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NORM CONTINUITY OF WEAKLY QUASI-CONTINUOUS
MAPPINGS

BY
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Abstract. Let Q be the class of Banach spaces X for which every weakly quasi-
continuous mapping f : A→ X defined on an α-favorable space A is norm continuous at
the points of a dense Gδ subset of A. We will show that this class is stable under c0-sums
and `p-sums of Banach spaces for 1 ≤ p <∞.

1. Introduction. In 1974, I. Namioka [16] proved that every weakly
continuous mapping f from a countably Čech-complete space A into a Ba-
nach space X is norm continuous at the points of a dense Gδ subset of A.
It was conjectured that Namioka’s result remains valid for any α-favorable
space A. However, in 1985, M. Talagrand [19] gave an example of a weakly
continuous nowhere norm continuous mapping defined on an α-favorable
space. Therefore the following problem naturally arises:

Under what conditions on a Banach space X, every weakly quasi-conti-
nuous mapping from an α-favorable A into X is norm continuous at each
point of a dense Gδ subset of A?

During the past four decades similar problems have been considered by
several mathematicians: see e.g. [1, 4, 11, 12], [14]–[19] and the references
therein.

A Banach space X is said to have the property Q if every quasi-con-
tinuous mapping f defined on an α-favorable space A into (X,weak) is
norm-continuous on a dense Gδ subset of A. It is known that `∞ and `∞/c0
do not have the property Q [9]. However, the class of Banach spaces with the
property Q properly contains all Banach spaces which are weakly σ-frag-
mentable [5, 8]. It follows that this class includes all weakly Lindelöf Banach
spaces and Banach spaces with an equivalent Kadec norm [6, 9, 13].

In [8] and [9] a game characterization of Banach spaces X with the
property Q was obtained. In fact it was shown that the absence of winning
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strategy for one of the players in the fragmenting game on a Banach space
X guarantees the property Q, and that `∞ is not in the class Q.

In this paper, we use this characterization to show that if each member
of a family {Xγ}γ∈Γ of Banach spaces satisfies the property Q, then so do
the c0-sum and `p-sum of the family for 1 ≤ p <∞.

2. Preliminaries. Let A and X be topological spaces. Following Kem-
pisty [7], a mapping f : A → X is said to be quasi-continuous at a point
a0 ∈ A if for every open neighborhood U of f(a0), there exists an open set
V ⊂ A such that a0 ∈ V (the closure of V in A) and f(V ) ⊂ U .

The mapping f is called quasi-continuous if it is quasi-continuous at each
point of A.

Next, we introduce the following topological game on a topological
space A, which is a version of the classical Banach–Mazur game [2, 3]:

Two players α and β alternately select nonempty open subsets of A.
Player β begins the game by selecting a nonempty open set V1 ⊂ A. In
response, α selects some nonempty open subset W1 ⊂ V1. Inductively,
player β’s nth move is a nonempty open subset Vn ⊂ Wn−1 followed by
α’s nth move, a nonempty open subset Wn of Vn. Proceeding in this
fashion, the players generate a sequence (Vn,Wn)∞n=1 which is called a play.
Player α wins the play (Vn,Wn)∞n=1 if

⋂
n≥1 Vn =

⋂
n≥1Wn 6= ∅. Other-

wise β wins. A partial play is a finite sequence of sets consisting of the
first few moves of a play. A strategy s for player α is a rule which deter-
mines α’s move at each stage based on the game played so far. An s-play
is a play in which α selects his moves according to the strategy s. The
strategy s is said to be a winning strategy for the player α if every s-
play is won by α. A strategy for β can be defined similarly by switching
the sides. A is called α-favorable if there exists a winning strategy for α
in A.

Krom [10] and Raymond [18] have shown independently that a topolog-
ical space is Baire if and only if it is β-unfavorable. Hence every α-favorable
space is a Baire space.

