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FRACTIONAL HARDY INEQUALITY WITH A REMAINDER TERM

BY

BARTLOMIEJ DYDA (Bielefeld and Wroctaw)

Abstract. We prove a Hardy inequality for the fractional Laplacian on the interval
with the optimal constant and additional lower order term. As a consequence, we also
obtain a fractional Hardy inequality with the best constant and an extra lower order term
for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259
(2010)].

1. Main result and discussion. Recently Loss and Sloane [16] have
proved the following fractional Hardy inequality:
1 (u(z) — u(y))® u(z)?
1.1) = —————— drdy > _
SRR z — y[rta OGP = fina S dist(z, D)@
DxD D
for convex domains D C R™ and 1 < a < 2. Here
P(5) B(4e %) -2
r(mE) e
is the optimal constant, B is the Euler beta function, and C.(D) denotes
the class of all continuous functions u: R” — R with compact support in D.
Inequality (|1.1) with the optimal constant was earlier obtained for half-
spaces and R™\ {0} (see [9} 111, [5, 10]). In this note we will prove the following

strengthening of (1.1)) for the interval.

THEOREM 1.1. Let 1 < a < 2 and —o0 < a < b < o0. For every
u € Ce(a,b),

dz, wue€C.(D),

(1.2) Kna = x(n=1)/2

bb b @
(1.3) 1“(u(x)_u(y))2dxdy2m7axu(x)2< ! + ! >d:c

2 |z — y|l e r—a b—ux

aa a

g3l /1 1\t
—_ d
+a(b—a)§u($) <x—a+b—x> v

and K1, cannot be replaced by a larger constant in ((1.3).
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For an open set D C R™ we consider the quadratic form

c‘,'(u):1 S wdxdy, u € Ce(D).
2 op lr—yl

The method developed by Loss and Sloane in [16] and Theorem [L.1] yield
a fractional Hardy inequality with a remainder for general domains, stated
as Theorem [I.2 below. In the statement we use the following notation from
[16, [7]. Let D be bounded. For a direction w = (w1, ws,...,w,) € S"~! =
{y e R": |y| = 1} and = € D we define dy, p(z) = min{|t| : z + tw ¢ D},
dw,p(x) =sup{|t| : x + tw € D} and
(1.4)

1 1@ 1 1@
1 fgn-1 [dw,D(x) + 5w’D(x)] LTI [dw,D(;p) + 5w,D(m)] dw

M, (z)> SS"—l |wn | dw o 2Kn.0/K1.q

THEOREM 1.2. Let 1l < o < 2 and let D C R™ be a bounded domain.
Then

(1.5)

u(x)? Aoy u(x)?
(z) 0| (2)

>
E(U) 2 fna S My (x)e T diam D

D
where A\p o = Tr(”_l)/QF(%)(ZL — 237 /(oI (22=1)). In particular, if D is
a bounded and convexr domain, then

d Ce(D),
) Ayt u € Ce(D)

(1.6)
2
E(u) > Fna S u(z) dr + An,a u(z)

s dist(x, D¢)« diam D [S) dist(x, De)a—1

Kn,a cannot be replaced by a larger constant in (1.5) and (1.6]).

Theorem is a strengthening of [16, Theorem 1.1]. The main new in-
gredient is the remainder with smaller singularity at the boundary of D in
(1.5) and (1.6), when D is bounded. We note that for cones (e.g., R™ \ {0})

the remainder vanishes. Indeed, we consider the dilations of u and see that

2
D % dx are the same, but different

dz, wue C.(D).

the homogeneities of £(u) and |

2
from that of SD % dz.
As a consequence of Theorem we obtain the following estimate for

the first eigenvalue A; of the regional fractional Laplacian for D [I3]:

F((TL + a)/2) Kn,a )\n,a
M2 a2 T (—a)2)] ((; diam D)* (5)0‘_1(diamD)a>

(see also [I5] or [14] for other applications of Hardy inequalities).
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We denote

Lu(z) = lim S u(y) — u(@)
e—0t |z — y|ite
(=1,D)Nn{ly—=[>e}

Y

which equals, up to a multiplicative constant, the regional fractional Lapla-
cian for D [I3]. To prove Theorem we calculate Lw for the function
w(z) = (1 — 22)@ /2 (see Lemma, and the result follows from the
ideas of [1I, 8] (see also [10, Proposition 2.3] or Lemma [2.2] below). The cal-
culation of Lw uses the Kelvin transform. For a discussion of the Kelvin
transform and the fractional Laplacian we refer the reader to [6] and [4].

