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Abstract. Let s(n) :=
P
d|n, d<n d denote the sum of the proper divisors of the

natural number n. Two distinct positive integers n and m are said to form an amicable
pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers.
The first example of an amicable pair, known already to the ancients, is {220, 284}. We
do not know if there are infinitely many amicable pairs. In the opposite direction, Erdős
showed in 1955 that the set of amicable numbers has asymptotic density zero.

Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n
whenever the prime p divides n. As shown by Erdős and Szekeres in 1935, the number of
`-full n ≤ x is asymptotically c`x

1/`, as x→∞. Here c` is a positive constant depending
on `.

We show that for each fixed `, the set of amicable `-full numbers has relative density
zero within the set of `-full numbers.

1. Introduction. Let s(n) :=
∑

d|n, d<n d be the sum of the proper
divisors of the natural number n. Two distinct natural numbers n and m
are said to form an amicable pair if s(n) = m and s(m) = n; in this case,
both n and m are called amicable numbers. The first amicable pair, 220
and 284, was known already to the Pythagorean school. Despite their long
history, we still know very little about such pairs. For example, we know
over 10 million examples [19] (cf. [11]), but we have no proof that there are
infinitely many. In the opposite direction, Erdős [5] showed in 1955 that the
set of amicable numbers has asymptotic density zero. The strongest result
of this type is due to Pomerance [23].

Another unsolved problem concerns the existence of an amicable pair of
opposite parity. It is easy to prove (see, e.g., [12]) that in such a pair, the
odd member is a square and the even member is either a square or twice a
square. Thus, it is natural to ask how often s(n2) is a perfect square or twice
a square. Iannucci and Luca [18] have shown that the number of n ≤ x for
which s(n2) is a square is bounded by x/(log x)3/2+o(1), as x→∞, and their
method yields the same estimate for how often s(n2) is twice a square. As a
corollary, the set of n for which n2 is amicable has asymptotic density zero.
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Squares are an example of 2-full numbers. Here the natural number n is
called `-full if every prime dividing n appears to at least the `th power in
the prime factorization of n. It is known (see [9]) that the number of `-full
numbers n ≤ x is asymptotically c`x

1/`, as x → ∞, where c` is a positive
constant depending on `.

Our main result is the following:

Theorem 1.1. Fix ` ≥ 1. As x → ∞, only o(x1/`) of the `-full natural
numbers not exceeding x are amicable.

Note that the case ` = 1 is exactly the theorem of Erdős quoted in the
opening paragraph.

Our method is entirely different from that of Iannucci and Luca. We
adopt two strategies, depending on the parity of `. If ` is odd, we show that
an `-full number n usually satisfies either n < s(n) < s(s(n)) or n > s(n) >
s(s(n)). In neither case can n be amicable. The ideas here trace back to
Erdős [5] (see also [7]) and Erdős–Granville–Pomerance–Spiro [8]. Suppose
now that ` is even. We apply an elementary sieving argument to show that
for most `-full n, the number s(n) has many primes appearing to the first
power. Thus, σ(s(n)) is divisible by a large power of 2. On the other hand,
if n is amicable, then σ(s(n)) = σ(n). For most `-full numbers n, nearly
all of the primes dividing n show up to precisely the `th power; since ` is
even, these prime powers have odd σ-value. Thus, for an `-full number n,
we expect that σ(n) is only divisible by a small power of 2. So most `-full
numbers are not amicable.

Amicable numbers are a special class of sociable numbers. In the final
section of this paper, we review what it means for a number to be sociable,
and we prove the analogue of Theorem 1.1 for sociable numbers of a fixed
odd order.

Notation. Throughout, the letters p and q are reserved for primes. We
write P (n) for the largest prime divisor of n, with the understanding that
P (1) = 1. We say that n is y-smooth if P (n) ≤ y. We let ω(n) :=

∑
p|n 1

stand for the number of distinct prime divisors of n, and we write rad(n)
:=
∏
p|n p for the largest squarefree divisor of n. If d divides n and gcd(d, n/d)

= 1, we say that d exactly divides n, and we write d ‖n. We write νp(n) for
the largest integer satisfying pνp(n) |n (the p-adic order of n). We use 1C for
the indicator function of the set defined by the condition C; so, for example,
1v squarefree = µ2(v).

If S1 and S2 are subsets of the natural numbers, by the relative density
of S1 within S2 we mean the limit

lim
x→∞

#{n ≤ x : n ∈ S1}
#{n ≤ x : n ∈ S2}

,
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if it exists. The upper and lower relative densities are defined analogously,
with lim sup and lim inf replacing lim. We say that a property holds for
almost all m if it holds for all m outside of a set of density zero (or relative
density zero, depending on context). We use both the Landau–Bachmann
O-notation and Vinogradov’s � notation; implied constants are absolute
unless specified otherwise by subscripts. We write log1 x = max{1, log x},
and for k > 1, we let logk denote the kth iterate of log1.

2. Preliminaries for the case of odd `. Fix an odd natural num-
ber `. We begin by proving the following theorem, in which the lower-bound
half generalizes a theorem from [5] (see also [7]) and the upper-bound half
generalizes [8, Theorem 5.1]. In both our notation and our general strategy,
we follow [8] closely.

Theorem 2.1. For each fixed ε > 0, all but o(x1/`) of the `-full numbers
n ≤ x satisfy

(1)
s(n)
n
− ε ≤ s(s(n))

s(n)
≤ s(n)

n
+ ε.