Let τ and τ ′ be two topologies on a set X. The topological game
G(X, τ, τ ′) is played by two players Σ and Ω as follows:

Σ starts a game by taking a nonempty subset A1 of X. Then Ω selects
a nonempty relatively τ -open subset B1 of A1. In general if the selection
Bn of player Ω is already specified, Σ makes the next move by choosing
an arbitrary nonempty set An+1 contained in Bn. Continuing, the players
produce a sequence of nonempty sets A1 ⊇ B1 ⊇ A2 ⊇ · · · ⊇ An ⊇ Bn ⊇ · · · ,
which is called a play and will be denoted by p := (Ai, Bi)i≥1. The winning
rule is connected with the topology τ ′. Player Ω is said to win a play p :=
(Ai, Bi)i≥1 if the set

⋂
n≥1An is either empty or contains exactly one point
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x and for every τ ′-open neighborhood U of x, there is some positive n with
Bn ⊂ U . Otherwise Σ wins.

A partial play is a finite sequence which consists of the first few moves
A1 ⊇ B1 ⊇ A2 ⊇ · · · ⊇ Bn of the players. A strategy for either of the players
in G(X, τ, τ ′) can be defined as in the Banach–Mazur game.

The game G(X, τ, τ ′) (or the space X) is called Σ-unfavorable if there
does not exist a winning strategy for player Σ.

We have the following connection between the topological game and
dense τ ′-continuity of τ -quasi-continuous mappings:

Theorem 2.1 ([8, 9]). Let τ , τ ′ be two T1 topologies on a set X. Sup-
pose that for every τ ′-open set U and every point x ∈ U there exists a
τ ′-neighborhood V of x such that V τ ⊂ U . Then the following conditions are
equivalent:

(i) The game G(X, τ, τ ′) is Σ-unfavorable.
(ii) Every quasi-continuous mapping f : Z → (X, τ) from an α-favorable

space Z into (X, τ) is τ ′-continuous at all points of a subset which
is of second category in every nonempty open subset of Z.

In particular, when τ ′ is a metrizable topology, the set of τ ′-continuity points
is a dense Gδ subset of Z.

Let X be a Banach space. By applying the above result when τ ′ is the
norm topology and τ is the weak topology on X, we get the following result:

Corollary 2.2. The following assertions are equivalent:

(a) X does not have the property Q.
(b) There exists a strategy σ for player Σ in the game G(X,weak, ‖ · ‖)

such that for each σ-play (Ai, Bi)i≥1,⋂
n≥1

An 6= ∅ and norm-diam(An) > ε for each n ∈ N

for some ε > 0.

3. c0-sums of Banach spaces and the property Q. Let {(Xγ , ‖·‖γ) :
γ ∈ Γ} be a family of Banach spaces. The c0-sum of this family, denoted by
c0{Xγ : γ ∈ Γ}, is the set of all x ∈

∏
γ∈Γ Xγ such that for each ε > 0, the

set {γ : ‖x(γ)‖γ ≥ ε} is finite. This set equipped with the norm

‖x‖∞ = sup{‖x(γ)‖γ : γ ∈ Γ}

is a Banach space. Throughout this section, we will assume that X is the
Banach space c0{Xγ : γ ∈ Γ}, where {(Xγ , ‖ · ‖γ) : γ ∈ Γ} is a family of
Banach spaces.
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Lemma 3.1. Given ε > 0, player Ω has a strategy s in X such that for
every s-play (Ai, Bi)i≥1 either

⋂∞
i=1Ai = ∅ or for some n0 ∈ N and a finite

subset F ⊂ Γ ,

(3.1) {γ ∈ Γ : ‖x(γ)‖ > ε} ⊂ F for all x ∈ An0 .

Proof. Let A1 be the first choice of player Σ. Then the following cases
may happen:

(i1) For each x ∈ A1 and γ ∈ Γ , ‖x(γ)‖γ ≤ ε. In this case put F1 = ∅
and define B1 = s(A1) = A1.

(ii1) For some x1 ∈ A1 and γ1 ∈ Γ , ‖x1(γ1)‖γ1 > ε. Then define

B1 = s(A1) = {x ∈ A1 : ‖x(γ1)‖γ1 > ε}

as the first move of Ω and let F1 = {γ1}.

