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ON EXISTENCE OF DOUBLE COSET VARIETIES

BY

ARTEM ANISIMOV (Moscow)

Abstract. Let G be a complex affine algebraic group and H,F ⊂ G be closed sub-
groups. The homogeneous space G/H can be equipped with the structure of a smooth
quasiprojective variety. The situation is different for double coset varieties F\\G//H. We
give examples showing that the variety F\\G//H does not necessarily exist. We also address
the question of existence of F\\G//H in the category of constructible spaces and show that
under sufficiently general assumptions F\\G//H does exist as a constructible space.

1. Introduction. Let G be a complex affine algebraic group and H ⊆ G
be a closed subgroup. By the Chevalley Theorem the set of left H-cosets can
be equipped with a uniquely defined structure of a smooth quasiprojective
variety such that G act morphically on G/H. Moreover, the projection G→
G/H is a geometric quotient for the action of H on G by right multiplication.

The construction of the homogeneous space G/H has a natural general-
isation: one can take another subgroup F ⊂ G and consider double cosets,
i.e. the sets FgH, g ∈ G. These cosets are orbits of the action of F×H on G
given by (f, h) ◦ g = fgh−1. It is clear that this action, unlike the action
of H on G by multiplication, can have orbits of different dimensions, thus it
does not necessarily admit a geometric quotient. Because of this we consider
a weaker quotient, namely, a categorical one.

The double coset variety F\\G//H is defined to be the underlying space of
the categorical quotient G → F\\G//H with respect to the described action
of F × H, if this quotient exists. If the subgroups F and H are reductive
then this variety exists and coincides with the spectrum Spec(FC[G]H) of
the algebra of regular functions on G invariant under the action of F × H.
Moreover, if G is also reductive then by a result of Luna [9] the action
F×H : G is stable (1), hence F\\G//H parametrises generic (closed) double
cosets.

In this paper we consider the case when the subgroups F and H are not re-
ductive. In this setting one cannot guarantee that F\\G//H = Spec(FC[G]H);
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(1) Reductivity of G is essential: consider the group B of upper-triangular matrices
and its subgroup T of diagonal matrices; the action T×T : B is not stable.
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moreover, F\\G//H does not necessarily exist. To illustrate this we give the
following examples:

I. A unipotent group G and a subgroup U of G such that the vari-
ety U\\G//U does not exist.

II. A reductive group G and two subgroups F,H such that the vari-
ety F\\G//H does not exist.

III. A semisimple group G and two subgroups F,H such that the algebra
of F×H-invariant regular functions R = FC[G]H is finitely generated
and the natural morphism π : G→ SpecR is surjective, but π is not
a categorical quotient.

It is interesting to remark that though U\\G//U considered in Example I
does not exist as an algebraic variety, it does exist as a constructible space.
Thus, here we observe the same phenomenon as in [1], [2], [4] and [5], namely,
an action that admits no quotient in the category of algebraic varieties does
admit one in the category of constructible spaces.

In Example III the categorical quotient F\\G//H exists in the category
of algebraic varieties; its underlying space is the blow-up of Spec(FC[G]H)
at one point; moreover, in this example the categorical quotient separates
generic double cosets.

2. Preliminaries on categorical quotients. Let an algebraic group G
act on an algebraic variety X. Recall that the categorical quotient of this ac-
tion is a G-invariant (i.e., constant on G-orbits) morphism πG : X → Y such
that every G-invariant morphism ϕ : X → Z factors uniquely through πG,
that is, there is a unique morphism ϕ̃ making the following diagram com-
mutative:

X
ϕ

//

πG
  

Z

Y
ϕ̃

??

The universal property of πG implies that Y is defined uniquely up to iso-
morphism. Remark that πG is necessarily surjective. By abuse of language
we will sometimes call the variety Y = X//G the categorical quotient.

If G is reductive and X is affine then the categorical quotient for the ac-
tion G : X is πG : X → Y = SpecC[X]G with morphism πG corresponding
to inclusion C[X]G ⊂ C[X]; in this case πG has an important additional prop-
erty: it separates closed orbits. If G is not reductive then the quotient X//G
does not necessarily exist. Examples of actions not admitting a categorical
quotient are given in [11, 4.3], [1], [2]. Let us point out one example that we
will make use of.
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Example 2.1 ([11, 4.3]). There is no categorical quotient for the action
of a one-dimensional unipotent group U on the spaceMat2×2 of 2×2-matrices
given by the formula

λ ◦

(
a11 a12

a21 a22

)
=

(
1 λ

0 1

)(
a11 a12

a21 a22

)
.

