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WHEN A FIRST ORDER T HAS LIMIT MODELS

BY

SAHARON SHELAH (Jerusalem and Piscataway, NJ)

Abstract. We sort out to a large extent when a (first order complete theory) T has
a superlimit model in a cardinal λ. Also we deal with related notions of being limit.

Annotated content

0. Introduction. We give background and basic definitions. We then present exis-
tence results for stable T which have models that are saturated or close to being saturated.

1. On countable superstable non-ℵ0-stable. Consistently 2ℵ1 ≥ ℵ2 and some
such (complete first order) T has a superlimit (non-saturated) model of cardinality ℵ1.
This shows that we cannot prove a non-existence result fully complementary to the results
in 0.9.

2. A strictly stable consistent example. Consistently ℵ1 < 2ℵ0 and some count-
able stable not superstable T has a (non-saturated) model of cardinality ℵ1 which satisfies
some relatives of being superlimit.

3. On the non-existence of limit models. The proofs here are in ZFC. If T is
unstable, it has no superlimit models of cardinality λ when λ ≥ ℵ1+|T |. For unsuperstable
T we have similar results but with “few” exceptional cardinals λ on which we do not know:
λ < λℵ0 which are < iω. Moreover, if T is superstable and λ ≥ |T | + 2|T | then T has a
superlimit model of cardinality λ iff |D(T )| ≤ λ iff T has a saturated model. Lastly, we
get weaker results on weaker relatives of superlimit.

0. Introduction

0A. Background and content. Recall that ([15, Ch. III]) if T is (first
order complete and) superstable then for λ ≥ 2|T |, T has a saturated model
M of cardinality λ and moreover

(∗) if 〈Mα : α < δ〉 is ≺-increasing, δ a limit ordinal < λ+ and α < δ ⇒
Mα
∼= M then

⋃
{Mα : α < δ} is isomorphic to M .

When investigating categoricity of an a.e.c. (abstract elementary class) k =
(Kk,≤k), the following property turns out to be central: M is a ≤k-universal
model of cardinality λ with the property (∗) above (called superlimit), pos-
sibly with additional parameter κ = cf(κ) ≤ λ (or stationary S ⊆ λ+);
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we also consider some relatives of the “superlimit” notion, mainly limit,
weakly limit and strongly limit. Those notions were suggested for a.e.c. in
[13, 3.1]; see also the revised version [3, 3.3] and [19], or here in 0.7. But
though coming from investigating non-elementary classes, they are meaning-
ful for elementary classes and here we try to investigate them for elementary
classes.

Recall that for a first order complete T , we know {λ : T has a saturated
model of T of cardinality λ}, namely, it is {λ : λ<λ ≥ |D(T )| or T is stable
in λ}; for the definitions of D(T ) and other notions see 0B below. What if
we replace saturated by superlimit (or some relative)? Let ECλ(T ) be the
class of models M of T of cardinality λ.

If there is a saturated M ∈ ECλ(T ) we have considerable knowledge on
the existence of a limit model for the cardinal λ, by [15], as mentioned in
[3, 3.6] (see 0.9(1),(2)). E.g. for superstable T in λ ≥ 2|T | there is a superlimit
model (the saturated one). It seems a natural question on [3, 3.6] whether
it exhausts the possibilities of (λ, ∗)-superlimit and (λ, κ)-superlimit models
for elementary classes. Clearly the cases of the existence of such models of
a (first order complete) theory T where there are no saturated (or special)
models are rare, because even the weakest version of Definition [13, 3.1] =
[3, 3.3] or here Definition 0.7 for λ implies that T has a universal model of
cardinality λ, which is rare (see Kojman–Shelah [2] which includes earlier
history and recently Džamonja [1]).

So the main question seems to be whether there are such cases at all. We
naturally look at some of the previous cases of consistency of the existence
of a universal model (for λ < λ<λ), i.e., those for λ = ℵ1.

E.g. a sufficient condition for some versions is the existence of T ′ ⊇ T
of cardinality λ such that PC(T ′, T ) is categorical in λ (see 0.4(3)). By [12]
we have consistency results for such T1 so naturally we first deal with the
consistency results from [12]. In §1 we deal with the case of the countable
superstable T0 from [12] which is not ℵ0-stable. By [12] consistently ℵ1 < 2ℵ0

and for some T ′0 ⊇ T0 of cardinality ℵ1, PC(T ′0, T0) is categorical in ℵ1. We
use this to get the consistency of “T0 has a superlimit model of cardinality
ℵ1 and ℵ1 < 2ℵ0”.