Rather than treating all `-full numbers on an equal footing, we introduce
a certain convenient partition: For each `-full number n, we write n in the
form dv`, where d is (`+1)-full and v is squarefree. Then most `-full numbers
correspond to small values of d. Indeed, the number of `-full n ≤ x for which
d > y (say) is bounded by∑

d>y
d (`+1)-full

∑
v≤(x/d)1/`

1 ≤ x1/`
∑
d>y

d (`+1)-full

d−1/` �` x
1/`y−1/`(`+1).

It follows that to prove a result about almost all `-full numbers, such as
Theorem 1.1 or Theorem 2.1, we may assume that the (` + 1)-full part d
of n is fixed. Our task then becomes showing that as x → ∞, all but o(x)
of the squarefree v ≤ x coprime to d are such that n = dv` satisfies the
statement in question.

For the rest of this section, we assume the (`+ 1)-full number d is fixed.
Whenever we use v below, we always mean a squarefree integer coprime
to d, whether this is stated explicitly or not.

Lemma 2.2. Fix a natural number T . For each value of v with 1 < v ≤ x,
write

dv` = n1n2 and s(dv`) = N1N2,

where P (n1N1) ≤ T and every prime dividing n2N2 exceeds T . Then, except
for o(x) (as x→∞) choices of v, we have n1 = N1.
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Proof. At the cost of excluding o(x) values of v ≤ x, we may assume
that

n1 ≤ d(log2 x)1/2
(∏
p≤T

p
)−1

.

Indeed, in the opposite case, v` has a T -smooth divisor e := n1/(n1, d)
exceeding (log2 x)1/2(

∏
p≤T p)

−1. For each such e, let e1 be the minimal
integer with e | e`1. Since e | v`, we have that e1 | v; moreover, e1 ≥ e1/`. So
the number of v that may arise is at most

(2)
∑

e T -smooth
e>(log2 x)

1/2(
Q
p≤T p)

−1

∑
v≤x
e1|v

1 ≤ x
∑

e T -smooth
e>(log2 x)

1/2(
Q
p≤T p)

−1

1
e1/`

.

Observing that∑
e T -smooth

1
e1/`

=
∏
p≤T

(
1 +

1
p1/`

+
1
p2/`

+ · · ·
)
<∞,

we deduce that the right-hand side of (2) is o(x), as x→∞.
Now we show that for all but o(x) values of v ≤ x, the number σ(dv`)

is divisible by every natural number not exceeding (log2 x)2/3. Let m be a
natural number. For all but � x/(log x)1/ϕ(m) exceptional values of v ≤ x,
one can find a prime p ≡ −1 (mod m) for which p ‖ v (see [22, Theorem 2]).
If v is not exceptional, then

m | p+ 1 = σ(p) |σ(v) |σ(v`) |σ(d)σ(v`) = σ(dv`).

(Here the relation σ(v) |σ(v`) holds because v is squarefree and ` is odd,
and the final equality holds since d is coprime to v.) Summing over m ≤
(log2 x)2/3, we see that the number of v that we must exclude is

�
∑

m≤(log2 x)
2/3

x

(log x)1/ϕ(m)
≤ x(log2 x)2/3(log x)−1/(log2 x)

2/3

≤ x(log2 x)2/3 exp(−(log2 x)1/3) = o(x),

as x→∞.
If v is not excluded by the considerations of the first paragraph, then for

large x,
n1

∏
p≤T

p ≤ d(log2 x)1/2 ≤ (log2 x)2/3.

Furthermore, if v is not excluded by the considerations of the second para-
graph, we have n1

∏
p≤T p |σ(dv`). So, apart from o(x) exceptional values

of v, we have
s(dv`) ≡ −dv`

(
mod n1

∏
p≤T

p
)
.
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This congruence implies that n1 divides s(dv`) and that s(dv`)/n1 is coprime
to
∏
p≤T p. Hence, s(dv`) has T -smooth part exactly n1, i.e., n1 = N1.

Proof of the lower bound in Theorem 2.1. Fix δ > 0. We will show that
the number of n ≤ x for which the left-hand inequality in (1) fails is smaller
than 3δx, once x is large.

First, we show that we can fix a number B so that σ(dv`)/dv` ≤ B,
except for at most δx exceptional v ≤ x. This follows from a first moment
argument: We have∑

v≤x

σ(dv`)
dv`

=
σ(d)
d

∑
v≤x

∑
e|v`

1
e

=
σ(d)
d

∑
e

1
e

∑
v≤x
e|v`

1

≤ x
(
σ(d)
d

∑
e

1
e · rad(e)

)
,

where we use the fact that rad(e) divides v whenever e divides v`. Since∑
e

1
e · rad(e)

=
∏
p

(
1 +

1
p2

+
1
p3

+ · · ·
)
<∞,

we obtain our claim with

B = δ−1σ(d)
d

∑
e

1
e · rad(e)

.

Next, we show that we can choose a fixed T so that, with n2 defined as
in Lemma 2.2, we have

σ(n2)
n2

≤ exp(ε/B)

except for at most δx exceptional v ≤ x. Again, we use a first moment
argument. We may assume that T > d, so that any prime p > T which
divides dv` necessarily divides v. Then∑

v≤x
log

σ(n2)
n2

≤
∑
v≤x

∑
p|v
p>T

log
(

1 +
1
p

+
1
p2

+ · · ·
)

≤
∑
v≤x

∑
p|v
p>T

1
p− 1

≤ x
∑
p>T

1
p(p− 1)

<
x

T
.

