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Abstract. This note presents an elementary approach to the nonexistence of solu-
tions of linear parabolic initial-boundary value problems considered in the Feller test.

1. Introduction. Our goal is to study the solvability of the initial-
boundary value problem for a linear partial differential equation of parabolic
type in one space dimension of the form

ut = a(x)uxx + b(x)ux,(1)
u(0, t) = 0, u(1, t) = 1,(2)
u(x, 0) = u0(x),(3)

where x ∈ (0, 1), t > 0, a and b are given measurable nonnegative func-
tions on (0, 1), and u0 is a continuous nonnegative function satisfying the
compatibility conditions u0(0) = 0, u0(1) = 1.

The question of the existence of a solution satisfying the boundary con-
ditions (2) is delicate. William Feller developed tools which permitted him
to give a complete answer to that question in his seminal 1952 paper [5].
The theory presented there, culminating in the famous Feller test, is by no
means elementary, and is based on a fine probabilistic analysis of stochastic
processes associated with linear parabolic equations with diffusion and drift
of the form (1) considered on (`, r) ⊂ R, −∞ ≤ ` < r ≤ +∞, with ini-
tial conditions as in (3) and suitable boundary conditions even more general
than (2).

The question of solvability of (1) depends on the relations between the
given measurable nonnegative diffusion and drift coefficients a, b. Without
entering into details one might say that b/a should not be “too large” near the
boundaries in order to have solutions of (1) satisfying (2). Precise conditions
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on a and b are the content of the Feller test for (1) (cf., e.g., [7, Ch. 15,
Sec. 6], [6, Th. 5.29], [9, Ch. II, Th. 2.6]). In fact, the Feller test says that
solutions of the evolution problem (1)–(3) can be constructed if and only
if a stationary solution of (1)–(2) exists. Intuitively, if either the diffusion
coefficient a is very small or the drift coefficient b is very large in the vicinity
of, say, x = 0, then the Dirichlet boundary condition (2) at x = 0 cannot
be preserved; a kind of instantaneous loss of boundary conditions occurs.
Another point of view is that solutions of (1) with u(0, t) kept fixed must be
constant.

Let us stress that for linear autonomous parabolic equations like (1)
solutions of the initial-boundary value problem either exist globally in time
or do not exist at all. In the case of nonlinear parabolic equations, one may
encounter another behavior of solutions: they may exist locally in time but
may cease to exist after some time (see [1], [3] for examples).

Our note is devoted to an elementary analytic proof of nonexistence of so-
lutions to (1)–(3) in Section 2 under suitable assumptions on the coefficients
a and b. This extends the result on the equation ut = (xux)x in [4].

The existence part in the Feller test involves much more technical tools
from the theory of semigroups of linear operators. The only entirely analytic
proof of the Feller test we know can be found in the monograph [8], and it
is neither short nor elementary. In fact, a pretty large part of the general
Hille–Yosida–Phillips semigroup theory has been developed to handle the
solvability questions for (1) supplemented with boundary conditions.

According to our experience, the Feller test is also useful in the analysis
of (nonexistence issues for) nonlinear elliptic and parabolic equations: see
examples of application in [2, Prop. 3], [3, Th. 1], [1]. However, this powerful
tool seems not to be widely known in the parabolic PDEs’ community.

2. Main result. First, we rewrite the problem (1)–(3) in the self-adjoint
form

(Wu)t = a(Wux)x,(4)
u(0, t) = 0, u(1, t) = 1,(5)
u(x, 0) = u0(x),(6)

where the function W is defined by

(7) W (x) = exp
(
−

1�

x

b(z)
a(z)

dz

)
.

Moreover, we define the so-called scale function

(8) S(x) = e+
1�

x

dz

W (z)
.
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Here, we assume that a and b are measurable functions such that 0 ≤ a−1 and
0 ≤ b are both bounded from above on (µ, 1] for each µ > 0. In particular,
(1 + b)/a is locally integrable on (0, 1), a standing assumption in the Feller
test. Thus, we may encounter difficulties only in the vicinity of x = 0.

