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FRACTIONAL HARDY INEQUALITY WITH A REMAINDER TERM

BY

BARTŁOMIEJ DYDA (Bielefeld and Wrocław)

Abstract. We prove a Hardy inequality for the fractional Laplacian on the interval
with the optimal constant and additional lower order term. As a consequence, we also
obtain a fractional Hardy inequality with the best constant and an extra lower order term
for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259
(2010)].

1. Main result and discussion. Recently Loss and Sloane [16] have
proved the following fractional Hardy inequality:

(1.1)
1
2

�

D×D

(u(x)− u(y))2

|x− y|n+α
dx dy ≥ κn,α

�

D

u(x)2

dist(x,Dc)α
dx, u ∈ Cc(D),

for convex domains D ⊂ Rn and 1 < α < 2. Here

(1.2) κn,α = π(n−1)/2 Γ
(

1+α
2

)
Γ
(
n+α

2

) B(1+α
2 , 2−α

2

)
− 2α

α2α

is the optimal constant, B is the Euler beta function, and Cc(D) denotes
the class of all continuous functions u : Rn → R with compact support in D.
Inequality (1.1) with the optimal constant was earlier obtained for half-
spaces and Rn\{0} (see [9, 11, 5, 10]). In this note we will prove the following
strengthening of (1.1) for the interval.

Theorem 1.1. Let 1 < α < 2 and −∞ < a < b < ∞. For every
u ∈ Cc(a, b),

(1.3)
1
2

b�

a

b�

a

(u(x)− u(y))2

|x− y|1+α
dx dy ≥ κ1,α

b�

a

u(x)2
(

1
x− a

+
1

b− x

)α
dx

+
4− 23−α

α(b− a)

b�

a

u(x)2
(

1
x− a

+
1

b− x

)α−1

dx,

and κ1,α cannot be replaced by a larger constant in (1.3).
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For an open set D ⊂ Rn we consider the quadratic form

E(u) =
1
2

�

D×D

(u(x)− u(y))2

|x− y|n+α
dx dy, u ∈ Cc(D).

The method developed by Loss and Sloane in [16] and Theorem 1.1 yield
a fractional Hardy inequality with a remainder for general domains, stated
as Theorem 1.2 below. In the statement we use the following notation from
[16, 7]. Let D be bounded. For a direction w = (w1, w2, . . . , wn) ∈ Sn−1 =
{y ∈ Rn : |y| = 1} and x ∈ D we define dw,D(x) = min{|t| : x + tw /∈ D},
δw,D(x) = sup{|t| : x+ tw ∈ D} and
(1.4)

1
Mα(x)α

=

	
Sn−1

[
1

dw,D(x) + 1
δw,D(x)

]α
dw

	
Sn−1 |wn|α dw

=

	
Sn−1

[
1

dw,D(x) + 1
δw,D(x)

]α
dw

2κn,α/κ1,α
.

Theorem 1.2. Let 1 < α < 2 and let D ⊂ Rn be a bounded domain.
Then

E(u) ≥ κn,α
�

D

u(x)2

Mα(x)α
dx+

λn,α
diamD

�

D

u(x)2

Mα−1(x)α−1
dx, u ∈ Cc(D),

(1.5)

where λn,α = π(n−1)/2Γ
(
α
2

)
(4 − 23−α)/

(
αΓ
(
n+α−1

2

))
. In particular, if D is

a bounded and convex domain, then

E(u) ≥ κn,α
�

D

u(x)2

dist(x,Dc)α
dx+

λn,α
diamD

�

D

u(x)2

dist(x,Dc)α−1
dx, u ∈ Cc(D).

(1.6)

κn,α cannot be replaced by a larger constant in (1.5) and (1.6).

Theorem 1.2 is a strengthening of [16, Theorem 1.1]. The main new in-
gredient is the remainder with smaller singularity at the boundary of D in
(1.5) and (1.6), when D is bounded. We note that for cones (e.g., Rn \ {0})
the remainder vanishes. Indeed, we consider the dilations of u and see that
the homogeneities of E(u) and

	
D

u(x)2

dist(x,Dc)α dx are the same, but different

from that of
	
D

u(x)2

dist(x,Dc)α−1 dx.
As a consequence of Theorem 1.2 we obtain the following estimate for

the first eigenvalue λ1 of the regional fractional Laplacian for D [13]:

λ1 ≥
Γ ((n+ α)/2)

2−απn/2|Γ (−α/2)|

(
κn,α(

1
2 diamD

)α +
λn,α(

1
2

)α−1(diamD)α

)
(see also [15] or [14] for other applications of Hardy inequalities).