In step n ≥ 2, when the partial play pn = (A1, . . . , An) and finite subsets
F1 ⊆ · · · ⊆ Fn−1 of Γ have already been selected, we consider the following
possibilities:

(in) For each x ∈ An,

{γ ∈ Γ : ‖x(γ)‖γ > ε} ⊂ Fn−1.

In this situation, we define s(A1, . . . , An) = Bn and Fn = Fn−1.
(iin) There are some xn∈An and γn∈Γ −Fn−1 such that ‖xn(γn)‖γn>ε.

Let
Bn = s(A1, . . . , An) = {x ∈ An : ‖x(γn)‖γn > ε}

be the next move of Ω and define Fn = Fn−1 ∪ {γn}.

In this way, by induction on n, a strategy s for player Ω is defined. If for
some n0 ∈ N, (in0) is satisfied, then for F = Fn0 , (3.1) holds. Suppose that
for each n ∈ N, (iin) holds. We will show that

⋂
n≥1An = ∅. On the contrary,

let x ∈
⋂
n≥1An. Define Fx = {γ ∈ Γ : ‖x(γ)‖γ > ε}. Since x ∈ An for all

n ∈ N,
‖x(γn)‖γn > ε (n ∈ N).

Therefore Fx contains the infinite set
⋃
n≥1 Fn. However, by the definition,

Fx is finite. This contradiction shows that in this case
⋂
n≥1An = ∅.

Lemma 3.2. Suppose that X1, . . . , Xn are Banach spaces with the prop-
erty Q. Then G(

∏n
i=1Xi,weak, ‖ · ‖∞) is Σ-unfavorable.

Proof. Let f be a quasi-continuous mapping from an α-favorable space
A to

∏n
i=1Xi. Then for each 1 ≤ i ≤ n, πi ◦ f : A→ Xi is quasi-continuous,

where πi denotes the canonical projection map to the ith coordinate. Since
each Xi has the property Q, there is a dense Gδ subset Di of A such that
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πi ◦ f |Di is norm continuous. Define D =
⋂n
i=1Di. Clearly f is ‖ · ‖∞-

continuous on the dense Gδ set D. Hence the result follows from Theo-
rem 2.1.

Theorem 3.3. Let {Xγ : γ ∈ Γ} be a family of Banach spaces with the
property Q. Then c0{Xγ : γ ∈ Γ} has the property Q as well.

Proof. On the contrary, suppose that c0{Xγ : γ ∈ Γ} does not have the
property Q. Then by Corollary 2.2, player Σ has a strategy σ such that for
each σ-play (Ai, Bi)i≥1,

(3.2)
⋂
n≥1

An 6= ∅ and norm-diam(An) > ε

for some ε > 0 and all n ≥ 1. By Lemma 3.1, Ω has a strategy s such that
for each s-play (Ai, Bi)i≥1, either

⋂
n≥1An = ∅ or there is a finite subset F

of Γ such that

(3.3) ‖x(γ)‖γ ≤ ε for all x ∈ An0 and γ ∈ Γ − F.
However, by (3.2),

⋂
n≥1An 6= ∅. Therefore, we may assume that (3.3) holds.

We define a strategy s′ for player Ω as follows:
For 1 ≤ n < n0, let s′(A1, . . . , An) = s(A1, . . . , An). Suppose that

n ≥ n0 and the partial play pn = (A1, . . . , An) is specified. Let πF : c0{Xγ :
γ ∈ Γ} →

∏
γ∈F Xγ be the canonical projection πF ({xγ}γ∈Γ ) = {xγ}γ∈F .

Choose a relatively open subset Bn of An such that πF (Bn) is the response
of player Ω to the partial play (πF (A1), . . . , πF (An)) according to the strat-
egy whose existence is guaranteed by Lemma 3.2, and define s′(A1, . . . , An)
= Bn.

In this way, a strategy s′ for Ω in c0{Xγ : γ ∈ Γ} is defined. By
Lemma 3.2, G(

∏
γ∈F Xγ ,weak, ‖ · ‖∞) is Σ-unfavorable, hence there is a

play (πF (An), πF (Bn))n≥1 such that either
⋂∞
n=1 πF (An) = ∅ or for some

n0 ∈ N, ‖x(γ) − y(γ)‖γ < ε for all x, y ∈ An0 and γ ∈ F . Hence either⋂∞
n=1An = ∅ or ‖ · ‖∞-diam(An0) ≤ ε, by (3.3). This contradiction proves

the theorem.