Remark that we have C[Mat2×2]
U = C[a21, a22,det] and the canonical mor-

phism π : Mat2×2 → SpecC[Mat2×2]
U ∼= A3 separates the U-orbits of generic

points having a21 6= 0 or a22 6= 0. The image of this morphism is A3 without
the punctured line {a21 = a22 = 0,det 6= 0}. Since the image of π is not
open, by [2, Corollary 1.4] the action U : Mat2×2 has no categorical quotient
in the category of algebraic varieties.

The morphism π considered in Example 2.1 can be regarded as a quotient
morphism after an appropriate modification to the definition of categorical
quotient. It turns out that admitting only morphisms into varieties as cat-
egorical quotients is overly restrictive for certain actions G : X. To work
around this Bialynicki-Birula introduced in [4] the category of dense con-
structible subsets. This approach has been further developed in [2] to permit
maps into constructible spaces as candidates for quotient morphisms. Recall
that a constructible space is a topological space with a sheaf of functions
admitting a finite cover by subsets that are isomorphic (as spaces with func-
tions) to constructibe subsets of affine varieties. A morphism of constructible
spaces is a morphism of spaces with functions. A constructible quotient is a
categorical quotient in the category of constructible spaces. It is possible for
an action G : X to have no quotient in the category of algebraic varieties,
but to have a constructible quotient.

Example 2.2. Let a unipotent group G act on a vector space V . It fol-
lows from [2, Corollary 1.2] that the action G : V admits a constructible
quotient, provided that C[V ]G is finitely generated. If ρ : V → SpecC[V ]G

is the morphism corresponding to the inclusion C[V ]G ⊂ C[V ] then the con-
structible quotient is ρ : V → ρ(V ). In particular, the map π in Example 2.1
is a constructible quotient for the action U : Mat2×2.

Let us point out a fact concerning quotients under two commuting ac-
tions; it will be used to identify double coset varieties with quotients of
homogeneous spaces. Let F×H act on a variety X and πF : X → Y = X//F
be the categorical quotient for the action of F : X. The group H acts on Y as
an abstract group: if y = πF(x) then h◦y = πF(h◦x). By [3, Theorem. 7.1.4]
this action is regular. Moreover, existence of Y//H is equivalent to existence
of X//(F×H) and these two quotients coincide:
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X
πF×H

//

πF
$$

X//(F×H) = Y//H

Y = X//F

πH

66

The following statement will be used in Proposition 3.2.

Lemma 2.3. Let an algebraic group G act on an algebraic variety Y .
Suppose that there is y0 ∈ Y that belongs to the closure of every G-orbit.
Consider the action G : X × Y , where X is a normal variety and G acts
trivially on the first factor. Let W ⊆ X × Y be a G-invariant open sub-
set. Suppose that W contains X0 × Y , where X0 ⊆ X is a dense subset,
and pr(W ) = X, where pr is the projection onto the first factor. Then the
action G :W has pr :W → X as a categorical quotient both in the category
of algebraic varieties and in the category of constructible spaces.

Proof. Let us fix a G-invariant morphism ϕ : W → Z into an algebraic
variety Z (resp., into a constructible space) and show that it factors uniquely
through pr.

Step 1. We claim that ϕ extends to a continuous map onW ∪X×{y0}.
Let us fix a point (x′, y0) 6∈ X0 × {y0} and an arbitrary sequence {xn} ⊂
X0 such that xn → x′. Now we show that the sequence ϕ(xn, y0) con-
verges. Since pr(W ) = X, there is a point (x′, y) in W for some y ∈ Y .
The points (xn, y0) and (xn, y) belong to W , hence by G-invariance of ϕ
we have ϕ(xn, y) = ϕ(xn, y0), thus limn→∞ ϕ(xn, y0) = limn→∞ ϕ(xn, y)
= ϕ(x′, y). Since a converging sequence can have only one limit,
limn→∞ ϕ(xn, y0) does not depend on the choice of (x′, y) ∈ W . For the
extended map ϕ we have ϕ(x, y) = ϕ(x, y0), so continuity of ϕ|X×{y0} im-
plies continuity of ϕ on W ∪X × {y0}.

Step 2. Now we show that X × {y0} can be covered by open affine
sets Xi × {y0} such that the image of ϕ : Xi × {y0} → Z is contained in
some affine subset of Z. Let {Zi} be an affine covering of Z and {Ui} be
an affine covering of X. The set Vij = ϕ−1(ϕ(Ui) ∩ Zj) is open in Ui. Every
set Vij is a union of principal open subsets, Vij =

⋃
k Vijk. The sets Vijk make

up the required covering of X × {y0}.