Now choosing T = dB/(δε)e, we have our claim.
Lemma 2.2 gives that for large x, we have n1 = N1 except for at most

δx values of v ≤ x.
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If v is not in any of the exceptional classes defined above, then

σ(s(dv`))
s(dv`)

=
σ(N1N2)
N1N2

≥ σ(N1)
N1

=
σ(n1)
n1

=
σ(dv`)/dv`

σ(n2)/n2

≥ σ(dv`)
dv`

exp
(
− ε

B

)
≥ σ(dv`)

dv`

(
1− ε

B

)
≥ σ(dv`)

dv`
− ε.

Subtracting 1, we obtain exactly the left-hand inequality in Theorem 2.1,
with n = dv`. Note that the number of exceptional v is at most 3δx, as
claimed.

For a given α, we call the natural number n an α-primitive number if
s(n)/n ≥ α while s(d)/d < α for every proper divisor d of n. (Traditionally,
these are called primitive (1 + α)-abundant numbers, but the shorter name
will be typographically convenient.) We use the following estimate of Erdős
[6, p. 6], which is proved by the method of [4]. A weaker result, still strong
enough for our purposes, could be derived by a small modification of the
proof in [3].

Lemma 2.3. Fix a positive rational number α. There is a constant c =
c(α) > 0 and an x0 = x0(α) so that for x > x0, the number of α-primitive
numbers not exceeding x is bounded by

x

exp(c
√

log x log2 x)
.

We also need the following technical lemma, which asserts the rarity of
numbers with an inordinately large number of prime factors.

Lemma 2.4. We have ∑
a:ω(a)>10` log2 a

`ω(a)

a
<∞.

Proof. For j ≥ 1, let Sj denote that portion of the series corresponding
to those values of a with 2j−1 < a ≤ 2j . For large values of j, we have, with
y := 2j ,

Sj ≤
∑
a≤y

ω(a)≥9` log2 y

`ω(a)

a
≤

∑
k≥9` log2 y

1
k!

(∑
p≤y

`

(
1
p

+
1
p2

+
1
p3

+ · · ·
))k

≤
∑

k≥9` log2 y

1
k!

(`(log2 y +O(1)))k.

Considering the ratio of successive terms, we see that the remaining sum is
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dominated by the smallest value of k. So putting k0 = d9` log2 ye, we have

Sj �
1
k0!

(`(log2 y +O(1)))k0 ≤
(
e`(log2 y +O(1))

k0

)k0
≤ 1

3k0
≤ 1

(log y)9` log 3
<

1
(log y)9

� 1
j9
,

once j is large. Hence,
∑

j≥1 Sj <∞, as desired.

Proof of the upper bound in Theorem 2.1. We may assume that 0<ε<1.
Let δ > 0 be given. Fix η ∈ (0, 1) small enough that for all large x, all of
the v ≤ x, with at most δx exceptions, satisfy

(3) P (v) > xη and P (v) ‖ v.

To see that such a choice of η is possible, one can invoke standard results on
smooth numbers (e.g., Dickman’s theorem) or appeal to Brun’s sieve. Next,
choose a fixed number B ≥ 1 so that all but δx of the v ≤ x satisfy

(4) σ(dv`)/dv` ≤ B;

that such a choice of B is possible was justified in the lower-bound half of
the proof. Fix positive rational numbers α1 and α2 satisfying

α1 ≤
ε

4B
, α2 ≤

α1η

32`
.

Finally, fix a natural number T which is sufficiently large with respect to the
αi, η, B, d, and `; the exact meaning of “sufficiently large” will be specified
in the course of the proof.

Suppose that the right-hand inequality in (1) fails for n = dv`. We
assume that v satisfies both (3) and (4). Then

σ(s(dv`))
s(dv`)

≥ σ(dv`)
dv`

+ ε.

We now apply Lemma 2.2, which allows us to assume, at the cost of excluding
δx values of v ≤ x, that n1 = N1. Thus,

σ(N2)/N2

σ(n2)/n2
=
σ(s(dv`))/s(dv`)
σ(dv`)/dv`

≥ 1 +
ε

σ(dv`)/dv`
≥ 1 +

ε

B
≥ 1 + 4α1.

In particular,

(5)
σ(N2)
N2

≥ 1 + 4α1.

We can assume our choice of T was such that, apart from at most δx
exceptional v,

(6)
σ(n2)
n2

≤ 1 + α1.
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Indeed, the argument for the analogous claim in the proof of the lower
bound shows it is sufficient that T > max{d, (δ log(1 +α1))−1}. Henceforth,
we assume (6). Now write N2 = N3N4, where every prime dividing N3

divides dv`, while N4 is coprime to dv`. Note that every prime dividing N3

divides n2. Hence,

σ(N3)
N3

≤
∏
p|N3

(
1 +

1
p− 1

)
=
(∏
p|N3

p2

p2 − 1

) ∏
q|N3

q + 1
q

≤
(∏
p>T

p2

p2 − 1

)
σ(n2)
n2

≤ 1 + 2α1,

using (6) and assuming an initial appropriate choice of T . So from (5),

σ(N4)
N4

=
σ(N2)/N2

σ(N3)/N3
≥ 1 + 4α1

1 + 2α1
≥ 1 + α1.

It follows that there is an α1-primitive number a1 dividing N4. Note that
each prime dividing a1 exceeds T .