FRACTIONAL HARDY INEQUALITY 61

We denote

Lu(x) = lim
ε→0+

�

(−1,1)∩{|y−x|>ε}

u(y)− u(x)
|x− y|1+α

dy,

which equals, up to a multiplicative constant, the regional fractional Lapla-
cian for D [13]. To prove Theorem 1.1 we calculate Lw for the function
w(x) = (1 − x2)(α−1)/2 (see Lemma 2.1), and the result follows from the
ideas of [1, 8] (see also [10, Proposition 2.3] or Lemma 2.2 below). The cal-
culation of Lw uses the Kelvin transform. For a discussion of the Kelvin
transform and the fractional Laplacian we refer the reader to [6] and [4].

An explicit formula for Lup(x), where up(x) = (1−x2)p, may be deduced
from [12] for p = α/2, and from [2] for p = (α− 2)/2 (see the remarks after
the proof of Lemma 2.1).

Finally, the symmetric bilinear form obtained from E by polarisation is
up to a multiplicative constant the Dirichlet form of the censored stable
process in D = (−1, 1) (see [3]). The following result is a close counterpart
of Lemma 2.3 and Theorem 1.1 stated for the Dirichlet form of the killed
stable process [3] and it turns out to have a remarkably simple form.

Corollary 1.3. Let 0 < α < 2 and w(x) = (1 − x2)(α−1)/2. For every
u ∈ Cc(−1, 1),

1
2

�

R

�

R

(u(x)− u(y))2

|x− y|1+α
dx dy =

1
2

1�

−1

1�

−1

(
u(x)
w(x)

− u(y)
w(y)

)2 w(x)w(y)
|x− y|1+α

dx dy

(1.7)

+
B
(

1+α
2 , 2−α

2

)
α

1�

−1

u(x)2(1− x2)−α dx

≥
B
(

1+α
2 , 2−α

2

)
α2α

1�

−1

u(x)2
(

1
x+ 1

+
1

1− x

)α
dx.

B( 1+α
2
, 2−α

2
)

α2α cannot be replaced by a larger constant in (1.7).

2. Proofs. We start by calculating the regional fractional Laplacian for
power functions.

Lemma 2.1. Let p > −1 and up(x) = (1− x2)p. For 0 < α < 2 we have

Lup(x) =
(1− x2)p−α

α

(
(1− x)α + (1 + x)α(2.1)

− (2p+ 2− α)B(p+ 1, 1− α/2) + αI(p)
)
,
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where

I(p) = p.v.
1�

−1

(1− tx)α−1−2p − 1
|t|1+α

(1− t2)p dt,

and p.v. means the Cauchy principal value. We have I
(
α
2

)
= 2

αB
(
1 + α

2 ,

1 − α
2

)(
1 − (1 − x2)α/2

)
, I(α−1

2 ) = I
(
α−2

2

)
= 0, and if 1 < α < 2 then

I
(
α−3

2

)
= x2B

(
α−1

2 , 1− α
2

)
.

Proof. By changing variable t = y2 and integrating by parts, we have

Lup(0) = 2 lim
ε→0+

1�

ε

(1− y2)p − 1
y1+α

dy

= 2 lim
ε→0+

(
1
2

1�

ε2

(1− t)pt−1−α/2[(1− t) + t] dt−
1�

ε

y−1−α dy

)

= 2 lim
ε→0+

(
1
α

(1− ε2)p+1ε−α − p+ 1
α

1�

ε2

(1− t)pt−α/2 dt

+
1
2

1�

ε2

(1− t)pt−α/2 dt+
1
α
− ε−α

α

)
.

It is easy to see that

lim
ε→0+

(
1
α

(1− ε2)p+1ε−α − ε−α

α

)
= lim

ε→0+

ε2−α

α

(1− ε2)p+1 − 1
ε2

= 0.

Therefore

Lup(0) =
2
α

[1− (p+ 1− α/2)B(p+ 1, 1− α/2)].

For x0 ∈ (−1, 1) we have

Lup(x0) = p.v.
1�

−1

(1− y2)p − (1− x2
0)
p

|y − x0|1+α
dy.