Step 3. Since ϕ(x, y) = ϕ(x, y0), we have ϕ = ϕ̃◦ρ, where ϕ̃ = ϕ|X×{y0}
and ρ is the map W → X × {y0}, ρ(x, y) = (x, y0). Denote by ı the iden-
tification of X and X × {y0}: ı(x) = (x, y0). We have ϕ = ϕ̃ ◦ ı ◦ π, so ϕ
factors through π. It remains to verify that ϕ|X×{y0} is a morphism. The
variety X is normal, hence the affine opens Xi × {y0} constructed in Step 2
are normal varieties, too. Restrictions of ϕ to these opens are morphisms of
affine varieties; if Z is a constructible space then ϕ|Xi×{y0} is a morphism
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into a constructible set, but it can be regarded as a morphism into an affine
variety containing ϕ(Xi × {y0}). By the theorem on removable singularities
the continuous extensions of ϕ|Xi×{y0} are morphisms.

3. Existence and non-existence of double coset varieties

3.1. Consider a unipotent group G and a subgroup U:

G =


1 ∗ ∗ ∗

1 ∗ ∗
1 0

1

 , U =


1 ∗ 0 0

1 0 0

1 0

1

 ,

where ∗ denotes an arbitrary number. We claim that if we take F = H = U
then the double coset variety F\\G//H does not exist. Remark that the
group F × H = U × U is unipotent, hence every double (U,U)-coset is
closed [11, 1.3]; had F and H been reductive, this would have implied exis-
tence of the geometric quotient G→ G/(F×H).

Proposition 3.1. The action U × U : G has no categorical quotient in
the category of algebraic varieties. It admits a constructible quotient, and the
constructible quotient parametrises generic double cosets.

Proof. Consider the action of G on Mat4×2 by left multiplication. The
subgroup U is the stabiliser of the matrix

(3.1) M =


0 0

0 0

1 0

0 1

 .

Therefore, the homogeneous space G/U is isomorphic to A4 and can be
identified with the variety of matrices

∗ ∗
∗ ∗
1 0

0 1

 .

After this identification the action of U on G/U becomes the matrix mul-
tiplication; it is therefore isomorphic to the action of U on Mat2×2 by left
multiplication. Example 2.1 shows that this action does not admit a cate-
gorical quotient. Thus, U\\G//U = (G/U)//U does not exist.

From Example 2.2 it follows that the action U×U : G has a constructible
quotient π : G→ U\\G//U ⊂ A3 which separates generic double cosets.
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Remark. The constructible quotient π : G → U\\G//U does not sepa-
rate all closed double cosets. Indeed, all 2 × 2-matrices with a21 = a22 = 0
(we use the notation of Example 2.1) are fixed under the action of U and
have det = 0, hence their preimages in G are closed (U,U)-cosets, which are
mapped by π to 0 ∈ A3.

3.2. Take G = GL4 and consider the action of G on 4 × 2-matrices.
Let H be the stabiliser of the matrix M as in 3.1. The homogeneous space
W = G/H is identified with the variety of 4 × 2-matrices with non-zero
columns. Let F be the subgroup of G consisting of the matrices

1 a 0 0

1 0 0

s 0

s

 , a ∈ C, s ∈ C×.

The subgroup F acts on W via matrix multiplication.

Proposition 3.2. The action F × H : G does not admit a categorical
quotient in the category of algebraic varieties, but has a constructible quo-
tient.

Proof. The group F is a direct product F = U × S of one-dimensional
unipotent group U and one-dimensional torus S. The categorical quotient
for the action S : W is pr : W → Mat2×2, which erases the bottom half of
matrices of W . Indeed, one can apply Lemma 2.3 with the acting group S
and X = Y = Mat2×2 representing the top and bottom halves of matrices
respectively, and with X0 consisting of matrices with non-zero columns.

Thus, had the quotient W//F = F\\GL4//H existed, it would have been
also (W//S)//U = Mat2×2 //U, but, according to Example 2.1, the latter
quotient does not exist.

By Lemma 2.3 and Example 2.2, the actions S : W and U : Mat2×2
both have a constructible quotient, thus F\\GL4//H = (W//S)//U exists as
a constructible space.

3.3. This example is based on [2, 4.5]. Consider the following symmetric
bilinear form on C4: (e1, e4) = (e2, e3) = 1 and the other pairings of basis
vectors are zero. The cone

X = {x ∈ C4 | x1x4 + x2x3 = 0} \ {(0, 0, 0, 0)}

is the collection of non-zero isotropic vectors, therefore X = SO4 /H, where
H is the stabiliser of a non-zero isotropic vector. As F we take the following
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unipotent subgroup of SO4:
1 a 0 0

1 0 0

1 −a
1

 , a ∈ C.

