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AND APPLICATIONS
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Abstract. A second-order differential identity for the Riemann tensor is obtained
on a manifold with a symmetric connection. Several old and some new differential iden-
tities for the Riemann and Ricci tensors are derived from it. Applications to manifolds
with recurrent or symmetric structures are discussed. The new structure of K-recurrency
naturally emerges from an invariance property of an old identity due to Lovelock.

1. Introduction. Given a symmetric connection on a smooth manifold,
one introduces the covariant derivative and the Riemann curvature tensor
Rabc

d = ∂bΓ
d
ac−∂aΓ

d
bc +Γ k

acΓ
d
bk−Γ d

akΓ
k
bc. The tensor is antisymmetric in a, b

and satisfies the two Bianchi identities, R(abc)
d = 0 and ∇(aRbc)d

e = 0 (1).
The latter represents the closedness of the curvature 2-form associated to
the Riemann tensor Ωc

d = −1
2Rabc

ddxa ∧ dxb [BE, LO] in the absence of
torsion.

From the Bianchi identities various others for the Riemann tensor and
the Ricci tensor Rac = Rabc

b can be derived. The following first-order one is
due to Oswald Veblen [EI, LO]:

(1.1) ∇aRbcd
e −∇bRadc

e +∇cRadb
e −∇dRbca

e = 0.

If the connection comes from a metric, Walker’s identity of the second order
holds [WA, SC]:

(1.2) [∇a,∇b]Rcdef + [∇c,∇d]Rabef + [∇e,∇f ]Rabcd = 0,

and if the Ricci tensor vanishes, Lichnerowicz’s nonlinear wave equation
holds [HU, MTW]:

(1.3) ∇e∇eRabcd +Rab
efRefcd − 2Re

ac
fRebdf + 2Read

fRe
bcf = 0.
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(1) Hereafter the symbol (· · · ) denotes a summation over cyclic permutations of tensor
indices; for example, K(abc) = Kabc + Kbca + Kcab [PO]. In particular, if Kabc = −Kbac

the cyclic summation (abc) equals, up to a factor, the complete antisymmetrization [abc].
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In this paper we derive, with the only requirement that the connection
be symmetric, a useful identity for the cyclic combination ∇(a∇bRcd)e

f . An
identity due to Lovelock for the divergence of the Riemann tensor follows
from it. We show that Lovelock’s identity holds more generally for curvature
tensors K originating from the Riemann tensor (Weyl, concircular etc.).

The main identity and Lovelock’s enable us to obtain in a unified manner
various known identities, and some new ones, which apply on Riemannian
spaces with structures. In Section 3 we show that various properties of the
Riemannian metric, such as being (a) locally symmetric, (b) nearly confor-
mally symmetric, (c) semisymmetric, (d) pseudosymmetric, (e) generalized
recurrent, lead to the same set of algebraic identities for the Riemann tensor.
We then introduce new structures, K-harmonic and K-recurrent, that also
yield the same set of identities, and include cases (a), (b), (e) and others,
that arise from different choices of the tensor K.

In Section 4, weakly Ricci symmetric structures are considered, with
their associated covectors A, B, D. We show that one of the above algebraic
identities holds iff the covector field A−B is closed. We end with Section 5,
where we derive Lichnerowicz’s wave equation for the Riemann tensor from
the main equation.

2. A second order identity. We begin with the main identity; as a
corollary we derive an identity due to Lovelock which is used throughout
the paper, and a generalization of it, for various curvature tensors K.

Main Theorem 2.1 (The second order identity). On a smooth differ-
entiable manifold with a symmetric connection,

(2.1) ∇(a∇bRcd)e
f = −R(abc

mRd)me
f +Race

mRbdm
f −Racm

fRbde
m.

Proof. Take the covariant derivative of the second Bianchi identity, and
sum over cyclic permutations of the four indices abcd:

0 = ∇a∇(bRcd)e
f +∇b∇(cRda)e

f +∇c∇(dRab)e
f +∇d∇(aRbc)e

f(2.2)

= 2∇(a∇bRcd)e
f + [∇b,∇a]Rcde

f + [∇c,∇b]Rdae
f

+ [∇d,∇c]Rabe
f + [∇a,∇d]Rbce

f + [∇a,∇c]Rdbe
f

+ [∇b,∇d]Race
f .

