
ωkgji

−Nikj +
1
2
Njik −

1
2
Njki

)
.

From (3.3), we have the following theorem.

Theorem 3.5 ([17]). Let M = (M,J, g) be a TV Bochner flat almost
Hermitian surface. Then M is self-dual. Further, M is conformally flat if
and only if ρ∗ is symmetric and 3τ∗ − τ = 0 on M .

We now recall the integral formulas representing the first Pontryagin
number p1(M) and the Euler number χ(M) of a compact TV Bochner flat
almost Hermitian surface M = (M,J, g) [17].
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Let M = (M,J, g) be a compact TV Bochner flat almost Hermitian
surface. Taking account of (2.3), the first Pontryagin number is given by

(3.8) p1(M) =
1

32π2

�

M

{
(3τ∗ − τ)2

12
+G

}
dv.

The Euler number χ is given by

(3.9) χ(M) =
1

32π2

�

M

{
(3τ∗ − τ)2

24
− 2
∣∣∣∣ρ− τ

4
g

∣∣∣∣2 +
τ2

6
+

1
2
G

}
dv.

From (3.8) and (3.9), by Wu’s theorem [31], the first Chern number is given
by

c1(M)2 = p1(M) + 2χ(M)(3.10)

=
1

32π2

�

M

{
(3τ∗ − τ)2

6
− 4
∣∣∣∣ρ− τ

4
g

∣∣∣∣2 +
τ2

3
+ 2G

}
dv.

From (2.10) and (3.10), we have

(3.11)
�

M

{
G+

(τ∗ − τ)2

2
− |ρ− ρ ◦ J |2

− τ∗
∑

(∇iJjk)∇īJjk̄ + 2
∑

ρ∗ji(∇iJab)∇j̄Jab̄
}
dv = 0.

Based on (3.9), (3.10) and Theorem 3.5 we immediately have the following
results.

Theorem 3.6. Let M = (M,J, g) be a compact TV Bochner flat almost
Hermitian surface. Then c1(M)2 ≥ 2χ(M), with equality holding if and only
if M is conformally flat.

Now we comment on the geometric meaning of the function 3τ∗ + τ on
an almost Hermitian manifold. In [25], Sato proved that if M = (M,J, g)
is a 2n-dimensional almost Hermitian manifold of pointwise constant holo-
morphic sectional curvature c, then 3τ∗ + τ = 4n(n + 1)c on M . On the
other hand, Koda proved that a self-dual Einstein almost Hermitian surface
is a space of pointwise constant holomorphic sectional curvature ([15, Theo-
rem A]). Thus, from the result of Koda and Theorem 3.5, it follows that any
4-dimensional generalized complex space form is an almost Hermitian sur-
face of pointwise constant holomorphic sectional curvature c = (3τ∗ + τ)/24.
The following formula yields a geometric meaning of the function τ∗− τ (or
τ − τ∗) on an almost Hermitian surface M = (M,J, g) [27]:

(3.12) τ − τ∗ = 2δω + |ω|2 − 1
8
|N |2.
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Next, we assume that M = (M,J, g) is a compact TV Bochner flat
almost Hermitian surface satisfying the condition c1(M)2 ≤ 3χ(M) and
(3τ∗ + τ)(τ∗ − τ) ≥ 0 on M . Then, by (3.9) and (3.10), we get

0 ≥
�

M

{
G

2
+

(3τ∗ − τ)2

24
+ 2
∣∣∣∣ρ− τ

4
g

∣∣∣∣2 − τ2

6

}
dv(3.13)

=
�

M

{
G

2
+

1
8

(3τ∗ + τ)(τ∗ − τ) + 2
∣∣∣∣ρ− τ

4
g

∣∣∣∣2} dv.
Thus, from (3.13) and the hypothesis, we have

(3.14) G = 0, ρ =
τ

4
g and (3τ∗ + τ)(τ∗ − τ) = 0

on M . Thus, taking account of (2.8) and (3.14), we see that M is Einstein
and weakly ∗-Einstein, and hence a generalized complex space form [30].
Therefore, by the result of Lemence ([18, Theorem B]), we have the following
theorem.