We next claim that there is an α2-primitive number a2 dividing a1 with

a2 ≤ aη/(4`)1 .

To prove this, list the distinct prime factors of a1 in increasing order, say

T < q1 < · · · < qt.

Put

a0 := q1 · · · qbηt/(4`)c.

Then

a0 ≤ (q1 · · · qt)bηt/(4`)c/t ≤ aη/(4`)1 .

It is enough to show that σ(a0)/a0 ≥ 1 + α2, since then a0 will have an
α2-primitive divisor a2 satisfying the desired bound. First, we show that
bηt/(4`)c ≥ ηt/(8`). Otherwise, ηt/(4`) < 1, so that t < 4`/η, and

1 + α1 ≤
σ(a1)
a1

≤
∏
q|a1

(
1 +

1
q − 1

)
≤
(

1 +
1
T

)4`/η

≤ exp
(

4`
ηT

)
,

which fails if we assume a suitable initial choice of T . Since

σ(a0)
a0

=
∏

1≤i≤bηt/(4`)c

qi + 1
qi

≥
(∏
p>T

p2 − 1
p2

) ∏
1≤i≤bηt/(4`)c

qi
qi − 1
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and ∏
1≤i≤bηt/(4`)c

qi
qi − 1

≥
( ∏

1≤i≤t

qi
qi − 1

)bηt/(4`)c/t

≥
(
σ(a1)
a1

)η/(8`)
≥ (1 + α1)η/(8`) ≥ 1 +

α1η

16`
,

we have
σ(a0)
a0

≥
(∏
p>T

p2 − 1
p2

)(
1 +

α1η

16`

)
≥ 1 +

α1η

32`
≥ 1 + η2,

again assuming a suitable choice of T to justify the middle inequality.
Observe that a2 satisfies

a2 ≤ aη/(4`)1 ≤ s(dv`)η/(4`) < xη/3

for large x. Write v = Pm, where P = P (v), so that (3) gives

m ≤ x/P ≤ x1−η.

Then a2 divides

s(dv`) = σ(dm`)σ(P `)− dm`P `(7)

= P `s(dm`) + (P `−1 + P `−2 + · · ·+ 1)σ(dm`).

Moreover, since a2 divides N4, we see that a2 is coprime to dv`, and so
also coprime to dm`. So for each prime q dividing a2, the condition that q
divides the expression on the right of (7) places P into at most ` residue
classes modulo q. Since a2 divides a0, we see that a2 is squarefree; hence a2

dividing the expression in (7) places P into at most `ω(a2) residue classes
modulo a2.

We now sum over pairs a2 and m, for each pair counting the number of
possible values of P ≤ x/m. Clearly m and P determine v = mP ; so from
the above remarks and the Brun–Titchmarsh inequality, we deduce that the
number of remaining v values is

�
∑

a2 α2-primitive
T<a2≤xη/3

∑
m≤x1−η

`ω(a2)x

mϕ(a2) log(x/(a2m))
(8)

� 1
η

x

log x

∑
a2

`ω(a2)

ϕ(a2)

∑
m

1
m
.

The sum on m is clearly� log x. To handle the sum on a2, notice that since
a2 is α2-primitive, we have

a2

ϕ(a2)
� σ(a2)

a2
≤ 3

2
(1 + α2)� 1,
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and so ϕ(a2)� a2. Thus, the remaining sum over a2 is

�
∑

a2 α2-primitive
a2≥T

`10` log2 a2

a2
+

∑
a≥T

ω(a)≥10` log2 a

`ω(a)

a

�
∑

a2 α2-primitive
a2≥T

(log a2)D

a2
+

∑
a≥T

ω(a)≥10` log2 a

`ω(a)

a
,

where
D := 10` log `.

But if T was chosen sufficiently large, then both of the last two sums are
bounded by ηδx; for the first sum, this follows from Lemma 2.3 (and partial
summation), and for the second, from Lemma 2.4. Inserting our estimates
into (8) leads to an upper bound of� δx. Since the number of exceptional v
appearing earlier in the argument is also� δx, we see that the total number
of v ≤ x for which the right-hand inequality in (1) fails is� δx. Since δ > 0
was arbitrary, the proof is complete.

3. Proof of Theorem 1.1 for odd `. Let ε > 0. Suppose that n ≤ x
is `-full. If s(n)/n > 1 + ε, then the lower bound in Theorem 2.1 gives
s(s(n)) > s(n) > n, apart from o(x1/`) exceptional n (as x→∞). Similarly,
if s(n)/n < 1 − ε, then the upper bound in Theorem 2.1 gives s(s(n)) <
s(n) < n, ignoring o(x1/`) values of n. In neither case can n be amicable. So
all amicable `-full numbers, except for a set of density zero relative to the
set of all `-full numbers, satisfy

(9) 1− ε < s(n)/n < 1 + ε.

Let δ > 0 be given. We claim that for a suitable ε > 0, the number of
`-full n ≤ x satisfying (9) is smaller than 2δx1/`, once x is large. The result
of the previous paragraph then completes the proof.

We now prove the claim. Write n = dv`, with d an (` + 1)-full number
and v a squarefree integer coprime to d. We may fix y with the property
that for large x, there are fewer than δx1/` `-full values of n ≤ x for which
d > y. For each fixed d ≤ y, the inequality (9), with n = dv`, says precisely
that

(10) (2− ε) d

σ(d)
<
σ(v`)
v`

< (2 + ε)
d

σ(d)
.