The action of a commutator on the curvature tensor gives quadratic terms:

[∇a,∇b]Rcde
f = Rabc

kRkde
f +Rabd

kRcke
f +Rabe

kRcdk
f −Rabk

fRcde
k,

that produce 24 quadratic terms. Eight of them cancel because of the anti-
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symmetry of R and the remaining ones can be grouped as follows:

= 2∇(a∇bRcd)e
f − 2Race

sRbds
f − 2Racs

fRdbe
s

+Rsce
f (Radb

s +Rbda
s +Rabd

s) +Rsbe
f (Rdca

s +Racd
s +Rdac

s)

+Rase
f (Rdcb

s +Rbdc
s +Rbcd

s) +Rdse
f (Rcba

s +Racb
s +Rabc

s).

The last two lines simplify by the first Bianchi identity:

= 2∇(a∇bRcd)e
f − 2Race

sRbds
f − 2Racs

fRdbe
s + 2Rsce

fRadb
s − 2Rsbe

fRcda
s

+ 2Rase
fRbcd

s − 2Rsde
fRabc

s.

Four terms are seen to be a cyclic summation (abcd).

The contraction of f with the index e gives an equation for the antisym-
metric part of the Ricci tensor (which, essentially, coincides with Rabc

c by
the first Bianchi identity):

Corollary 2.2. If Uab = Rab −Rba then ∇(a∇bUcd) = −R(abc
mUd)m.

The contraction of f with the index a leads to an identity for the diver-
gence of the Riemann tensor ([LO, Ch. 7]), which will be used extensively.
We refer to it as

Corollary 2.3 (Lovelock’s differential identity).

(2.3) ∇a∇mRbce
m +∇b∇mRcae

m +∇c∇mRabe
m

= −RamRbce
m −RbmRcae

m −RcmRabe
m.

Proof. The contraction gives

∇(a∇bRcd)e
a = −R(abc

mRd)me
a +Race

mRbdm
a +RcmRbde

m.

The two cyclic sums are now written explicitly:

∇a∇bRcde
a +∇b∇cRde −∇c∇dRbe +∇d∇aRbce

a = −Rabc
mRdme

a

+Rbcd
mRme −Rcda

mRbme
a −Rdab

mRcme
a +Race

mRbdm
a +RcmRbde

m.

Next the order of the covariant derivatives is exchanged in the first term of
the l.h.s. Some terms just cancel and a triplet vanishes by a Bianchi identity.
One gets ∇b∇aRcde

a +∇b∇cRde −∇c∇dRbe +∇d∇aRbce
a = −RbaRcde

a +
RaeRbcd

a + RcaRbde
a. A Ricci term on the l.h.s. is replaced with the iden-

tity ∇c∇dRbe = ∇c(∇bRde − ∇aRdbe
a). The l.h.s. becomes ∇b∇aRcde

a +
∇c∇aRdbe

a + ∇d∇aRbce
a + [∇b,∇c]Rde. It is a cyclic sum on (bcd) plus

a commutator. The latter is moved to the r.h.s. and evaluated. A can-
cellation of two terms occurs and the r.h.s. ends up as a cyclic sum too:
−Rbce

aRda −Rcde
aRba −Rdbe

aRca.

Remark. In the Riemannian case, the left-hand side of the identity (2.3)
is the exterior covariant derivative DΠc [LO] of the 2-form associated to the
divergence of the curvature tensor, Πc = ∇dRabc

ddxa ∧ dxb. This identity
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and its various generalizations are referred to as the “Weitzenböck formula”
(for curvature-like tensors) (see (4.2) in [BO]).

Note that Lovelock’s identity implies that the closedness condition DΠc

= 0 is equivalent to the algebraic relation

(2.4) RamRbce
m +RbmRcae

m +RcmRabe
m = 0.

Lovelock’s identity is left unchanged if the divergence of the Riemann
tensor on the l.h.s. is replaced by the divergence of any curvature tensor K
with the property

(2.5) ∇mKbce
m = A∇mRbce

m +B (abe∇cϕ− ace∇bϕ),

where A and B are nonzero constants, ϕ is a real scalar function and abc is a
symmetric (0, 2) Codazzi tensor, i.e. ∇bacd = ∇cabd [DR2]. This conclusion
also follows from formula (4.8) in Bourguignon’s paper, cited above.