Theorem 3.7. Let M = (M,J, g) be a compact TV Bochner flat
almost Hermitian surface satisfying the condition c1(M)2 ≤ 3χ(M). If
(3τ∗+τ)(τ∗−τ) ≥ 0 on M , then M is a compact locally flat non-Hermitian
almost Hermitian surface or locally a compact complex space form.

Corollary 3.8. Let M = (M,J, g) be a compact Bochner Kähler sur-
face satisfying the condition c1(M)2 ≤ 3χ(M). Then M is locally a complex
space form (and hence c1(M)2 = 3χ(M)).

Remark 3.9. The above result is obtained from the classification of
compact Bochner Kähler manifolds established by Kamishima [12].

4. TV Bochner flat almost Kähler surfaces. First, we recall several
fundamental formulas on an almost Kähler surface M = (M,J, g):

(4.1) ∇īJj̄k = −∇iJjk,
(4.2) Rijkl −Rijk̄l̄ −Rīj̄kl +Rīj̄k̄l̄ +Rījk̄l +Rījkl̄ +Rij̄k̄l +Rij̄kl̄

= 2
∑
a

(∇aJij)∇aJkl.

Then (4.2) leads to

(4.3) ρ∗ij + ρ∗ji − ρij − ρīj̄ =
∑
a,b

(∇aJib)∇aJjb.

Thus from (2.8) and (4.3), we have

(4.4)
∑
a,b

(∇aJbi)∇aJbj =
τ∗ − τ

2
gij .
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From (4.3), we have

(4.5) |∇J |2 = 2(τ∗ − τ).

On the other hand, it is well-known (see [32]) that the Nijenhuis tensor N
of an almost Kähler manifold is expressed by

(4.6) Nijk = −2∇k̄Jij .
Since dΩ = 0 (and hence ω = 0), taking account of (4.6) we may also obtain
the formula (4.5) directly from (3.12).

The following is the arrangement of Kowalski’s example ([16, Example
III.53]) by Apostolov et al. [1]. We also refer to [22].

Example 4.1. Let M = R+
4 = {(x1, x2, x3, x4) ∈ R4 | x1 > 0} and

define the global basis {ei} by

e1 = −x1
∂

∂x1
, e2 = − 1

x1

∂

∂x2
,

e3 =
√
x1x2

∂

∂x4
+
√
x1

∂

∂x3
, e4 = − 1

√
x1

∂

∂x4
.

Further, we define an almost Hermitian structure on M by Je1 = e2, Je2 =
−e1, Je3 = e4, Je4 = −e3, and g(ei, ej) = δij (1 ≤ i, j ≤ 4). We denote the
dual basis of {ei} by {ei}. Then

e1 = − 1
x1
dx1, e2 = −x1dx2, e3 =

1
√
x1
dx3, e4 =

√
x1x2dx3−

√
x1dx4.

We see that the Kähler form of the almost Hermitian structure (J, g) is given
by

(4.7) Ω = e1 ∧ e2 + e3 ∧ e4 = dx1 ∧ dx2 − dx3 ∧ dx4.

Hence dΩ = 0, and so (M,J, g) is an almost Kähler surface. By direct
calculation, we have

(4.8)

R1212 = 1, R1234 = −1
2 , R1313 = 1

4 ,

R1324 = −1
4 , R1414 = 1

4 , R1423 = 1
4 ,

R2323 = 1
4 , R2424 = 1

4 , R3434 = −1
2 ,

the other coefficients being zero. From (4.8), we have further

Qe1 = −3
2e1, Qe2 = −3

2e2, Qe3 = Qe4 = 0.(4.9)

Q∗e1 = −1
2e1, Q∗e2 = −1

2e2, Q∗e3 = e3, Q∗e4 = e4.(4.10)

Then, from (4.9) and (4.10), we have immediately

(4.11) τ = −3, τ∗ = 1.