In §2 for some stable non-superstable countable T1 we have a paral-
lel but weaker result. We reconsider the old consistency results of “some
PC(T ′1, T1), |T ′1| = ℵ1 > |T1|, is categorical in ℵ1” from [12]. From this we
deduce that in this universe, T1 has a strongly (ℵ1,ℵ0)-limit model.

It is a reasonable thought that we can similarly have a consistency result
for the theory of linear orders, but this is still unclear.

In §3 we show that if T has a superlimit model in λ ≥ |T |+ℵ1 then T is
stable and T is superstable except possibly under some severe restrictions on
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the cardinal λ (i.e., λ < iω and λ < λℵ0). We then prove some restrictions
on the existence of some (weaker) relatives.

Summing up our results on the strongest notion, superlimit, by 1.1 + 3.1
we have:

Conclusion 0.1. Assume λ ≥ |T |+iω. Then T has a superlimit model
of cardinality λ iff T is superstable and λ ≥ |D(T )|.

In subsequent work we shall show that for some unstable T (e.g. the
theory of linear orders), if λ = λ<λ > κ = cf(κ), then T has a medium
(λ, κ)-limit model, whereas if T has the independence property, even weak
(λ, κ)-limit models do not exist; see [5] and more in [6], [20], [4], [9].

0B. Basic definitions

Notation 0.2. Let T denote a complete first order theory which has
infinite models but T1, T

′ etc. are not necessarily complete.

If M,N denote models, then |M | is the universe of M and ‖M‖ its
cardinality and M ≺ N means M is an elementary submodel of N .

Let τT = τ(T ), τM = τ(M) be the vocabularies of T , M respectively.

Let M |= “ϕ[ā](stat)” mean that the model M satisfies ϕ[ā] if the state-
ment stat is true (or is 1 rather than 0).

Definition 0.3. For ā ∈ ω>|M | and B ⊆M let

tp(ā, B,M) = {ϕ(x̄, b̄) : ϕ = ϕ(x̄, ȳ) ∈ L(τM ), b̄ ∈ `g(ȳ)B and M |= ϕ[ā, b̄]}.

Let

D(T ) = {tp(ā, ∅,M) : M a model of T and ā a finite sequence from M}.

If A ⊆M then

Sm(A,M) = {tp(ā, A,N) : M ≺ N and ā ∈ mN};

if m = 1 we may omit it.

A model M is λ-saturated when: if A ⊆ M, |A| < λ and p ∈ S(A,M)
then p is realized by some a ∈M , i.e. p ⊆ tp(a,A,M); if λ = ‖M‖ we may
omit it.

A model M is special when letting λ = ‖M‖, there is an increasing se-
quence 〈λi : i < cf(λ)〉 of cardinals with limit λ and a ≺-increasing sequence
〈Mi : i < cf(λ)〉 of models with union M such that Mi+1 is λi-saturated of
cardinality λi+1 for i < cf(λ).

Definition 0.4. For any T let

EC(T ) = {M : M is a τT -model of T},
ECλ(T ) = {M ∈ EC(T ) : M is of cardinality λ}.
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For T ⊆ T ′ let

PC(T ′, T ) = {M�τT : M is model of T ′},
PCλ(T ′, T ) = {M ∈ PC(T ′, T ) : M is of cardinality λ}.

We say M is λ-universal for T1 when it is a model of T1 and every N ∈
ECλ(T ) can be elementarily embedded into M ; if T1 = Th(M) we may omit
it.

We say M ∈ EC(T ) is universal when it is λ-universal for λ = ‖M‖.

We are here mainly interested in

Definition 0.5. Given T and M ∈ ECλ(T ) we say that M is a super-
limit or λ-superlimit model when: M is universal and if δ < λ+ is a limit
ordinal, 〈Mα : α ≤ δ〉 is ≺-increasing continuous, and Mα is isomorphic to
M for every α < δ, then Mδ is isomorphic to M .

Remark 0.6. Concerning the following definition we shall use strongly
limit in 2.14(1), medium limit in 2.14(2).

Definition 0.7. Let λ be a cardinal ≥ |T |. For parts (3)–(7) below, but
not (8), to simplify the presentation we assume the axiom of global choice
and that F is a class function; alternatively restrict yourself to models with
universe an ordinal ∈ [λ, λ+).

(1) For non-empty Θ ⊆ {µ : ℵ0 ≤ µ < λ and µ is regular} and M ∈
ECλ(T ) we say that M is (λ,Θ)-superlimit when: M is universal and

if 〈Mi : i ≤ µ〉 is ≺-increasing, Mi
∼= M for i < µ and µ ∈ Θ,

then
⋃
{Mi : i < µ} ∼= M .

(2) If Θ is a singleton, say Θ = {θ}, we may say that M is (λ, θ)-
superlimit.