Some curvature tensors K with the property (2.5) and trivial Codazzi
tensor (i.e. constant multiple of the metric) are well known: Weyl’s confor-
mal tensor C [PO], the projective curvature tensor P [EI], the concircular
tensor C̃ [YA1, SC], the conharmonic tensor N [MI, SI1] and the quasi-
conformal curvature tensor W [YA2]. Their definitions and some identities
used in this paper are collected in the appendix. Since in the next section we
introduce the concept of K-recurrency, and Weyl’s tensor will be considered
in Section 4, we give a proof of this statement:

Proposition 2.4.

(2.6) ∇a∇mKbce
m +∇b∇mKcae

m +∇c∇mKabe
m

= −A[RamRbce
m +RbmRcae

m +RcmRabe
m].

Proof. The covariant derivative∇a of (2.5) is evaluated and then summed
with indices chosen as in Lovelock’s identity. Since the connection is assumed
to be symmetric, we obtain

∇a∇mKbce
m +∇b∇mKcae

m +∇c∇mKabe
m

= A[∇a∇mRbce
m +∇b∇mRcae

m +∇c∇mRabe
m]

+B[(∇bace−∇cabe)∇aϕ+ (∇caae−∇aace)∇bϕ+ (∇aabe−∇baae)∇cϕ].

The last line is zero if abc is a Codazzi tensor. Lovelock’s identity is then
used to write the r.h.s. as in (2.6).

An apparently new Veblen-type identity for the divergence of the Rie-
mann tensor can be obtained by summing Lovelock’s identity with indices
cycled:
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Corollary 2.5.

(2.7) ∇a∇mRbec
m −∇b∇mRace

m +∇c∇mReba
m −∇e∇mRcab

m

= −RamRbec
m +RbmRace

m −RcmReba
m +RemRcab

m.

Proof. Write Lovelock’s identity (2.3) for all cyclic permutations of
(a, b, c, e) and sum them up. Simplify by using the first Bianchi identity.

We note that an analogous Veblen-type identity can be obtained for a
tensor K, starting from Proposition 2.4.

Corollary 2.6. On a manifold with a Levi-Civita connection,

(2.8) ∇m∇nRab
mn = 0.

Proof. Contract equation (2.3) with gce. The formula is reported in Love-
lock and Rund’s handbook [LO].

3. Symmetric and recurrent structures. From now on, we restrict
to Riemannian manifolds (Mn, g). If additional differential structures are
present, the differential identities (2.1), (2.3) and (2.7) simplify to interesting
algebraic constraints.

A simple example is given by a locally symmetric space [KO], i.e. a Rie-
mannian manifold such that ∇aRbcd

e = 0. Then the aforementioned identi-
ties imply straightforwardly the algebraic ones

R(abc
mRd)me

f −Race
mRbdm

f +Racm
fRbde

m = 0,(3.1)

RamRbce
m +RbmRcae

m +RcmRabe
m = 0,(3.2)

RamRbec
m −RbmRace

m +RcmReba
m −RemRcab

m = 0.(3.3)

We show that these identities hold in several circumstances. An example is a
manifold with harmonic curvature [BE], ∇aRbcd

a = 0; in this less stringent
case the general property (2.3) yields (3.2) and (3.3). A slightly more general
case is now considered:

Definition 3.1. A manifold is nearly conformally symmetric, (NCS)n,
(Roter [RO]) if

∇aRbc −∇bRac =
1

2(n− 1)
[gbc∇aR− gac∇bR],(3.4)

where R = Ra
a is the scalar curvature.

Since∇aRbc−∇bRac = −∇mRabc
m, (NCS)n is a special case of (2.5) with

∇mKbce
m = 0 (trivial Codazzi tensor and ϕ = R). Other particular cases are

K = 0 (K-flat) and ∇aKbcd
e = 0 (K-symmetric). They yield, for different

choices of K, various types of K-flat/symmetric manifolds [SI1]: conformally
flat/symmetric (K = C) [CH, DR1], projectively flat/symmetric (K = P )
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[GL], concircular or conharmonic symmetric [AD], and quasi conformally
flat/symmetric. By Proposition 2.4, the following is true:

Proposition 3.2. For (NCS)n manifolds, and for K-flat/symmetric
manifolds, equations (3.2) and (3.3) hold.

By weakening the defining condition of a locally symmetric space, one
introduces a semisymmetric space: [∇a,∇b]Rcde

f = 0 [SZ].

Proposition 3.3. For a semisymmetric space, equations (3.1)–(3.3) hold.