From (4.5) and (4.11), we see that (M,J, g) is a strictly almost Kähler
surface.
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From (4.8), we may easily check that the almost Kähler surface (M,J, g)
in Example 4.1 satisfies the condition (G2). Apostolov et al. [1] proved that
a strictly almost Kähler surface satisfying the condition (G2) is locally ho-
mothetic to Kowalski’s example. His example is a 4-dimensional Rieman-
nian symmetric space of order 3 (known also as a Riemannian 3-symmetric
space). It is well-known that a Riemannian 3-symmetric space gives rise to a
quasi-Kähler manifold with respect to the canonical almost complex struc-
ture associated with the Riemannian 3-symmetric structure and also that
every 4-dimensional quasi-Kähler manifold is necessarily an almost Kähler
manifold (that is, an almost Kähler surface). Consequently, we have the
following theorem.

Theorem 4.2. Let M = (M,J, g) be a TV Bochner flat almost Kähler
surface satisfying the condition (G3). Then M is Bochner Kähler.

Proof. First, from the hypothesis, by taking account of Corollary 3.2, we
see that M satisfies the condition (G2). We now suppose that M is strictly
almost Kähler. Then, by the observation concerning Example 4.1, we see
that M is locally homothetic to Kowalski’s example. However, from (3.1),
(4.8)–(4.11), we may easily check that M is not TV Bochner flat. This is
a contradiction. Therefore, M is a Kähler surface (and hence a Bochner
Kähler surface).

From Theorem 4.2, we immediately have the following result which is a
generalization of the result by Matsumoto and Tanno [19] and Derdziński
[8] in dimension four.

Corollary 4.3. Let M = (M,J, g) be a TV Bochner flat almost Kähler
surface satisfying the condition (G3). If the scalar curvature τ of M is con-
stant, then M is locally one of the following:

(1) M is a complex space form of complex dimension 2,
(2) M is locally a product of two oriented surfaces of different constant

Gaussian curvatures K and −K (K > 0).

Example 4.4 ([23]). We set (M, g) = H3(−1) × R, where H3(−1) is a
3-dimensional real hyperbolic space of constant sectional curvature −1 and
R is the real line. Let

e1 = x1
∂

∂x1
, e2 = x1

∂

∂x2
, e3 = x1

∂

∂x3
, e4 =

∂

∂x4
.

on M = R4
+ = R3

+×R = {(x1, x2, x3, x4) ∈ R4 |x1 > 0} and define an almost
Hermitian structure (J, g) on M by g(ei, ej) = δij and Jei =

∑4
j=1 Jijej ,

where
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(Jij) =


0 cosx4 sinx4 0

− cosx4 0 0 − sinx4

− sinx4 0 0 cosx4

0 sinx4 − cosx4 0

 .

We denote by {ei}4i=1 the dual basis of {ei}. Then the Kähler form Ω is
given by

Ω = J12e
1 ∧ e2 + J13e

1 ∧ e3 + J14e
1 ∧ e4

+ J23e
2 ∧ e3 + J24e

2 ∧ e4 + J34e
3 ∧ e4

=
1
x2

1

cosx4dx1 ∧ dx2 +
1
x2

1

sinx4dx1 ∧ dx3

− 1
x1

sinx4dx2 ∧ dx4 +
1
x1

cosx4dx3 ∧ dx4.

Thus, we have dΩ = 0, and hence (M,J, g) is an almost Kähler mani-
fold.

We may easily check that Example 4.4 is a locally symmetric, confor-
mally flat, TV Bochner flat, strictly almost Kähler surface with constant
scalar curvature τ = −6 and constant ∗-scalar curvature τ∗ = −2. We may
also check that the Ricci tensor ρ of (M,J, g) is not J-invariant, and hence
(M,J, g) does not satisfy the condition (G3).

Remark 4.5. Catalano et al. [6] also gave an example of a conformally
flat strictly almost Kähler surface with non-constant scalar curvature.

From Example 4.4, we see that the assumption of Theorem 4.2 (that a
TV Bochner flat almost Kähler surface M = (M,J, g) satisfies the condi-
tion (G3)) is essential. Furthermore, in Corollary 4.3, the assumption that
the scalar curvature is constant cannot be removed. In fact, the following
example by Tachibana and Liu [28] illustrates this situation.