By making ε sufficiently small, we can ensure that for large x, the num-
ber of v ≤ (x/d)1/` satisfying (10) is smaller than δy−1x1/`, uniformly for
d ≤ y. This follows immediately from the existence of a continuous distribu-
tion function for σ(w`)/w` (as guaranteed by the Erdős–Wintner theorem
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of [10]). Since there are trivially ≤ y values of d ≤ y, we see that the number
of `-full values of n ≤ x that arise this way is less than δx1/`. This completes
the proof of the claim and of the theorem.

4. Preliminaries for the case of even `. Throughout this section and
the next, we assume that ` is a fixed, even natural number. We begin our
preparations for the even case by quoting a theorem of Halász type (cf. [13]),
which appears in a stronger, more quantitative form in [14].

Theorem A. Let D be a closed, convex proper subset of the closed unit
disc in C, and assume that 0 ∈ D . Suppose that h is a complex-valued
multiplicative function satisfying |h(n)| ≤ 1 for all n ∈ N and h(p) ∈ D for
all primes p. If the series

(11)
∑
p

1−<(h(p))
p

diverges, then h has mean value zero, i.e.,

lim
x→∞

1
x

∑
n≤x

h(n) = 0.

The next theorem, extracted from [24, Corollary 2.3], is a modern esti-
mate for character sums of a type first considered by Davenport [1].

Theorem B. Let f1(T ), . . . , fk(T ) be monic pairwise coprime polyno-
mials in Fq[T ] whose largest squarefree divisors have degrees d1, . . . , dk. Let
χ1, . . . , χk be nontrivial multiplicative characters of the finite field Fq. As-
sume that for some 1 ≤ i ≤ k, the polynomial fi(T ) is not of the form
g(T )ord(χi) in Fq[T ], where ord(χ) is the order of χ. Then∣∣∣∑

x∈Fq

χ1(f1(x)) · · ·χk(fk(x))
∣∣∣ ≤ (( k∑

i=1

di

)
− 1
)√

q.

The next few lemmas set up for the sieving step alluded to in the intro-
duction.

Lemma 4.1. If p is a prime with p ≡ 2 (mod (`+1)), then the polynomial
T ` + T `−1 + · · ·+ 1 is squarefree over Fp and has no roots in Fp.

Proof. If G(T ) := T `+T `−1 + · · ·+1 has a repeated factor in Fp[T ], then
G(T )(T − 1) = T `+1 − 1 has a multiple root in Fp. Thus, p divides ` + 1.
But p > `+ 1, unless p = 2, in which case also p - `+ 1. So G is squarefree.

If G has a root modulo p, then there is an integer a for which p |G(a)
| a`+1 − 1. So the order of a modulo p, say d, divides ` + 1. If d = 1, then
a ≡ 1 (mod p), and so G(a) ≡ G(1) ≡ `+ 1 (mod p). Thus, p | `+ 1, which
we have already noted is impossible. So d > 1. Since d |#F×p = p − 1, we
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have p ≡ 1 (mod d). But p ≡ 2 (mod d). This contradiction completes the
proof.

Lemma 4.2. Let m be a squarefree natural number, every prime factor
p of which satisfies

p ≡ 2 (mod `+ 1), p > (`+ 1)2.

Let d be a natural number coprime to m. Let a and b be integers prime
to m. Let V be the set of squarefree numbers v coprime to d satisfying the
simultaneous congruences

(12) σ(v`) ≡ a (mod m) and v ≡ b (mod m).

Relative to the set of all squarefree natural numbers coprime to d, the set V
has density ∏

p|m

p

(p+ 1)(p− 1)2
.

Proof. We can assume m > 1, so that ϕ(m) ≥ (` + 1)2 > 1. If χ and ψ
are Dirichlet characters modulo m, define

(13) Sχ,ψ(x) :=
∑
v≤x

v squarefree, gcd(v,d)=1

χ(σ(v`))ψ(v).

We start by showing that if at least one of χ and ψ is not trivial, then
Sχ,ψ(x) = o(x), as x→∞. To this end, apply Theorem A to the multiplica-
tive function h given by

v 7→ (1v squarefree · 1gcd(d,v)=1)χ(σ(v`))ψ(v),

taking D to be the convex hull of the ϕ(m)th roots of unity. Note that for
each prime q, either h(q) = 1, or

1−<(h(q)) ≥ min
{

1, 1− cos
2π
ϕ(m)

}
> 0.

Since Sχ,ψ is the summatory function of h, the claim follows from Theorem A
and Dirichlet’s theorem on primes in progressions if there is at least one
coprime residue class A mod m for which

(14) χ(A` +A`−1 + · · ·+ 1)ψ(A) 6= 1.

In what follows, the reader should keep in mind that A` +A`−1 + · · ·+ 1 is
coprime to m for every A, by Lemma 4.1 and our condition on the prime
divisors of m.

Let us now prove the existence of a residue class A mod m satisfying
(14). We start by writing χ =

∏
p|m χp and ψ =

∏
p|m ψp, where χp and ψp

are Dirichlet characters modulo p. Since χ is nontrivial, one can find some p
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dividing m, say p0, for which not both χp0 and ψp0 are trivial. By Lemma 4.1
and Theorem B, we have

(15)
∣∣∣ ∑
Amod p0

χ(A` +A`−1 + · · ·+ 1)ψ(A)
∣∣∣ ≤ `√p0.