An explicit formula for Luy,(x), where u,(x) = (1 —22)P, may be deduced
from [12] for p = /2, and from [2] for p = (o — 2)/2 (see the remarks after
the proof of Lemma .

Finally, the symmetric bilinear form obtained from £ by polarisation is
up to a multiplicative constant the Dirichlet form of the censored stable
process in D = (—1,1) (see [3]). The following result is a close counterpart
of Lemma [2.3] and Theorem [I.1] stated for the Dirichlet form of the killed
stable process [3] and it turns out to have a remarkably simple form.

COROLLARY 1.3. Let 0 < o < 2 and w(z) = (1 — 22)(@=1/2. For every
u€ Ce(—1,1),

(1.7)
11
EH (u(z) — u(y))? dz dy _ 1 S S (u(x) u(y))zw(:n)w(y) iz dy
1+a 1o
2RR | — y|t* 2 S w(z) w(y) |z — y|1t
B(ite 2—a) 1
+ ( 2 v 2 ) S u($)2(1—$2)_ad:p
@ -1
B(1+7a 2oa) 1 1 1\
S P\ T 2 .
a2 Slu@c) <a:+1+1—x> e
l+a 2-a
% cannot be replaced by a larger constant in lb

2. Proofs. We start by calculating the regional fractional Laplacian for
power functions.

LEMMA 2.1. Let p > —1 and uy(z) = (1 — 2?)P. For 0 < a < 2 we have

—{L’2 —«
(2.1) Luy(z) = W((l —x)*+ (1+2)”

—(2p+2-a)B(p+1,1—a/2)+al(p)),
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where
1
B (1 —tx)*-1=2r -1 9
I(p) =p.v. _Sl mE (1 — )P dt,
and p.v. means the Cauchy principal value. We have I(%) = %B(l + 3,

1- %)(1 - (1 —$2)a/2); I(QT_I) = I(O‘TJ) =0, and if 1 < a < 2 then
I(252) = 2B(251 1 - ).

Proof. By changing variable t = y? and integrating by parts, we have

|
£ 1 1 1
=2 lim (2 S (1 _ t)Ptflfa/2[(1 _ t) + t] dt — Syflfa dy)

€2 €

«
2

1
1 1
=2 lim ((1 —g?)ptlgme Pt S (1 —t)Pt=2/%qt
a
1

1 1 @
(1 —ppo/2 i
—0-28( t)Pt dt-i—a a>

It is easy to see that

1 —« 2—« 1 _ =2 p-‘rl _ 1
lim ((1 — e2yptlgme 5) T ) =0.

e—0t \ (¢ o

Therefore

= %[1 —(p+1-0a/2)B(p+1,1—-0a/2)].

Lup(0)
For zy € (—1,1) we have

1

Luy(zo) = p.v. S
—1

(1—y?)P— (1 —ag)?
ly — wo|tH

dy.

We change the variable in the following way:

o —Y
t= — — ot
W) =1y VT
ag—1 t(1 — z? 1 — 22)(1 — ¢2
(1 —zoy) twg — 1 (w0 — 1)
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The principal value integral transforms as follows:

(2.2) 1
(L= 2 — (1= tap)¥

Luy(xg) = (1 — x%)p_a p.v. S (1 — tx)®~ L2 gt

) ’t’1+a

1

_ (1 — t.i?())a*l -1

=(1- x%)p @ [Lup(()) — p.v. S 7ji7o dt
-1
1
(1 —tao)* 1727 — 1
+p.v. S M= (1—t2)Pdt|.

-1
We consider the integral in (2.2]),

§ (1 — tlL‘())a_l -1

I:=puv. iFa dt = EE%+(JE($O) + Jo(—x0)),
-1
where
1 1 a—1 _
(1 —txg)* 1 —1 1 dt e -1
Tloo) = | et = (-m)  F-
1 /1 ¢ et -1
:a<8—x0> ——(1—=xz9)* — -
1 1 1—exg)*—1
— 53—+
By the I’'Hépital rule we find that
2 1 1
I = a — a(l — .’L'O)a — a(l +x0)a,
and the first part of the lemma is proved.
We have
1
1—tx) 1 -1
I(a/2) = pv. | (|t|1)+a(1 — 12)/2

-1
_ § 2120:2(m>k (1- t2)a/2 dt — 2§ Ziil(m% 1- t2)o¢/2 dt

|t|1+o< 0 ’ﬂl—&—a

B(k — /2,14 a/2)z?

.

i

1
ra+ a/2)F(—a/2)<

_ 2B(1+ /2,1 —a/2)(1 _ (1= 22)%2).