Example 4.6. Let M = {z = (z1, z2) ∈ C2 | z1z̄1 + z2z̄2 < 1} and
f = sin−1 t, t = z1z̄1+z2z̄2, be the Kähler potential. Then we may check that
the corresponding Kähler surface is Bochner flat and the scalar curvature τ
is given by τ = −24t/

√
1− t2.

Next, we shall prove the following theorem.

Theorem 4.7. Let M = (M,J, g) be a TV Bochner flat almost Kähler
surface with the symmetric Ricci ∗-tensor ρ∗. If C+ = 0, then M is confor-
mally flat or Bochner Kähler.
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Proof. Since ω = 0, by (4.6), the equality (3.7) reduces to

2Cjik =
1
24
{−∇k(3τ∗ − τ)gji +∇i(3τ∗ − τ)gjk + 2∇j̄(3τ∗ − τ)Jik(4.12)

+∇ī(3τ∗ − τ)Jjk −∇k̄(3τ∗ − τ)Jji}+
3τ∗ − τ

8
∇j̄Jik.

Thus, from (3.6), (4.1), (4.5), and (4.12), we get

(4.13) 0 = 2
∑
i,k

CjikJik =
1
3
∇j̄(3τ∗ − τ)

and

(4.14) 0 = 2
∑
i,j,k

CjikNikj = −4
∑
i,j,k

Cjik∇j̄Jik = −(3τ∗ − τ)(τ∗ − τ).

Thus, from (4.13), 3τ∗−τ is constant on M . Now, from (4.14), we see easily
that 3τ∗ − τ = 0 on M or 3τ∗ − τ 6= 0 and τ∗ − τ = 0 on M . Therefore, by
Theorem 3.5, M is conformally flat or Bochner Kähler.

Further, we shall prove the following theorem.

Theorem 4.8. Let M = (M,J, g) be a compact TV Bochner flat almost
Kähler surface satisfying the condition c1(M)2 ≤ 3χ(M). If C+ = 0 and
τ ≥ 0 on M , then M is locally a Kähler surface of non-negative constant
holomorphic sectional curvature.

Proof. First, since C+ = 0, from (3.5), (3.6), (4.1), and (4.6), we get

(4.15)
∑

(∇kρji −∇iρjk)Jli∇jJkl = −
∑

CjikNikj = 0.

Now, we set

A ≡
∑

ρij(∇iJkl)∇jJkl.

Thus, taking account of (2.8), (4.15) and Green’s Theorem, we have
�

M

Adv =
�

M

∑
ρij(∇iJkl)∇jJkl dv

= −
�

M

∑
ρij(∇kJli)∇jJkl dv −

�

M

∑
ρij(∇lJik)∇jJkl dv

= −2
�

M

∑
ρij(∇kJli)∇jJkl dv

= 2
�

M

∑
(∇kρij)Jli∇jJkl dv + 2

�

M

∑
ρijJli∇k∇jJkl dv
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=
�

M

∑
{(∇kρji −∇iρjk)Jli∇jJkl} dv

−2
�

M

∑
ρijJli(RkjktJtl +RkjltJkt) dv

= −2
�

M

∑
ρ 2
ij dv +

�

M

∑
ρij(ρ∗ij + ρ∗ji) dv

= −1
2

�

M

|ρ− ρ ◦ J |2 dv +
�

M

τ

2
(τ∗ − τ) dv,

and hence

(4.16)
�

M

{
A+

1
2
|ρ− ρ ◦ J |2

}
dv =

�

M

τ

2
(τ∗ − τ) dv.

On the other hand, from (2.8), (4.4) and (4.5) we see easily that the equality
(3.11) reduces to

(4.17)
�

M

{
A+

1
2
|ρ− ρ ◦ J |2

}
dv =

�

M

{
1
2
G+

τ∗ − τ
4

(3τ∗ + τ)
}
dv.