We change the variable in the following way:

t = ϕ(y) =
x0 − y
1− x0y

, y = ϕ(t),

ϕ′(y) =
x2

0 − 1
(1− x0y)2

, y − x0 =
t(1− x2

0)
tx0 − 1

, 1− y2 =
(1− x2

0)(1− t2)
(tx0 − 1)2

.
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The principal value integral transforms as follows:

(2.2)

Lup(x0) = (1− x2
0)
p−α p.v.

1�

−1

(1− t2)p − (1− tx0)2p

|t|1+α
(1− tx0)α−1−2p dt

= (1− x2
0)
p−α
[
Lup(0)− p.v.

1�

−1

(1− tx0)α−1 − 1
|t|1+α

dt

+ p.v.
1�

−1

(1− tx0)α−1−2p − 1
|t|1+α

(1− t2)p dt
]
.

We consider the integral in (2.2),

I := p.v.
1�

−1

(1− tx0)α−1 − 1
|t|1+α

dt = lim
ε→0+

(Jε(x0) + Jε(−x0)),

where

Jε(x0) =
1�

ε

(1− tx0)α−1 − 1
t1+α

dt =
1�

ε

(
1
t
− x0

)α−1dt

t2
− ε−α − 1

α

=
1
α

(
1
ε
− x0

)α
− 1
α

(1− x0)α −
ε−α − 1

α

=
1
α
− 1
α

(1− x0)α +
(1− εx0)α − 1

αεα
.

By the l’Hôpital rule we find that

I =
2
α
− 1
α

(1− x0)α −
1
α

(1 + x0)α,

and the first part of the lemma is proved.
We have

I(α/2) = p.v.
1�

−1

(1− tx)−1 − 1
|t|1+α

(1− t2)α/2 dt

=
1�

−1

∑∞
k=2(tx)

k

|t|1+α
(1− t2)α/2 dt = 2

1�

0

∑∞
k=1(tx)

2k

|t|1+α
(1− t2)α/2 dt

=
∞∑
k=1

B(k − α/2, 1 + α/2)x2k

= Γ (1 + α/2)Γ (−α/2)
( ∞∑
k=0

x2kΓ (k − α/2)
Γ (−α/2)k!

− 1
)

=
2B(1 + α/2, 1− α/2)

α
(1− (1− x2)α/2).
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Calculating I(p) for p = (α− 1)/2, p = (α− 2)/2 and p = (α− 3)/2 is easy
and will be omitted.

We will apply Lemma 2.1 only to p = (α− 1)/2. The fractional Lapla-
cian applied to uα/2 extended to be zero on R \ (−1, 1) was calculated by
using the Fourier transform and hypergeometric function in [12]. From those
calculations we may confirm our formula for Luα/2, and consequently for
I(α/2). Also the value of Lu(α−2)/2 can be calculated from known results.
Namely,

u(α−2)/2(x) =
1
2
(K(x,−1) +K(x, 1)) for |x| < 1,

where K(x,Q) = (1− x2)α/2/|x−Q| is the Martin kernel for the interval
[2, (3.36)]. Hence u(α−2)/2(x) extended to be zero on R \ (−1, 1) annihilates
on (−1, 1) the fractional Laplacian (see [4, Chapter 3] and [3, (3.14)]).

The next lemma may be considered a special case of Proposition 2.3 of
[10] (see also [8]). For the reader’s convenience we give an elementary proof
following [5].

Lemma 2.2. Let D ⊂ Rn be an open set. For every u ∈ Cc(D) and any
strictly positive function w ∈ C2(D) ∩ L1(D, (1 + |x|)−n−α dx), we have

E(u) =
�

D

u(x)2
−Lw(x)
w(x)

dx+
1
2

�

D

�

D

(
u(x)
w(x)

− u(y)
w(y)

)2 w(x)w(y)
|x− y|n+α

dx dy.

Proof. We have

(u(x)− u(y))2 + u(x)2
w(y)− w(x)

w(x)
+ u(y)2

w(x)− w(y)
w(y)

=
(
u(x)
w(x)

− u(y)
w(y)

)2

w(x)w(y).

We integrate against 1{|x−y|>ε}|x− y|−n−α dx dy, and let ε→ 0. We can use
Taylor’s expansion for w and the compactness of the support of u to justify
an application of the Lebesgue dominated convergence theorem.

We next state a result analogous to the ground state representation ob-
tained for half-spaces and Rn\{0} by Frank and Seiringer [10, 11] (we return
to considering D = (−1, 1) and n = 1).