Recall that the Feller test in the context of the initial-boundary value
problem (4)–(6) for partial differential equations reads (cf. [6–9]): If the scale
function S is unbounded, i.e. the integral

	1
ε dx/W (x) diverges as ε↘ 0 (so

that, in particular, limx↘0W (x) = 0 sinceW is monotone, or, in other words,
limε↘0

	1
ε(b(x)/a(x)) dx =∞), then the Dirichlet boundary condition (5) at

x = 0 cannot be satisfied for solutions of the linear parabolic equation (4).
In probabilistic terms, one says that x = 0 corresponds either to an entrance
point or to a natural boundary for the diffusion process associated with (1).
Roughly speaking, in that interpretation, the point x = 0 is not accessible
from the interior of the domain (0, 1) for the trajectories of that process.
Thus, no boundary condition at x = 0 can be imposed.

Now, under slightly more restrictive conditions (12), (13)–(14) below
which simplify the reasoning, we formulate a result close in spirit to the
Feller test, proved below with a purely analytical argument.

Theorem. Assume that

0 ≤ a−1, b ∈ L∞(µ, 1) for each µ > 0,(9)
lim
ε↘0

S(ε) =∞,(10)

the integrals

(11) 0 ≤ Ik =
1�

0

W (x)
a(x)

S(x)(logS(x))k dx

exist for each k = 0, 1, 2, . . . , and satisfy the growth estimate

(12) Ik ≤ Ckk!

for some constant C. Moreover, suppose that the quantities

(13)
W (x)2

a(x)
S(x)2(logS(x))2

as well as

(14)
x

W (x)S(x)

are bounded on (0, 1). Then the problem (1)–(3) cannot possess any classical
local in time solution u.

Comments on the assumptions. (10) is the original condition in the Feller
test. Relation (12) is satisfied quite frequently, e.g., if
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(15)
(
W 2S2

a

)
x

≥ %0
WS

a

for a number %0 > 0. Indeed, by assumptions (9) and (15),
1�

ε

W (x)
a(x)

S(x)(logS(x))k dx = − 1
k + 1

1�

ε

W (x)2

a(x)
S(x)2((logS(x))k+1)x dx

=
1

k + 1
W (ε)2

a(ε)
S(ε)2(logS(ε))k+1 − 1

k + 1
e2

a(1)

+
1

k + 1

1�

ε

(
W (x)2S(x)2

a(x)

)
x

(logS(x))k+1 dx,

so the inequality (k + 1)Ik + δ ≥ %0Ik+1 holds for δ = e2/a(1) > 0 and
some %0 > 0. The estimate (12) is then an immediate consequence of that
inequality.

Note that the relation

inf
x∈(0,1)

−
√
a(x)(log logS(x))x

(
= inf

x∈(0,1)

√
a(x)

1
W (x)S(x) logS(x)

)
> 0

is equivalent to the boundedness of (13).

Definition. To fix ideas, we recall that a classical solution is a function
u ∈ C2,1

x,t ((0, 1)×(0, T )) for some T > 0, satisfying (1) pointwise, and (1)–(3)
as limits

lim
x↘0

u(x, t) = 1− lim
x↗1

u(x, t) = 0, lim
t↘0

u(x, t) = u0(x).

Two particular cases of the Theorem have been touchstones in the proof
below.

Example 1. All the assumptions of the Theorem are satisfied for the
equation ut = xuxx + βux with β > 1. Here W (x) = xβ and S(x) ∼ x1−β .
In the case β = 1 we have the equation ut = (xux)x with S(x) = e − log x.
The Theorem in [4] covers that case, with a proof slightly different than the
one below. Note that if β < 1, then this equation supplemented with (5)–(6)
does have a solution.

Example 2. Similarly, if a(x) = xσ, b(x) = σxσ−1, i.e. (1) becomes
ut = (xσux)x, with σ ∈ (1, 2), the assumptions of the Theorem are satisfied.
Here W (x) = xσ, and again S ∼ x1−σ. In particular, in both examples
Ik ≤ Ckk! with some C > 0, as in [4].

Proof of Theorem. Assume the existence of a solution u(x, t) to the prob-
lem (1)–(3) on an interval [0, T ) with some T > 0. For ε ≥ 0, 0 ≤ t ≤ T and
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k = 0, 1, 2, . . . we define

(16) V k
ε (t) =

t�

0

1�

ε

W (x)
a(x)

S(x)(logS(x))ku(x, s) dx ds.