Since the left-hand sum in (15) has p0 − 1 nonzero terms, each of absolute
value 1, and p0 − 1 > `

√
p0, it follows that χ(A` + A`−1 + · · · + 1)ψ(A)

assumes at least two different values as A ranges over F×p0 . Now for each
prime p dividing m with p 6= p0, choose a nonzero residue class Ap mod p
arbitrarily, and choose the nonzero residue class Ap0 mod p0 so that

χp0(A`p0 +A`−1
p0 + · · ·+ 1)ψ(Ap0) 6=

(∏
p|m
p 6=p0

χp(A`p +A`−1
p + · · ·+ 1)ψp(Ap)

)−1
.

Choosing A so that A ≡ Ap (mod p) for each p dividing m, we have (14).
Multiplying Sχ,ψ(x) through by χ(a)ψ(b) and summing over all χ and

ψ, the usual orthogonality relations give us

(16) ϕ(m)2
∑
v≤x

v squarefree, gcd(v,d)=1
(12) holds

1 =
∑
χ,ψ

χ(a)ψ(b)Sχ,ψ(x) = Sε,ε(x) + o(x),

as x→∞; here ε denotes the trivial character modulo m. We have

Sε,ε(x) =
∑
v≤x

v squarefree, gcd(d,v)=1

ε(σ(vl))ε(v)

=
∑
v≤x

v squarefree, (v,dm)=1

1 ∼
(

6x
π2

∏
p|d

p

p+ 1

)∏
p|m

p

p+ 1
,

as x → ∞. (Note that σ(vl) is prime to m, by the remarks following (14).
For the final estimate, see, e.g., the bottom of [17, p. 634].) Since the square-
free integers prime to d have density 6

π2

∏
p|d

p
p+1 , the lemma follows upon

dividing both sides of (16) by ϕ(m)2 =
∏
p|m(p− 1)2.

Lemma 4.3. Let p > (` + 1)2 be a prime satisfying p ≡ 2 (mod ` + 1),
and let d be a natural number relatively prime to p. Let a and b be integers
coprime to p. Let W consist of the squarefree natural numbers v coprime
to d satisfying the simultaneous congruences

(17) σ(v2) ≡ a (mod p2) and v ≡ b (mod p2).

The density of W , relative to the set of all squarefree natural numbers co-
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prime to d, is precisely
1

p(p− 1)2(p+ 1)
.

Proof. Let χ and ψ be multiplicative characters modulo p2, and define
Sχ,ψ(x) as in (13). Imitating the proof of Lemma 4.2, it is enough to show
that (as x → ∞) we have Sχ,ψ(x) = o(x), provided that not both χ and
ψ are trivial. Using Theorem A, we deduce that this holds if there is an
A coprime to p satisfying (14). Suppose for the sake of contradiction that
there is no such A. Then

χp(A` +A`−1 + · · ·+ 1)ψp(A) = 1

whenever A is coprime to p. But χp and ψp are characters modulo p. (This
follows from the observation that the residue class of ap modulo p2 depends
only on the residue class of a modulo p.) We obtain a contradiction to the
character-sum estimate (15) (with χ, ψ replaced by χp, ψp, and p0 replaced
by p) unless χp and ψp are both trivial. Thus, χ and ψ both have order 1
or p.

If χ has order 1 (i.e., is trivial), then ψ is not, and there is some A coprime
to p for which (14) holds. So χ must have order p. Since ψ has order dividing
p and the characters modulo p2 form a cyclic group, it follows that there is
some e with 0 ≤ e < p for which ψ = χe. Hence

(18) χ((A` +A`−1 + · · ·+ 1)Ae) = 1

for every A coprime to p. Write

A = A1 +A2p, where 0 ≤ A1 < p, gcd(A1, p) = 1.

Putting G(T ) := (T ` + T `−1 + · · ·+ 1)T e, we have

(A` +A`−1 + · · ·+ 1)Ae = G(A1 +A2p)(19)

≡ G(A1) +G′(A1)A2p (mod p2).

Now we exploit the fact that χ, as a character of order p, takes the value 1
precisely on the pth power residues modulo p2. But for each nonzero residue
class c modulo p, there is precisely one pth power residue modulo p2 which
reduces to c mod p (namely, the class of cp). Since (18) holds for all A
coprime to p, we see that for each A1 with 0 ≤ A1 < p and gcd(A1, p) = 1,
the residue class modulo p2 of G(A1) + G′(A1)A2p is independent of A2.
Hence

G′(A1) = eAe−1
1 (A`1+A`−1

1 +· · ·+1)+Ae1(`A`−1
1 +· · ·+2A1+1) ≡ 0 (mod p),

and so

e(A`1 +A`−1
1 + · · ·+ 1) +A1(`A`−1

1 + · · ·+ 2A1 + 1) ≡ 0 (mod p).
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This last congruence fails for some A1: Indeed, the left-hand side is formally
nonzero as polynomial in A1 over Fp, since either its constant term or its
coefficient of A1 is nonvanishing. So it has at most ` roots modulo p; but
` < p− 1. Thus, there is some A coprime to p for which (18) fails.

5. Proof of Theorem 1.1 for even `. As in the proof for odd `, we
partition the n under consideration according to their (`+1)-full part d. We
may assume that d is fixed. As before, we reserve the letter v for integers
which are squarefree and prime to d. It suffices to show that dv` is amicable
for only o(x) values of v ≤ x, as x→∞.

Suppose that n = dv` is amicable, and let m = s(n). Since n and m form
an amicable pair, we have

(20) σ(m) = n+m = σ(n) = σ(d)σ(v`).