Proof. First statement: (2.2) simplifies to 0 = ∇(a∇bRcd)e
f ; by (2.1) the

identity (3.1) follows. Second and third statements: the definition implies
a relation for the Ricci tensor: [∇a,∇b]Rce = 0. By inserting the identity
∇mRabc

m = ∇bRac−∇aRbc in the l.h.s. of (2.3) and (2.7), those sides become
sums of respectively three and four commutators of derivatives acting on
Ricci tensors, and thus vanish. This implies (3.2) and (3.3).

The algebraic property (3.2) holds in the presence of even more general
differential structures.

Definition 3.4. A manifold is pseudosymmetric (Deszcz [DS2]) if

[∇a,∇b]Rcdef = LRQ(g,R)cdefab(3.5)

where LR is a scalar function and the Tachibana tensor is

Q(g,R)cdefab = − gcbRadef + gcaRbdef − gdbRcaef + gdaRcbef(3.6)
− gebRcdaf + geaRcdbf − gfbRcdea + gfaRcdeb.

Theorem 3.5. For pseudosymmetric manifolds, the identities (3.2) and
(3.3) hold.

Proof. The l.h.s. of (3.2) can be written as a sum of commutators acting
on Ricci tensors: [∇a,∇c]Rbe + [∇b,∇a]Rce + [∇c,∇b]Rae. A commutator is
obtained by contracting two indices in (3.5); for example, contraction of c
with f gives

[∇a,∇b]Rde = LR(−gdbRea + gdaReb − gebRda + geaRdb),

i.e. the Ricci-pseudosymmetry property [DS1]. Although each commutator is
nonzero, their sum vanishes. The Veblen type identity is proven in a similar
way.

We now show that (3.1), (3.2) or (3.3) holds in manifolds with a recurrent
structure.

Definition 3.6. A Riemannian manifold is a generalized recurrent man-
ifold if there exist two vector fields λa and µa such that

∇aRbcd
e = λaRbcd

e + µa(δbegcd − δcegbd).(3.7)
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Those manifolds were first introduced by Dubey [DU], and studied by
several authors [DE6, MA, AR]. In particular, if µa = 0 the manifold is a
recurrent space. Again, we shall prove that the algebraic identities (3.1), (3.2)
and (3.3) hold in this case. We need the following lemma, with a content
slightly different than the statement by Singh and Khan [SI2].

Lemma 3.7. On a generalized recurrent manifold with curvature scalar
R 6= 0:

(1) if the scalar curvature R is constant then λ is proportional to µ and
either λ is closed (i.e. ∇aλb −∇bλa = 0) or the manifold is a space
of constant curvature, Rabcd = R

n(n−1)(gbdgac − gadgbc);
(2) if the scalar curvature is not constant, then λ is closed.

Proof. We need some relations that easily come from (3.7): (a) the con-
traction a = e gives ∇aRbcd

a = λaRbcd
a +µbgcd−µcgbd; a further divergence

∇d gives zero on the l.h.s, by (2.8), and the r.h.s. in a few steps is evaluated
as

0 =
1
2

[(∇dλa)− (∇aλd)]Rbc
da − µbλc + µcλb +∇cµb −∇bµc;(3.8)

(b) the contraction of c = e in (3.7) yields ∇aRbd = λaRbd − (n − 1)µagbd,
and ∇aR = λaR − n(n− 1)µa; (c) the commutator of covariant derivatives
of the Riemann tensor of type (3.7) is

[∇a,∇b]Rcde
f = (∇aλb −∇bλa)Rcde

f(3.9)

+ (δcfgde − δdfgce)(∇aµb −∇bµa − λaµb + λbµa).

From (b) we conclude that if ∇aR = 0, then λ and µ are collinear (R is a
number). Then (3.8) simplifies to

0 =
1
2

[(∇dλa)− (∇aλd)]Rbc
da +

R

n(n− 1)
(∇cλb −∇bλc)(3.10)

=
1
2

[(∇dλa)− (∇aλd)]
[
Rbc

da +
R

n(n− 1)
δda
cb

]
≡ 1

2
AdaC̃bc

da

(C̃ is the (2, 2) concircular tensor and δda
cb = δa

bδ
d
c − δa

cδ
d
b). Also (3.9)

simplifies,

(3.11) [∇a,∇b]Rcde
f = AabC̃cde

f .