— 2*C(k—a/2) 1>

— I'(—a/2)k!
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Calculating I(p) for p=(a—1)/2, p= (o« —2)/2 and p = (o — 3)/2 is easy
and will be omitted. m

We will apply Lemma only to p = (a — 1)/2. The fractional Lapla-
cian applied to u, /o extended to be zero on R\ (—1,1) was calculated by
using the Fourier transform and hypergeometric function in [12]. From those
calculations we may confirm our formula for Lu, s, and consequently for
I(a/2). Also the value of Lu,_2y/2 can be calculated from known results.
Namely,

1
U(a—2)/2(T) = E(K(x, —1)+ K(z,1)) for |z| <1,

where K(z,Q) = (1 —2%)*/?/|z — Q| is the Martin kernel for the interval
[2, (3.36)]. Hence u(q—_2)/2(z) extended to be zero on R\ (—1,1) annihilates
on (—1,1) the fractional Laplacian (see [4, Chapter 3| and [3| (3.14)]).

The next lemma may be considered a special case of Proposition 2.3 of
[10] (see also [8]). For the reader’s convenience we give an elementary proof
following [5].

LEMMA 2.2. Let D C R™ be an open set. For every u € C.(D) and any
strictly positive function w € C*(D) N LY(D, (1 + |z|)™""*dz), we have

o —Lw(x) % [ <u(:r) _ uy) )2 w(z)w(y)

|z — y[rto

E(u) = S u(z)

L D@~ wy)

dx dy.

Proof. We have
(u(2) — u(y))? + u(a)? L2 e ) i)

(@)
_ (M) uly) waw
‘(wm> ww) () y).

We integrate against 14,y >z —y|™""“dr dy, and let € — 0. We can use
Taylor’s expansion for w and the compactness of the support of u to justify
an application of the Lebesgue dominated convergence theorem. =

We next state a result analogous to the ground state representation ob-
tained for half-spaces and R™\ {0} by Frank and Seiringer [10} TI] (we return
to considering D = (—1,1) and n = 1).

LEMMA 2.3. Let 0 < a < 2. Let w(z) = (1 — 22)(@=D/2_ For every
u € Ce(—1,1),
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Proof of Lemma [2.3 The result follows immediately from Lemma [2:2]
applied to w(z) = (1 — 22)(@~1/2 and Lemma withp=(a—1)/2. =

Proof of Theorem [1.1} By scaling we may and do assume that a = —1
and b = 1. By Lemma [2.3| it is enough to verify that
(23) 2°—(Q+2)°*—(1-2)*>2°-2)1—-2%), 1<a<2,0<z<1.
Substituting u = 22, it suffices to prove that
g(u) = (2% = 2)u — (1 = Vu)* — (1 4+ Vu)* +2

is concave, or

o) = 2% =2+ 5= Vi)™ = (1 Vi)t

is decreasing. We substitute u = ¢?> and observe that

(1=t ' =(1+0)*"  ht)—h0)
t B t
where h(t) = (1 — )1 — (1 +¢)*~L. Since h is concave, the function t
(h(t) — h(0))/t is decreasing, and so too is ¢’. This proves and (1.3).
The fact that k1 4 in is optimal follows from [16]. =

The constant 2% —2 in ([2.3)) is the largest possible (consider z = 0). How-
ever it is not clear if the constant (4 — 237%)/(a(b — a)) is optimal in ([1.3)).

Proof of Theorem[I.3. The proof is analogous to the proof of Theorem 1.1
in [16], but instead of applying [16, Corollary 2.3] we use Theorem [1.1} For
the reader’s convenience we repeat part of the argument of Loss and Sloane.
We denote by L,, the (n — 1)-dimensional Lebesgue measure on the plane
x-w = 0. By [16, Lemma 2.4 and Corollary 2.3|, writing

W=V aw | dcu@ § oas
Sn—1 {z:z-w=0} z+sweD

we find that
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1 u(x + sw) — u(x + tw)|?
L R
rHtwe

1 1 1 @
Z Fla §S“u(:ﬂ+ sw)’ [dw(ac + sw) * du(x + sw)}
493 1 1 ot
T 20 Sggu(x+8w)2[dw(:v+sw) * 5w(1‘+$w)}
1
% dy(x + sw) + 0y (z + sw)

1 1 1

=Kl — w u:c2 ) x
-, ZSnS_ld 183 ) [dw,D($)+5w7D($)} !