Thus, from (4.16) and (4.17), we have

(4.18)
�

M

{
1
2
G+

τ∗ − τ
4

(3τ∗ − τ)
}
dv = 0.

Therefore, from the hypothesis of the theorem, (3.13) and (4.18), we have

0 ≥
�

M

{
G

4
+
τ

4
(τ∗ − τ) + 2

∣∣∣∣ρ− τ

4
g

∣∣∣∣2} dv ≥ 0,

and hence

(4.19) G = 0, ρ =
τ

4
g and τ(τ∗ − τ) = 0

on M . Thus, from (4.19), we see that M is an Einstein and weakly ∗-Einstein
manifold, and hence a generalized complex space form of dimension four.
Therefore, from the results of [18, Theorem A] and [26], the assertion of the
theorem follows immediately.

From Theorem 3.7, Remark 3.9 and (4.5), we immediately deduce the
following theorem.

Theorem 4.9. Let M = (M,J, g) be a compact TV Bochner flat almost
Kähler surface with pointwise non-negative constant holomorphic sectional
curvature. If M satisfies the condition c1(M)2 ≤ 3χ(M), then M is locally
a complex space form of non-negative constant holomorphic sectional cur-
vature.
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5. TV Bochner flat Hermitian surfaces. Let M = (M,J, g) be a
Hermitian surface. Then, from (2.7), we have

(5.1) Rijkl −Rijk̄l̄

=
1
2

{
gjl

(
∇iωk +

1
2
ωiωk −

1
2
|ω|2gik

)
− gil

(
∇jωk +

1
2
ωiωk −

1
2
|ω|2gjk

)
+ Jkj

(
∇iωl̄ +

1
2
ωiωl̄ −

1
2
|ω|2Jli

)
− Jki

(
∇jωl̄ +

1
2
ωjωl̄ −

1
2
|ω|2Jlj

)
− Jlj

(
∇iωk̄ +

1
2
ωiωk̄

)
+ Jli

(
∇jωk̄ +

1
2
ωjωk̄

)
− gjk

(
∇iωl +

1
2
ωiωl

)
+ gik

(
∇jωl +

1
2
ωjωl

)}
.

From (5.1), we have

(5.2) ρjk − ρ∗jk

=
1
2

{
−∇jωk +∇j̄ωk̄ −

1
2
ωjωk +

1
2
ωj̄ωk̄ +

1
2

(2δω + |ω|2)gjk

}
.

From (5.2), we obtain

(5.3) τ − τ∗ = 2δω + |ω|2

and

(5.4) ∇lωk −∇kωl −∇l̄ωk̄ +∇k̄ωl̄ + 2(ρ∗kl − ρ∗lk) = 0

Here, since N = 0, we can also obtain the formula (5.3) from (3.12).
We assume that ρ∗ is symmetric. Since

∑
j ∇jωj̄ = 0 by (2.6), from (5.4)

we see that (dω)+ = 0, where (dω)+ denotes the self-dual part of the 2-form
dω. Thus, we have the following theorem [3].

Theorem 5.1. Let M = (M,J, g) be a Hermitian surface. Then ρ∗ is
symmetric if and only if (dω)+ = 0 on M .

Now, let M = (M,J, g) be a TV Bochner flat Hermitian surface with
symmetric Ricci ∗-tensor ρ∗ (equivalently, with the Lee form ω satisfying
dω+ = 0). Then the equality (3.7) reduces to

2Cjik =
1
24
{−∇k(3τ∗ − τ)gji +∇i(3τ∗ − τ)gjk(5.5)

+ 2∇j̄(3τ∗ − τ)Jik +∇ī(3τ∗ − τ)Jjk −∇k̄(3τ∗ − τ)Jji}

+
3τ∗ − τ

24

(
3ωj̄Jik +

3
2
ωīJjk −

3
2
ωk̄Jji +

3
2
ωigjk −

3
2
ωkgji

)
.
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We assume that C+ = 0. Then, from (3.6) and (5.5), we have

0 = 2
∑
i,k

CjikJik =
1
3
∇j̄(3τ∗ − τ) +

1
2

(3τ∗ − τ)ωj̄ ,

and hence

(5.6) d(3τ∗ − τ) = −3
2

(3τ∗ − τ)ω.