Walker’s identity (1.2) for the Riemann tensor (3.7) yields the algebraic
relation

0 = AabC̃cdef +AcdC̃abef +Aef C̃abcd.(3.12)

Now Walker’s lemma [WA] is invoked: it implies that either Aab = 0 or
C̃abcd = 0. We give a proof based on (3.10): 1) Saturate in (3.12) with Aef

and use (3.10) to get AefAef C̃abcd = 0, so C̃abcd = 0; 2) in the same way,
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by saturation with C̃cdef one gets C̃abcdC̃
abcdAef = 0, so Aef = 0. Therefore

either λ is closed or the manifold is a space of constant curvature.
We now discuss the case ∇aR 6= 0. Take the covariant derivative ∇b of

∇aR = λaR− n(n− 1)µa, and interchange a and b. Then

0 = AabR+ n(n− 1)[λaµb − λbµa −∇aµb +∇bµa].

Enter this in (3.8), (3.9), and get again (3.10), (3.11) where now C̃ 6= 0. The
same procedure as above gives A = 0, i.e. λ is closed.

Theorem 3.8. On a generalized recurrent manifold the properties (3.1)–
(3.3) hold.

Proof. If ∇R 6= 0 then, by Lemma 3.7, λ is always closed and, by (3.11),
the space is semisymmetric. Then (3.1)–(3.3) hold by Proposition 3.3.

If∇R = 0 then λ and µ are collinear (Lemma 3.7) and (3.11) holds again.
The lemma states that either λ is closed or the space has constant curvature.
In both cases the manifold is semisymmetric and (3.1)–(3.3) hold.

The aforementioned recurrent structures are special cases of a new one,
which we now define. It arises naturally from the invariance stated in (2.6)
stemming from Lovelock’s identity.

Definition 3.9. A Riemannian manifold with a curvature tensor K
such that (2.5) is true is called a K-recurrent manifold (KRM) if ∇aKbcd

e =
λaKbcd

e where λ is a nonzero covector field.

Therefore, KR-manifolds include, as special cases, those which are con-
formally-recurrent, concircular-recurrent etc. (see [KH] for a compendium).

In general, the Bianchi identity for a tensor K contains a tensor source B:
∇(aKbc)d

e = Babcd
e (see Appendix for some relevant examples). In a KRM

it reads λ(aKbc)d
e = Babcd

e. When λ is closed, one obtains a remarkable
property:

Theorem 3.10. On a KRM with closed λ,

RamRbce
m +RbmRcae

m +RcmRabe
m = − 1

A
∇mBabce

m.(3.13)

Proof. We have ∇a∇mKbcd
m = (∇aλm)Kbcd

m +λmλaKbcd
m. Cyclic per-

mutation on (abc) and summation yield

∇a∇mKbcd
m +∇b∇mKcad

m +∇c∇mKabd
m

= (∇aλm)Kbcd
m + (∇bλm)Kcad

m + (∇cλm)Kabd
m + λmλ(aKbc)d

m.

Evaluate ∇m of the Bianchi identity with e = m:

(∇mλ(a)Kbc)d
m + λmλ(aKbc)d

m = ∇mBabcd
m.

Use the closedness and Lovelock’s identity to conclude.
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Corollary 3.11. For the tensors K = C,P, C̃,N,W listed in the Ap-
pendix, Theorem 3.10 holds with null r.h.s.

Proof. In the Appendix one notes that∇mBabce
m is either 0 or a multiple

of the l.h.s. (different from A).

Remark. It is well known that concircular recurrency is equivalent to
generalized recurrency [AR, DU].

4. Weakly Ricci symmetric manifolds (WRS)n

Definition 4.1. A (WRS)n is a Riemannian manifold with nonzero
Ricci tensor such that

∇aRbc = AaRbc +BbRac +DcRab(4.1)

where A, B and D are nonzero covector fields.

These manifolds were introduced by Tamássy and Binh [TA], and include
the physically relevant Robertson–Walker space-times [DE3], or the perfect
fluid space-time [DE4]. If B = D = 0 the manifold is Ricci-recurrent. Most
of the literature concentrates on the difference B − D; it is known that in
(WRS)n that are conformally flat [DE1, DE5] or quasi-conformally flat [JA],
B −D is a concircular vector. We here show that Lovelock’s identity (2.3)
allows one to discuss new general properties of A, B, D.