One may call V k
ε (t), ε > 0, the truncated regularized logarithmic moments

of u. Our goal is to show for each k = 1, 2, . . . a differential inequality
resembling

d

dt
V k

0 ≥ %k(k − 1)V k
0 + γ

with some %, γ > 0 independent of k.
Of course, for any classical solution we have, by the maximum princi-

ple, 0 ≤ u(x, t) ≤ M ≡ max0≤x≤1 u0(x), therefore V k
0 ≤ Mt Ik are finite

(see (11)).
We begin with some preliminary estimates. Integrating (4) over (ε, η)×

(0, t), 0 < ε < η < 1, we obtain

(17)
η�

ε

W (x)
a(x)

(u(x, t)− u0(x)) dx =
t�

0

(W (η)ux(η, s)−W (ε)ux(ε, s)) ds.

Passing to the limit η ↗ 1 in (17), we get the existence of a finite limit

H(t) ≡ lim
η↗1

W (η)
t�

0

ux(η, s) ds.

Therefore, the limit

A(t) ≡ lim
ε↘0

W (ε)
t�

0

ux(ε, s) ds

exists, and we have

(18) A(t) = H(t) +
1�

0

W (x)
a(x)

(u0(x)− u(x, t)) dx;

note that
	1
0(W (x)/a(x)) dx <∞ by the finiteness of (11). Next, multiplying

(4) by S, integrating over (ε, η) × (0, t) and passing to the limit as η ↗ 1,
we get

W (ε)S(ε)
t�

0

ux(ε, s) ds =
1�

ε

W (x)
a(x)

S(x)(u0(x)− u(x, t)) dx(19)

+ eH(t) + t−
t�

0

u(ε, s) ds.

Since by the assumption (11),
	1
0(W (x)/a(x))S(x) dx < ∞, the right hand
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side of (19) has a finite limit B(t) as ε ↘ 0, so that A(t) = 0, because of
(10). Moreover, H(t) is uniformly bounded in t. Next, by (18), we deduce
from (17) with η = 1 that

0 ≤W (ε)
t�

0

ux(ε, s) ds =
ε�

0

W (x)
a(x)

(u(x, t)− u0(x)) dx,

and thus

0 ≤ B(t) ≤ lim sup
ε↘0

S(ε)
ε�

0

W (x)
a(x)

|u(x, t)− u0(x)| dx(20)

≤ lim sup
ε↘0

ε�

0

W (x)
a(x)

S(x)|u(x, t)− u0(x)| dx = 0,

because of the finiteness of I0.

Remark. At this stage, we may easily deduce from (19) with ε ↘ 0
that if u exists at time t then

t+ eH(t) =
1�

0

W (x)
a(x)

S(x)(u(x, t)− u0(x)) dx(21)

≤M
1�

0

W (x)
a(x)

S(x) dx <∞,

so that the maximal time of existence T of u is finite. We will prove below
that actually T = 0.

As a further consequence of the reasoning in (20), we obtain the following
regularity result for any solution u and each k = 1, 2, . . . :

(22) lim
ε↘0

W (ε)S(ε)(logS(ε))k
t�

0

ux(ε, s) ds = 0

and

(23) lim
ε↘0

(logS(ε))k
t�

0

u(ε, s) ds = 0.

Indeed, (22) follows from

0 ≤W (ε)S(ε)(logS(ε))k
t�

0

ux(ε, s) ds

≤
ε�

0

W (x)
a(x)

S(x)(logS(x))k|u(x, t)− u0(x)| dx→ 0

as ε↘ 0, because of the finiteness of Ik in (11), just as in (20).