Thus, from (5.6), we see immediately that the function 3τ∗ − τ vanishes
either everywhere or nowhere on M . If it vanishes everywhere, M becomes
conformally flat. Now, assume that 3τ∗ − τ vanishes nowhere on M . Then,
taking the exterior derivative of (5.6), we obtain dω = 0, and hence M is
a locally conformal Kähler surface. Now, we define the Riemannian metric
g̃ = (3τ∗−τ)2/3g and denote by Ω̃ the Kähler form of the almost Hermitian
structure (J, g̃). Then

(5.7) Ω̃ = (3τ∗ − τ)2/3Ω.

Taking the exterior derivative of (5.7) and making use of (2.6) and (5.6),
we obtain

dΩ̃ = (d(3τ∗ − τ)2/3) ∧Ω + (3τ∗ − τ)2/3ω ∧Ω(5.8)

=
1

(3τ∗ − τ)1/3

{
2
3
d(3τ∗ − τ) + (3τ∗ − τ)ω

}
∧Ω = 0.

Thus, (M,J, g̃) is a Kähler surface, and hence (M,J, g) is a globally confor-
mal Kähler surface. This yields the following generalization of a result by
Lemence ([18, Theorem A]).

Theorem 5.2. Let M = (M,J, g) be a TV Bochner flat Hermitian sur-
face with symmetric Ricci ∗-tensor ρ∗. If C+ = 0 on M , then M is confor-
mally flat or conformal to a Bochner Kähler surface.

Theorem 5.2 and (5.6) have the following immediate corollary.

Corollary 5.3. Let M = (M,J, g) be a TV Bochner flat Hermitian
surface with symmetric Ricci ∗-tensor ρ∗. If C+ = 0 and 3τ∗−τ is constant,
then M is conformally flat or Bochner Kähler.

Now, we give a concrete example of a 4-dimensional generalized complex
space form illustrating Corollary 5.3 which is obtained by applying a result
of Olszak ([24, Theorem 1]) to Example 4.6.

Let M = (M,J, g) be the Bochner Kähler surface given by Example 4.6.
We set M̃ = M \ {(0, 0)} and define the Riemannian metric g̃ on M̃ by g̃ =
e−

1
2

log τ2
g, where τ (= −24t/

√
1− t2) is the scalar curvature of M . Here, we

denote the restriction of the given Hermitian structure (J, g) to M̃ by using
the same letter. Then, from the result of Olszak ([24, Theorem 1]), we see
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that M̃ = (M̃, J, g̃) is a generalized complex space form. By straightforward
calculation, we have easily

(5.9) τ̃ = 0, τ̃∗ =
2
3
τ3,

where τ̃ and τ̃∗ are the scalar curvature and the ∗-scalar curvature of M̃ ,
respectively. From (5.9), we see immediately that 3τ̃∗ − τ̃ = 2τ3 is not
constant and vanishes nowhere on M̃ . Further, we see that M̃ is not confor-
mally equivalent to any 4-dimensional complex space form. In fact, if there
exists a 4-dimensional complex space form which is conformally equivalent
to M̃ , it is homothetic to the Bochner Kähler surface (M̃, J, g), and hence
the scalar curvature of (M̃, J, g), which is nothing but the restriction of the
scalar curvature τ of M to M̃ , must be constant. But this is a contradiction.

We recall the following result of Apostolov et al. [2].

Theorem 5.4. Any compact self-dual Hermitian surface M = (M,J, g)
which is not conformally flat is conformally equivalent either to CP 2 with
the Fubini–Study metric or to a compact quotient of the unit ball in C2 with
the Bergman metric.

Since a TV Bochner flat almost Hermitian surface is self-dual by The-
orem 3.5, Theorem 5.4 provides an answer to the Question in §1 for any
compact TV Bochner flat Hermitian surface.
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plan complexe, in: Géométrie riemannienne en dimension 4 (Séminaire Arthur Besse
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