Lemma 4.2. For α = A−B or A−D,

(4.2) Rcb(∇dαa −∇aαd) +Rca(∇bαd −∇dαb) +Rcd(∇aαb −∇bαa)
= −RdmRbac

m −RbmRadc
m −RamRdbc

m.

Proof. From the definition of (WRS)n and the contracted second Bianchi
identity ∇mRbac

m = ∇aRbc − ∇bRac one gets immediately ∇mRbac
m =

αaRbc − αbRac with α = A−B. A further covariant derivative gives

∇d∇mRbac
m = (∇dαa)Rbc − (∇dαb)Rac + αa∇dRbc − αb∇dRac.

Summation is done on cyclic permutation of d, b, a:

∇d∇mRbac
m +∇b∇mRadc

m +∇a∇mRdbc
m

= (∇dαa −∇aαd)Rbc + (∇bαd −∇dαb)Rac + (∇aαb −∇bαa)Rdc

+ αa(∇dRbc −∇bRdc) + αd(∇bRac −∇aRbc) + αb(∇aRdc −∇dRac).

The terms with derivatives of Ricci tensors vanish because ∇dRbc−∇bRdc =
αdRbc−αbRdc. Then, by (2.3), we obtain (4.2). The case α = A−D is proven
in the same way starting from the identity ∇mRabc

m = ∇bRac −∇aRbc.

Theorem 4.3. If rank[Ra
b] > 1 then B = D.

Proof. Let us assume that β = B − D is nonzero. Because the Ricci
tensor is symmetric, the antisymmetric part of (4.1) is 0 = βbRac − βcRab.
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Left multiplication by gab and summation on a give 0 = Rb
cβb−Rβc, where

R is the nonzero scalar curvature. On the other hand, multiplication by βb

gives 0 = βbβbRac −Rβaβc [DE2], i.e. the Ricci tensor has rank one.

Remark. The validitity of Lemma 4.2 for both A−B and A−D implies,
by subtraction, an equation for β:

Rcb(∇dβa −∇aβd) +Rca(∇bβd −∇dβb) +Rcd(∇aβb −∇bβa) = 0,(4.3)

and left multiplication by βc gives the differential identity

βb(∇dβa −∇aβd) + βa(∇bβd −∇dβb) + βd(∇aβb −∇bβa) = 0.(4.4)

Theorem 4.4. In a (WRS)n manifold with nonsingular Ricci tensor,
the covector A−B is closed iff

RdmRbac
m +RbmRadc

m +RamRdbc
m = 0.(4.5)

Proof. If A−B (which equals A−D because detR 6= 0) is closed then
(4.5) holds by Lemma 4.2. If the r.h.s. of (4.2) vanishes, then

Rcb(∇dαa −∇aαd) +Rca(∇bαd −∇dαb) +Rcd(∇aαb −∇bαa) = 0.

We raise the index c and multiply by (R−1)s
c:

δs
b(∇dαa −∇aαd) + δs

a(∇bαd −∇dαb) + δs
d(∇aαb −∇bαa) = 0.

Put s = b and sum: (n−2)(∇dαa−∇aαd) = 0. Then, if n > 2, α is closed.

(WRS)n manifolds of physical relevance that satisfy (4.5) are the confor-
mally flat WRS-manifolds, i.e. (WRS)n manifolds whose Weyl tensor (see
Appendix) vanishes [DE3, DE1].

Corollary 4.5. If a (WRS)n manifold is conformally flat and the Ricci
matrix is nonsingular, then A−B is closed.

Proof. The divergence of the Weyl tensor (Appendix) takes the form
(2.5), where the Codazzi tensor is gab. Because of the general Proposition
2.4 we have

∇a∇mCbdc
m +∇b∇mCdac

m +∇d∇mCabc
m

= −n− 3
n− 2

(RamRbdc
m +RbmRdac

m +RdmRabc
m).

If n > 3 and if the Weyl tensor itself or its covariant divergence vanishes,
Theorem 4.4 applies (for n = 3 Weyl’s tensor is zero).

5. A wave equation for the Riemann tensor

Proposition 5.1. For a Levi-Civita connection with Rab = 0, the con-
traction in (2.1) with gab yields Lichnerowicz’s nonlinear wave equation
(1.3).
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Proof. Since ∇agbc = 0, indices can be lowered or raised freely under
covariant derivation. The Riemann tensor gains the symmetry Rabcd = Rcdab

and the further condition Rab = 0 implies that ∇kRabc
k = 0. Equation (1.3)

follows immediately.