4. The property Q for `p-sums of Banach spaces. For 1 ≤ p <∞,
we use `p{Xγ : γ ∈ Γ} to denote the Banach space of all x ∈

∏
γ∈Γ Xγ for

which the norm series

‖x‖p =
{∑
γ∈Γ
‖x(γ)‖pγ

}1/p

converges.

Lemma 4.1. Let {Xγ : γ ∈ Γ} be a family of Banach spaces and ε > 0.
Then player Ω has a strategy s in `p{Xγ : γ ∈ Γ} such that for each s-play
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(Ai, Bi)i≥1, either
⋂∞
i=1Ai = ∅ or there are some n0 ∈ N and a finite subset

F of Γ such that ∑
γ∈Γ−F

‖x(γ)‖pγ ≤ ε for all x ∈ An0.

Proof. Let player Σ start a game with a nonempty subset A1 of `p{Xγ :
γ ∈ Γ}. Then we distinguish the following two possibilities:

(i1) For each x ∈ A1,
∑

γ∈Γ ‖x(γ)‖pγ ≤ ε. In this case, put F1 = ∅ and
define B1 = A1 as the first choice of Ω.

(ii1) There is x1 ∈ A1 such that
∑

γ∈Γ ‖x1(γ)‖pγ > ε. By the definition,
there is a finite subset F1 ⊂ Γ such that

∑
γ∈F1

‖x1(γ)‖pγ > ε. We
can assume x1(γ) 6= 0 for each γ ∈ F1, and choose some δ1 > 0 such
that ‖x1(γ)‖pγ > δ1 for all γ ∈ F1 and

∑
γ∈F1

‖x1(γ)‖pγ > ε+ n1δ1,
where |F1| = n1. Define

B1 = s(A1)

= {x ∈ A1 : ‖x(γ)‖γ > (‖x1(γ)‖pγ − δ1)1/p for all γ ∈ F1}.
Then for each x ∈ B1, we have∑

γ∈F1

‖x(γ)‖pγ >
∑
γ∈F1

‖x1(γ)‖pγ − n1δ1 > ε.

In step k, when A1, . . . , Ak together with finite subsets F1, . . . , Fk−1 of
Γ have already been specified, we consider the following possibilities:

(ik)
∑

γ∈Γ−
Sk−1
i=1 Fi

‖x(γ)‖pγ ≤ ε for each x ∈ Ak. In this situation, let
Fk = Fk−1 and define Bk = s(Ak) = Ak as the next move of
player Ω.

(iik) There is some xk ∈ Ak such that
∑

γ∈Γ−
Sk−1
i=1 Fi

‖xk(γ)‖pγ > ε.

By the definition, we can find a finite subset Fk ⊂ Γ −
⋃k−1
i=1 Fi

such that
∑

γ∈Fk ‖xk(γ)‖pγ > ε. As before, we can assume that
xk(γ) 6= 0 for each γ ∈ Fk. Let |Fk| = nk and select δk > 0 such
that ‖xk(γ)‖pγ > δk for all γ ∈ Fk and

∑
γ∈Fk ‖xk(γ)‖pγ > ε+ nkδk.

Define

Bk = s(A1, . . . , Ak)

= {x ∈ Ak : ‖x(γ)‖γ > (‖xk(γ)‖pγ − δk)1/p for all γ ∈ Fk}
as the response of Ω to the partial play (A1, . . . , Ak). A similar
argument to the one in (ii1) can be used to prove that for each
x ∈ Bk,

∑
γ∈Fk ‖x(γ)‖pγ > ε.

In this way, by induction on k, a strategy s for Ω is defined. The following
two cases may happen:
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(1) There is some n0 ∈ N such that (in0) happens. In this situation, for
F =

⋃n0
i=1 Fi, we have∑

γ∈Γ−F
‖x(γ)‖pγ ≤ ε for all x ∈ An0 .