Since ` is even, the number σ(v`) is odd. Thus, (20) shows that ν2(σ(m)) =
ν2(σ(d)). Consequently, at most R := ν2(σ(d)) odd primes can appear to
the first power in the factorization of m. But we now show that (as x→∞)
all but o(x) of the v ≤ x are such that s(dv`) has more than R odd primes
appearing to the first power.

To start the argument off, let z be a fixed, large real number, to be
chosen later, and define

P := {p ≡ 2 (mod `+ 1) : z < p ≤ exp(z)}.
Assume to begin with that z > 2. Let ωP(·) be the additive function which
counts the number of distinct prime divisors of its argument that belong
to P. If s(dv`) has fewer than R odd primes appearing to the first power
in its prime factorization, then v belongs either to

S1 := {v : ωP(s(dv`)) ≤ R}
or to

S2 := {v : p2 | s(dv`) for some p ∈P}.
Thus, it suffices to show that the upper density of S1 ∪ S2 can be made
arbitrarily small by choosing z appropriately.

For the rest of this section, whenever we write “relative density”, we
mean with respect to the squarefree numbers coprime to d.

We start by estimating the density of S1. Assume that

z > max{dσ(d), (`+ 1)2}.
If m is squarefree and composed of primes in P, then m | s(dv`) exactly
when

σ(d)σ(v`) ≡ dv` (mod m).

Note that m is coprime to dσ(d), by our lower bound on z, and coprime to
σ(v`) by Lemma 4.1. Thus, if we place v in a coprime residue class modulo
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m, then there is a uniquely determined coprime residue class modulo m
which σ(v`) must belong to for us to have m | s(dv`). We now apply Lemma
4.2: Since there are ϕ(m) possible residue classes modulo m in which we can
place v, we find that the set of v for which m | s(dv`) has relative density

ϕ(m)
∏
p|m

p

(p+ 1)(p− 1)2
=
∏
p|m

p

p2 − 1
.

It follows (letting m range over the squarefree numbers composed of primes
in P) that S1 has relative density∑

Q⊂P
#Q≤R

(∏
q∈Q

q

q2 − 1

)( ∏
p∈P\Q

(
1− p

p2 − 1

))

=
∑

Q⊂P
#Q≤R

(∏
q∈Q

q

q2 − q − 1

) ∏
p∈P

(
1− p

p2 − 1

)
.

Now ∏
p∈P

(
1− p

p2 − 1

)
≤
∏
p∈P

(
1− 1

p

)
�`

(
log z
z

)1/ϕ(`+1)

,

where the last product is bounded using the estimate∑
p≤y

p≡2 (mod `+1)

1
p

=
1

ϕ(`+ 1)
log2 y +O`(1)

(see [17, pp. 449–450]). Also, by the multinomial theorem,∑
Q⊂P
#Q≤R

∏
q∈Q

q

q2 − q − 1
≤

∑
0≤r≤R

1
r!

(∑
p∈P

p

p2 − p− 1

)r

�R

(
1 +

∑
p∈P

1
p

)R
�R (log z)R.

Thus, S1 has relative density

�`,R (log z)R
(

log z
z

)1/ϕ(`+1)

� (log z)R+1z−1/ϕ(`+1).

We turn now to S2. Let p ∈P. Arguing as in the treatment of S1, but
replacing Lemma 4.2 with Lemma 4.3, we see that the set of v for which
p2 | s(dv`) has relative density

ϕ(p2)
1

p(p− 1)2(p+ 1)
=

1
p2 − 1

.
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Thus, S2 has upper relative density

�
∑
p∈P

1
p2 − 1

� 1
z
.

Combining our estimates, we see that S1∪S2 has upper relative density

�`,R (log z)R+1z−1/ϕ(`+1) + z−1,

and so can be made arbitrarily small. This completes the proof.

6. Powerful sociable numbers. Let sk denote the kth iterate of the
sum of proper divisors function s. A natural number n is called sociable if the
sequence n, s(n), s2(n), . . . is purely periodic; if the period length is k, we call
the set {n, s(n), . . . , sk−1(n)} a sociable k-cycle, and we call n a k-sociable
number. Sociable numbers should be viewed as higher-order generalizations
of perfect and amicable numbers, which correspond respectively to the cases
k = 1 and k = 2. For the history of sociable numbers, and some recent
theoretical results, see [16].

We conclude this paper by proving an analogue of Theorem 1.1 for `-full
k-sociable numbers, when k is odd.

Theorem 6.1. Fix an integer ` ≥ 1 and an odd integer k ≥ 1. The
number of k-sociable `-full numbers n ≤ x is o(x1/`), as x→∞.

When k = 1, the result of Theorem 6.1 follows (with any `) from the
theorem of Hornfeck and Wirsing [15] that the number of perfect numbers
in [1, x] is �ε x

ε for any fixed ε > 0. For the rest of the proof, we assume
that k and ` are fixed with k > 1 and ` ≥ 1. We fix an (`+ 1)-full number d.
We use v exclusively to denote a squarefree number prime to d. It suffices
to show that as x → ∞, only o(x) values of v ≤ x are such that dv` is
k-sociable.

The following lemma, which appears as [20, Lemma 5], is a variant of an
observation due to Dickson (see [2]). If S is a set of natural numbers, we
write gcd(S ) for the greatest common divisor of the elements of S , and we
write σ(S ) for the set {σ(m) : m ∈ S }.