4 — 93« 1 T
- ° d 2
F e ) ) [dw,mw)*m(x)]

X ! dz
dw,D(a:) + 5w,D(x)
u(x)? Ao u(z)?
> n,x d . -
= fim, S M ()~ v diam D S
D D
In the last line we have used [I6, (7)], which is valid for any « > 0, hence
also for e — 1 in place of a.. This proves (|1.5)).
Inequality (1.6]) follows from [16], (9)], which is also valid for any o > 0. =
Proof of Corollary The equality follows from Lemma [2.3] and the
following formula, where we take D = (—1,1) in the definition of &(u):

(2.4)

u\zr)—u 2 :
U= oy — e + | uta)
11 2
L (M) sty et g,

w(z)  wly)) |z—yltte

dx.
Ma—l (x)a—l x

o (L+a) *+ (1 —a)"

dx

RR

-1-1

1
2% K1 g+ 1
N (K10 )S

" u(z)?(1 — 2% *dz. =

B 1+ 2—a
The sharpness of the constant % in 1} follows from [16].

Acknowledgements. The author wishes to thank Krzysztof Bogdan
for helpful comments.

This research was partially supported by grant N N201 397137 of MNiSW
and by the DFG through SFB-701 ‘Spectral Structures and Topological
Methods in Mathematics’.



FRACTIONAL HARDY INEQUALITY 67

(1]
2]
13l
4]
[5]
16]
7]
18]
191
[10]
1]
12|
[13]
14]
[15]

[16]

REFERENCES

A. Ancona, On strong barriers and an inequality of Hardy for domains in R™, J. Lon-
don Math. Soc. (2) 34 (1986), 274-290.

K. Bogdan, Representation of a-harmonic functions in Lipschitz domains, Hiroshi-
ma Math. J. 29 (1999), 227-243.

K. Bogdan, K. Burdzy, and Z.-Q. Chen, Censored stable processes, Probab. Theory
Related Fields 127 (2003), 89-152.

K. Bogdan and T. Byczkowski, Potential theory for the a-stable Schrédinger operator
on bounded Lipschitz domains, Studia Math. 133 (1999), 53-92.

K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality, Math.
Nachr., to appear.

K. Bogdan and T. Zak, On Kelvin transformation, J. Theoret. Probab. 19 (2006),
89-120.

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92,
Cambridge Univ. Press, Cambridge, 1989.

P. J. Fitzsimmons, Hardy’s inequality for Dirichlet forms, J. Math. Anal. Appl. 250
(2000), 548-560.

R. L. Frank, E. H. Lieb, and R. Seiringer, Hardy—Lieb—Thirring inequalities for
fractional Schrodinger operators, J. Amer. Math. Soc. 21 (2008), 925-950.

R. L. Frank and R. Seiringer, Sharp fractional Hardy inequalities in half-spaces,
arXiv:0906.1561v1 [math.FA], 2009.

—, —, Non-linear ground state representations and sharp Hardy inequalities,
J. Funct. Anal. 255 (2008), 3407-3430.

R. K. Getoor, First passage times for symmetric stable processes in space, Trans.
Amer. Math. Soc. 101 (1961), 75-90.

Q--Y. Guan and Z.-M. Ma, Reflected symmetric a-stable processes and regional
fractional Laplacian, Probab. Theory Related Fields 134 (2006), 649-694.

P. Kim, Weak convergence of censored and reflected stable processes, Stoch. Process.
Appl. 116 (2006), 1792-1814.

T. Kulezycki, Intrinsic ultracontractivity for symmetric stable processes, Bull. Polish
Acad. Sci. Math. 46 (1998), 325-334.

M. Loss and C. Sloane, Hardy inequalities for fractional integrals on general do-
mains, J. Funct. Anal. 259 (2010), 1369-1379.

Bartlomiej Dyda

Faculty of Mathematics
University of Bielefeld
Postfach 10 01 31

D-33501 Bielefeld, Germany

and

Institute of Mathematics and Computer Science
Wroctaw University of Technology

Wybrzeze Wyspianiskiego 27

50-370 Wroctaw, Poland

E-mail: bdyda@pwr.wroc.pl

Received 11 March 2010;
revised 20 July 2010 (5346)


http://dx.doi.org/10.1112/jlms/s2-34.2.274
http://dx.doi.org/10.1007/s00440-003-0275-1
http://dx.doi.org/10.1007/s10959-006-0003-8
http://dx.doi.org/10.1006/jmaa.2000.6985
http://dx.doi.org/10.1090/S0894-0347-07-00582-6
http://dx.doi.org/10.1016/j.jfa.2008.05.015
http://dx.doi.org/10.1090/S0002-9947-1961-0137148-5
http://dx.doi.org/10.1007/s00440-005-0438-3
http://dx.doi.org/10.1016/j.spa.2006.04.006
http://dx.doi.org/10.1016/j.jfa.2010.05.001




	Main result and discussion
	Proofs