Appendix. We collect the useful formulae for the K-curvature tensors
in an n-dimensional Riemannian manifold: (a) definition, (b) divergence,
(c) cyclic sum of derivatives (unlike the second Bianchi identity, we get a
nonzero tensor B), (d) divergence of B (the r.h.s. of (c)).

Projective tensor :

(a) Pbcd
e = Rbcd

e +
1

n− 1
(δe

bRcd − δe
cRbd),

(b) ∇mPbcd
m =

n− 2
n− 1

∇mRbcd
m,

(c) ∇aPbcd
e +∇bPcad

e +∇cPabd
e

=
1

n− 1
(δe

a∇pRbcd
p + δe

b∇pRcad
p + δe

c∇pRabd
p),

(d) ∇mBabcd
m =

1
n− 1

(∇a∇pRbcd
p +∇b∇pRcad

p +∇c∇pRabd
p).

Conformal (Weyl) tensor :

(a) Cabc
d = Rabc

d +
δa

dRbc − δbdRac +Ra
dgbc −Rb

dgac

n− 2

−Rδa
dgbc − δbdgac

(n− 1)(n− 2)
,

(b) ∇mCabc
m =

n− 3
n− 2

[
∇mRabc

m +
1

2(n− 1)
(gbc∇aR− gac∇bR)

]
,

(c) ∇aCbcd
e +∇bCcad

e +∇cCabd
e

=
1

n− 2
[δe

a∇pRbcd
p + δe

b∇pRcad
p + δe

c∇pRabd
p

+ gcd(∇aRb
e −∇bRa

e) + gad(∇bRc
e −∇cRb

e)

+ gbd(∇cRa
e −∇aRc

e)]

− 1
(n− 1)(n− 2)

[δe
a(gbd∇cR− gcd∇bR)

+ δe
b(gcd∇aR− gad∇cR) + δe

c(gad∇bR− gbd∇aR)],

(d) ∇mBabcd
m =

1
n− 2

(∇a∇pRbcd
p +∇b∇pRcad

p +∇c∇pRabd
p).
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Concircular tensor :

(a) C̃bcd
e = Rbcd

e +
R

n(n− 1)
(δe

bgcd − δe
cgbd),

(b) ∇mC̃bcd
m = ∇mRbcd

m +
1

n(n− 1)
(∇bRgcd −∇cRgbd),

(c) ∇aC̃bcd
e +∇bC̃cad

e +∇cC̃abd
e =

1
n(n− 1)

[δe
a(∇cRgbd −∇bRgcd)

+ δe
b(∇aRgcd −∇cRgad) + δe

c(∇bRgad −∇aRgbd)],

(d) ∇mBabcd
m = 0.

Conharmonic tensor :

(a) Nbcd
e = Rbcd

e +
1

n− 2
[δbeRcd − δceRbd +Rb

egcd −Rc
egbd],

(b) ∇mNbcd
m =

n− 3
n− 2

∇mRbcd
m +

1
2(n− 2)

(∇bRgcd −∇cRgbd),

(c) ∇aNbcd
e +∇bNcad

e +∇cNabd
e

=
1

n− 2
[δae∇pRbcd

p + δb
e∇pRcad

p + δc
e∇pRabd

p

+ gcd(∇aRb
e −∇Re) + gad(∇bRc

e −∇cRb
e)

+ gcd(∇cRa
e −∇aRc

e)],

(d) ∇mBabcd
m =

1
n− 2

(∇a∇pRbcd
p +∇b∇pRcad

p +∇c∇pRabd
p).

Quasi-conformal tensor :

(a) Wbcd
e = aC̃bcd

e + b(n− 2)[Cbcd
e − C̃bcd

e],

(b) ∇mWbcd
m

= (a+ b)∇mRbcd
m +

2a− b(n− 1)(n− 4)
2n(n− 1)

(∇bRgcd −∇cRgbd),

(c) ∇aWbcd
e +∇bWcad

e +∇cWabd
e

= −b(n− 2)[∇aCbcd
e +∇bCcad

e +∇cCabd
e]

+ [a+ b(n− 2)][∇aC̃bcd
e +∇bC̃cad

e +∇cC̃abd
e],

(d) ∇mBabcd
m = −b(∇a∇pRbcd

p +∇b∇pRcad
p +∇c∇pRabd

p).
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