Lemma 6.2. Let C be a sociable cycle of odd order > 1. Then gcd(σ(C ))
divides gcd(C ), except possibly if 2 ‖ gcd(σ(C )), in which case 1

2 gcd(σ(C ))
divides gcd(C ).

The next lemma follows from elementary sieving (for details, see [21,
Lemma 8.13]).

Lemma 6.3. Let Q be a set of primes for which
∑

q∈Q 1/q diverges.
For each ε > 0, there is a y > 0 for which the following holds: For all
natural numbers m, excluding a set of upper density < ε, there is a prime
q ∈ Q ∩ [2, y] for which q ‖m.
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Put
G(T ) := T ` + T `−1 + · · ·+ 1,

and put
P := {p : p > d, p ≡ 1 (mod `+ 1)}.

Lemma 6.4. If M is a natural number all of whose prime divisors belong
to P, then G has a root modulo M .

Proof. It is enough to verify this when M = pe, where p ∈P and e ≥ 1.
Observe that (Z/peZ)× is cyclic and that `+1 | p−1 | (Z/peZ)×. Thus, there
is an integer a whose order modulo pe is precisely `+ 1. For this a,

(21) pe | a`+1 − 1 = G(a)(a− 1).

If p divides a − 1, then the order of a modulo pe divides pe−1; i.e., ` + 1
divides pe−1. But this is absurd, since p is a prime with p > ` + 1. So p is
coprime to a− 1, and we deduce from (21) that G(a) ≡ 0 (mod pe).

The next lemma should be compared with [7, Lemma 1] (see also [21,
Lemma 8.19]).

Lemma 6.5. Let K be a nonnegative integer. Let M be a natural number
all of whose prime divisors belong to P. Then the following is true for almost
all natural numbers m: There are primes p0, p1, . . . , pK ∈P for which

(22) pi ‖m for each i = 0, 1, . . . ,K,

and

(23) G(p0) ≡ 0 (mod M), G(pi+1) ≡ 0 (mod p2`
i ) for all 0 ≤ i < K.

Proof. The lemma is a consequence of the following assertion, which we
prove by induction on K:

For each nonnegative integer K, each natural number M supported on
the primes in P, and each ε > 0, there is a number B with the property
that for all m outside of a set of upper density < ε, one can find primes
p0, . . . , pK ∈P ∩ [1, B] satisfying both (22) and (23).

To start with, suppose that K = 0. By Lemma 6.4, there is an integer r
for which G(r) ≡ 0 (mod M). Clearly r is coprime to M . The result in this
case follows from Lemma 6.3, if we take Q := {p ∈ P : p ≡ r (mod M)}.
That the sum of the reciprocals of the primes in Q diverges follows from
Dirichlet’s theorem.

Now suppose the statement is known to hold for a certain K ≥ 0. Sup-
pose ε > 0 and M are given. By the induction hypothesis, we can choose
a number B0 with the property that for all m outside of a set E0 (say) of
upper density < ε/2, there are primes p0, . . . , pK ∈ P ∩ [1, B0] satisfying
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(22) and (23). Let P := (
∏
p∈P∩[1,B0] p)

2`. Let r′ be a root of G modulo P ,
and apply Lemma 6.3 with

Q := {p ∈P : p ≡ r′ (mod P )}.
We find that for a suitable choice of y, all m outside of a set E1 (say)
of upper density < ε/2 have an exact prime divisor pK+1 ≡ r′ (mod P )
with pK+1 ∈ P ∩ [1, y]. But then if n lies outside E0 ∪ E1, the primes
p0, . . . , pK+1 satisfy (22) and (23) with K replaced by K + 1. Since E0 ∪ E1

has upper density < ε, we obtain the (K + 1)-case of the assertion with
B = max{B0, y}.

Proof of Theorem 6.1. Fix a real number z so large that
∑

p∈P, p≤z
1
p

> 1. Then, putting M :=
∏
p∈P, p≤z p, we have

σ(M)
M

=
∏
p∈P
p≤z

(
1 +

1
p

)
≥ 1 +

∑
p∈P
p≤z

1
p
> 2.

So s(M) > M , i.e., M is an abundant number.
Suppose that dv` is k-sociable. With K := k − 1, assume that there are

primes p0, . . . , pK ∈P all exactly dividing v and satisfying (23). Since pi ‖ v
for each i = 0, . . . ,K, we have

(24) p`i ‖ dv`

for each i = 0, . . . ,K. Consequently, for each i = 0, . . . ,K − 1,

(25) p2`
i | G(pi+1) = σ(p`i+1) | σ(dv`).

Since s(dv`) = σ(dv`) − dv`, it follows from (24) and (25) that p`i ‖ s(dv`)
for all i = 0, . . . ,K− 1. Iterating the same argument, we find that si(dv`) is
exactly divisible by each of p`0, . . . , p

`
K−i for each 0 ≤ i ≤ K. In particular,

p`0 exactly divides each of dv`, s(dv`), s2(dv`), . . . , sK(dv`); in other words,
p`0 exactly divides each member of the sociable cycle C (say) containing dv`.
Thus,

M | G(p0) = σ(p`0) | gcd(σ(C )).

Since M is odd, it follows from Lemma 6.2 that

M | gcd(C ).

Since M is abundant, this implies that each member of C is abundant. But
a cycle cannot consist entirely of abundant terms. This contradiction shows
that v cannot have prime divisors p0, . . . , pK as above. By Lemma 6.5, v is
restricted to a set of asymptotic density zero.
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