Lemma 2.3. Let 0 < α < 2. Let w(x) = (1 − x2)(α−1)/2. For every
u ∈ Cc(−1, 1),
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E(u) =
1
2

1�

−1

1�

−1

(
u(x)
w(x)

− u(y)
w(y)

)2 w(x)w(y)
|x− y|1+α

dx dy

+ 2ακ1,α

1�

−1

u(x)2(1− x2)−α dx

+
1
α

1�

−1

u(x)2[2α − (1 + x)α − (1− x)α](1− x2)−α dx.

Proof of Lemma 2.3. The result follows immediately from Lemma 2.2
applied to w(x) = (1− x2)(α−1)/2 and Lemma 2.1 with p = (α− 1)/2.

Proof of Theorem 1.1. By scaling we may and do assume that a = −1
and b = 1. By Lemma 2.3 it is enough to verify that

(2.3) 2α− (1 + x)α− (1− x)α ≥ (2α− 2)(1− x2), 1 ≤ α ≤ 2, 0 ≤ x ≤ 1.

Substituting u = x2, it suffices to prove that

g(u) = (2α − 2)u− (1−
√
u)α − (1 +

√
u)α + 2

is concave, or

g′(u) = 2α − 2 +
α

2
√
u

((1−
√
u)α−1 − (1 +

√
u)α−1)

is decreasing. We substitute u = t2 and observe that

(1− t)α−1 − (1 + t)α−1

t
=
h(t)− h(0)

t
,

where h(t) = (1 − t)α−1 − (1 + t)α−1. Since h is concave, the function t 7→
(h(t)− h(0))/t is decreasing, and so too is g′. This proves (2.3) and (1.3).

The fact that κ1,α in (1.3) is optimal follows from [16].

The constant 2α−2 in (2.3) is the largest possible (consider x = 0). How-
ever it is not clear if the constant (4− 23−α)/(α(b− a)) is optimal in (1.3).

Proof of Theorem 1.2. The proof is analogous to the proof of Theorem 1.1
in [16], but instead of applying [16, Corollary 2.3] we use Theorem 1.1. For
the reader’s convenience we repeat part of the argument of Loss and Sloane.
We denote by Lw the (n − 1)-dimensional Lebesgue measure on the plane
x · w = 0. By [16, Lemma 2.4 and Corollary 2.3], writing

� � �
=

�

Sn−1

dw
�

{x :x·w=0}

dLw(x)
�

x+sw∈D
ds,

we find that
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E(u) =
1
4

� � � �

x+tw∈D
dt
|u(x+ sw)− u(x+ tw)|2

|s− t|1+α

≥ κ1,α
1
2

� � �
u(x+ sw)2

[
1

dw(x+ sw)
+

1
δw(x+ sw)

]α
+

4− 23−α

2α

� � �
u(x+ sw)2

[
1

dw(x+ sw)
+

1
δw(x+ sw)

]α−1

× 1
dw(x+ sw) + δw(x+ sw)

= κ1,α
1
2

�

Sn−1

dw
�

D

u(x)2
[

1
dw,D(x)

+
1

δw,D(x)

]α
dx

+
4− 23−α

2α

�

Sn−1

dw
�

D

u(x)2
[

1
dw,D(x)

+
1

δw,D(x)

]α−1

× 1
dw,D(x) + δw,D(x)

dx

≥ κn,α
�

D

u(x)2

Mα(x)α
dx+

λn,α
diamD

�

D

u(x)2

Mα−1(x)α−1
dx.

In the last line we have used [16, (7)], which is valid for any α > 0, hence
also for α− 1 in place of α. This proves (1.5).

Inequality (1.6) follows from [16, (9)], which is also valid for any α > 0.
Proof of Corollary 1.3. The equality follows from Lemma 2.3 and the

following formula, where we take D = (−1, 1) in the definition of E(u):

1
2

�

R

�

R

(u(x)− u(y))2

|x− y|1+α
dx dy = E(u) +

1�

−1

u(x)2
(1 + x)−α + (1− x)−α

α
dx

(2.4)

=
1
2

1�

−1

1�

−1

(
u(x)
w(x)

− u(y)
w(y)

)2 w(x)w(y)
|x− y|1+α

dx dy

+
2α(κ1,αα+ 1)

α

1�

−1

u(x)2(1− x2)−α dx.

The sharpness of the constant
B
(

1+α
2
, 2−α

2

)
α2α in (1.7) follows from [16].
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