NONEXISTENCE OF SOLUTIONS 131

Next, using (19) and (21) we may estimate

0 ≤ (logS(ε))k
t�

0

u(ε, s) ds(24)

= (logS(ε))k(t+ eH(t))

−W (ε)S(ε)(logS(ε))k
t�

0

ux(ε, s) ds

+ (logS(ε))k
1�

ε

W (x)
a(x)

S(x)(u0(x)− u(x, t)) dx

= −W (ε)S(ε)(logS(ε))k
t�

0

ux(ε, s) ds

+ (logS(ε))k
ε�

0

W (x)
a(x)

S(x)(u(x, t)− u0(x)) dx

≤ −W (ε)S(ε)(logS(ε))k
t�

0

ux(ε, s) ds

+
ε�

0

W (x)
a(x)

S(x)(logS(x))k|u(x, t)− u0(x)| dx→ 0

as ε↘ 0, by the finiteness of Ik and (22).
Calculating the evolution of V k

ε , we obtain, for each k ≥ 2,

d

dt
V k
ε (t)− vkε (0) =

t�

0

1�

ε

S(x)(logS(x))k(W (x)ux(x, s))x dx ds

=
t�

0

W (x)S(x)(logS(x))kux(x, s)
∣∣1
ε ds

−
t�

0

1�

ε

(S(x)(logS(x))k)xW (x)ux(x, s) dx ds

≥ −
t�

0

W (ε)S(ε)(logS(ε))kux(ε, s) ds

+
t�

0

1�

ε

(logS(x))kux(x, s) dx ds

+ k

t�

0

1�

ε

(logS(x))k−1ux(x, s) dx ds
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≥ −
t�

0

W (ε)S(ε)(logS(ε))kux(ε, s) ds

− k
t�

0

(logS(ε))k−1u(ε, s) ds

+ k(k − 1)
t�

0

1�

ε

1
W (x)S(x)

(logS(x))k−2u(x, s) dx ds

≥ −W (ε)S(ε)(logS(ε))k
t�

0

ux(ε, s) ds

− k
t�

0

(logS(ε))k−1u(ε, s) ds

+ %k(k − 1)
t�

0

1�

ε

W (x)
a(x)

S(x)(logS(x))ku(x, s) dx ds

with

vkε (0) =
1�

ε

W (x)
a(x)

S(x)(logS(x))ku0(x) dx,

because, by (13), the inequality
1

W (x)S(x)
≥ %W (x)

a(x)
S(x)(logS(x))2

is satisfied for each x ∈ (0, 1) and some % > 0. Passing to the limit as ε↘ 0
and using (22)–(23), we arrive at

d

dt
V k

0 (t) ≥ %k(k − 1)V k
0 (t) + vk0 (0)

with

vk0 (0) =
1�

0

W (x)
a(x)

S(x)(logS(x))ku0(x) dx ≥
1�

0

W (x)
a(x)

S(x)u0(x) dx ≡ γ > 0.

This leads immediately to

V k
0 (t) ≥ vk0 (0)

e%k(k−1)t − 1
%k(k − 1)

for 0 < t < T . On the other hand, from the obvious relation

V k
0 (t) ≤ IkMt ≤ IkMT,

taking logarithms, we obtain for large k

%k(k − 1)t ≤ log(Ikk2MT%γ−1).
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Now, the Stirling formula

(25) n! ∼
√

2π nn+1/2e−n as n→∞
immediately implies that log Ik ≤ Ck + (k + 1/2) log k, and therefore

t ≤ T ≤ lim inf
k→∞

Ck−2 log(Ikk2) = 0

for a constant C, contradicting the existence of any local in time solution u
satisfying (5). Note that the natural assumption (12) can be relaxed, e.g. to
limk→∞ k

−2 log Ik = 0.

Remark. It can be checked that the proof of the Theorem also applies to
weak solutions from the Sobolev space H1(0, 1), i.e. those satisfying u− x ∈
L∞((0, T ), H1

0 (0, 1)) and the integral identity

−
1�

0

W (x)
a(x)

u0(x)ϕ(x, 0) dx−
T�

0

1�

0

W (x)
a(x)

u(x, t)ϕt(x, t) dx dt

= −
T�

0

1�

0

W (x)ux(x, t)ϕx(x, t) dx dt

for each test function ϕ ∈ C1((0, 1)×[0, T )) with compact support in (0, 1)×
[0, T ).

Of course, classical solutions solve the problem (1)–(3) also in the sense of
semigroup theory (in the spaces of continuous functions on (0, 1)) considered
by Feller, i.e. they are mild solutions, which, in turn, are also weak solutions.
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