The algebra C[X]F is freely generated by x2 and x4; indeed, these two
functions are F-invariant and generic orbits meet the plane {x1 = x3 = 0},
so there are no other generators. It is clear that the canonical morphism
π : X → SpecC[X]F = A2 is surjective. Nevertheless, SpecC[X]F is not a
categorical quotient for F : X because the following morphism ϕ : X → P1

does not factor through π:

ϕ(x1, x2, x3, x4) = (x2 : x4) = (x1 : −x3).
Indeed, π(x1, x2, x3, x4) = (x2, x4), and from ϕ = ϕ̃ ◦ π it would follow that
ϕ̃(x2, x4) = (x2 : x4) when x2 6= 0 or x4 6= 0, hence ϕ̃ is not continuous at
(0, 0), which is not possible.

Let us show that the action considered has a categorical quotient, though
it does not coincide with SpecC[X]F.

Proposition 3.3. The action F : X has a categorical quotient in the
category of algebraic varieties.

Proof. The quotient is the blow-up of the origin in A2,

Â2 = {((x, y), (u : v)) ∈ A2 × P1 | xv − yu = 0}
with the morphism ρ : X → Â2 given by the formula

ρ(x1, x2, x3, x4) = ((x2, x4), (x1 : −x3)) = ((x2, x4), (x2 : x4)).

Let us check that every F-invariant morphism ϕ : X → Z factors
through ρ. By F-invariance of ϕ we have ϕ(cx1, x2, cx3, x4)=ϕ(x1, x2, x3, x4).
Indeed, if one of x2, x4 is not zero then (x1, x2, x3, x4) and (cx1, x2, cx3, x4)
belong to one orbit of F; if x2 = x4 = 0 then

ϕ(x1, 0, x3, 0) = lim
t→0

ϕ(x1, tx1, x3,−tx3) = lim
t→0

ϕ(cx1, tx1, cx3,−tx3)

= ϕ(cx1, 0, cx3, 0).

Define ϕ̃ : Â2 → Z as the morphism taking ((x, y), (u : v)) to ϕ(u, x,−v, y).
The reasoning above shows that ϕ̃ is well defined. Thus, ϕ = ϕ̃◦ρ, i. e., ϕ fac-
tors through ρ. Since ρ(X) = Â2, the morphism ϕ̃ can be chosen uniquely.

Remark. It is clear that ρ : X → Â2 separates the orbits of points
having x2 6= 0 or x4 6= 0. However, ρ does not separate all closed orbits: the
points z = (x1, 0, x3, 0) and z′ = (cx1, 0, cx3, 0) are F-fixed, but ρ(z) = ρ(z′).



184 A. ANISIMOV

Thus, the quotient q : SO4 → F\\SO4//H = Â2 separates generic double
cosets, but fails to separate all closed double cosets.

3.4. Remark that in Examples I and II the actions F × H : G have no
categorical quotient in the category of algebraic varieties but do admit one in
the category of constructible spaces. The following question has been raised
by the referee.

Question. Let G be a connected affine algebraic group and F,H be
closed subgroups in G. Is it true that F\\G//H exists as a constructible
space?

The following proposition gives a partial answer to this question.
Proposition 3.4. Let G be a connected affine algebraic group and F,H

⊂ G be closed connected subgroups with trivial character groups. Suppose that
the algebra FC[G]H is finitely generated and let π : G → Spec(FC[G]H) be
the canonical morphism. Then F\\G//H exists as a constructible space and
the map π : G→ π(G) is the constructible quotient for the action of F × H
on G.

Proof. By [10, Theorem 6], the underlying variety of G has a finite divisor
class group. Additionally, F and H have trivial character groups, therefore
every F × H-invariant hypersurface D ⊂ G is the zero set of an invariant
function fD ∈ FC[G]H. It now follows from [2, Corollary 1.2] that the ac-
tion F×H : G has π : G→ π(G) as a constructible quotient.

Remark. One can often give a positive answer to the question on fi-
nite generation of FC[G]H. Recall that if R is a reductive group, Z is an
affine R-variety and U ⊂ R is a maximal unipotent subgroup then the al-
gebra C[Z]U is finitely generated [8, Chapter 3.2]. Thus, the constructible
space F\\G//H is guaranteed to exist if both groups F and H are maximal
unipotent subgroups in bigger reductive subgroups F′,H′ ⊆ G, or if one of
them is semisimple and the other one is a maximal unipotent subgroup in a
bigger reductive subgroup. Other results on finite generation of algebras of
invariants can be found in [6].
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