(2) For each n ∈ N, (iin) holds. In this case, we claim that
⋂∞
i=1Ai = ∅.

On the contrary, suppose that x ∈
⋂∞
i=1Ai. Then for each n ∈ N, we have∑

γ∈Γ
‖x(γ)‖pγ ≥

∑
γ∈

S
1≤i≤n Fi

‖x(γ)‖pγ =
n∑
i=1

∑
γ∈Fi

‖x(γ)‖pγ > nε.

Hence x /∈ `p{Xγ : γ ∈ Γ}. This contradiction proves our claim in this
case.

The proof of the following lemma is similar to the proof of Lemma 3.2,
hence it is omitted.

Lemma 4.2. Let X1, . . . , Xn be Banach spaces with the property Q. Then
G(`p{Xi : 1 ≤ i ≤ n},weak, ‖ · ‖p) is Σ-unfavorable.

Theorem 4.3. If {Xγ : γ ∈ Γ} is a family of Banach spaces with the
property Q, then `p{Xγ : γ ∈ Γ} has the property Q.

Proof. Let ε > 0. By Lemma 4.1, player Ω has a strategy s such that
for each s-play (Ai, Bi)i≥1, either

⋂
i≥1Ai = ∅ or there is n0 ∈ N such that

for some finite subset F of Γ ,

(4.1)
∑

γ∈Γ−F
‖x(γ)‖pγ ≤

εp

2p+1
for all x ∈ An0 .

According to Corollary 2.2, we may assume that (4.1) holds. We define a
strategy s′ for player Ω as follows:

For each 1 ≤ n < n0, let s′(A1, . . . , An) = s(A1, . . . , An). Suppose that
for n ≥ n0, A1, . . . , An have been selected. Let πF : `p{Xγ : γ ∈ Γ}
→
∏
γ∈F Xγ be the canonical map and Bn = s′(A1, . . . , An) be a rela-

tively open subset of An such that πF (Bn) is the answer of player Ω to
(πF (A1), . . . , πF (An)) according to the strategy whose existence is guaran-
teed by Lemma 4.2. In this way, a strategy s′ for Ω is determined.

By Lemma 4.2, G(`p{Xγ : γ ∈ F},weak, ‖ · ‖p) is Σ-unfavorable, so
that there is a play (πF (Ai), πF (Bi))i≥1 such that either

⋂
i≥1 πF (Ai) = ∅

or norm-diamπF (An0) < ε/21/p. In the first case
⋂
i≥1Ai = ∅. In the latter

case for each x, y ∈ An0 , we have

(4.2) ‖x− y‖pp ≤
∑
γ∈F
‖x(γ)− y(γ)‖pγ +

∑
γ∈Γ−F

‖x(γ)− y(γ)‖pγ .
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Since for each x, y ∈ An0 ,∑
γ∈F
‖x(γ)− y(γ)‖pγ ≤ {norm-diamπF (An0)}p < εp

2

and{ ∑
γ∈Γ−F

‖x(γ)− y(γ)‖pγ
}1/p

≤
{ ∑
γ∈Γ−F

‖x(γ)
∥∥∥p
γ
}1/p +

{ ∑
γ∈Γ−F

‖y(γ)‖pγ
}1/p

≤ ε

2(p+1)/p
+

ε

2(p+1)/p
=

ε

21/p
,

by (4.2), ‖x− y‖p ≤ ε for each x, y ∈ An0 . Therefore norm-diam(An0) ≤ ε.
Corollary 2.2 implies that `p{Xγ : γ ∈ Γ} has the property Q.
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81 (1979), 239–251.

Alireza Kamel Mirmostafaee
Center of Excellence in Analysis on Algebraic Structures
Department of Pure Mathematics
Ferdowsi University of Mashhad
P.O. 1159 Mashhad, Iran
E-mail: mirmostafaei@ferdowsi.um.ac.ir

Received 3 April 2010;
revised 22 July 2010 (5357)

http://dx.doi.org/10.1016/j.topol.2006.02.007



	Introduction
	Preliminaries
	c0-sums of Banach spaces and the property Q
	The property Q for p-sums of Banach spaces