(3) Let S ⊆ λ+ be stationary. A model M ∈ ECλ(T ) is called S-strongly
limit or (λ, S)-strongly limit when for some function F : ECλ(T )→ ECλ(T )
we have:

(a) for N ∈ ECλ(T ) we have N ≺ F(N),
(b) if δ ∈ S is a limit ordinal and 〈Mi : i < δ〉 is a ≺-increasing

continuous sequence (1) in ECλ(T ) and i < δ ⇒ F(Mi+1) ≺
Mi+2, then M ∼=

⋃
{Mi : i < δ}.

(4) Let S ⊆ λ+ be stationary. M ∈ ECλ(T ) is called S-limit or (λ, S)-
limit if for some function F : ECλ(T )→ ECλ(T ) we have:

(a) for every N ∈ ECλ(T ) we have N ≺ F(N),

(1) No loss if we add Mi+1
∼= M , so this simplifies the demand on F, i.e., only F(M ′)

for M ′ ∼= M is required.
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(b) if 〈Mi : i < λ+〉 is a ≺-increasing continuous sequence of mem-
bers of ECλ(T ) such that F(Mi+1) ≺ Mi+2 for i < λ+ then for
some closed unbounded (2) subset C of λ+,

[δ ∈ S ∩ C ⇒Mδ
∼= M ].

(5) We define (3) “S-weakly limit”, “S-medium limit” like “S-limit”, “S-
strongly limit” respectively by demanding that the domain of F is the family
of ≺-increasing continuous sequences of members of ECλ(T ) of length < λ+

and replacing “F(Mi+1) ≺Mi+2” by “Mi+1 ≺ F(〈Mj : j ≤ i+ 1〉) ≺Mi+2”.

(6) If S = λ+ then we may omit S (in (3)–(5)).

(7) For non-empty Θ ⊆ {µ : µ ≤ λ and µ is regular},M is (λ,Θ)-strongly
limit (4) if M is {δ < λ+ : cf(δ) ∈ Θ}-strongly limit. Similarly for the other
notions. If we do not write λ we mean λ = ‖M‖.

(8) We say that M ∈ Kλ is invariantly strong limit when in (3), F is just
a subset of {(M,N)/∼= : M ≺ N are from ECλ(T )} and in (3)(b) we replace
“F(Mi+1) ≺ Mi+2” by “(∃N)(Mi+1 ≺ N ≺ Mi+2 ∧ ((M,N)/∼=) ∈ F)”.
But abusing notation we still write N = F(M) instead of ((M,N)/∼=) ∈ F.
Similarly with the other notions, so we use the isomorphism type of M̄ˆ〈N〉
for “weakly limit” and “medium limit”.

(9) In the definitions above we may say “F witnesses M is ...”

Observation 0.8. (1) Assume F1,F2 are as above and F1(N) ≺ F2(N)
(or F1(N̄) ≺ F2(N̄)) whenever defined. If F1 is a witness then so is F2.

(2) All versions of limit models imply being a universal model in ECλ(T ).

(3) (The obvious implications diagram) For non-empty Θ ⊆ {θ : θ is
regular ≤ λ} and stationary S1 ⊆ {δ < λ+ : cf(δ) ∈ Θ}:

superlimit = (λ, {µ : µ ≤ λregular})-superlimit

↓
(λ,Θ)-superlimit

↓

S1-strongly limit

↓ ↓
S1-medium limit S1-limit

↓ ↓
S1-weakly limit

(2) Alternatively, we can use as a parameter a filter on λ+ extending the co-bounded
filter.

(3) Note that M is (λ, S)-strongly limit iff M is ({λ, cf(δ) : δ ∈ S})-strongly limit.

(4) In [3] we replace “limit” by “limit−” if “F(Mi+1) ≺ Mi+2”, “Mi+1 ≺ F(〈Mj :
j ≤ i + 1〉) ≺ Mi+2” are replaced by “F(Mi) ≺ Mi+1”, “Mi ≺ F(〈Mj : j ≤ i〉) ≺ Mi+1”
respectively. But (EC(T ),≺) has amalgamation.



192 S. SHELAH

Lemma 0.9. Let T be a first order complete theory.

(1) If λ is regular and M a saturated model of T of cardinality λ, then
M is (λ, λ)-superlimit.

(2) If T is stable, and M is a saturated model of T of cardinality λ ≥
ℵ1 + |T | and Θ = {µ : κ(T ) ≤ µ ≤ λ and µ is regular}), then M is
(λ,Θ)-superlimit (for κ(T ), see [15, III, §3]).

(3) If T is stable in λ and κ = cf(κ) ≤ λ then T has an invariantly
strongly (λ, κ)-limit model.

Remark 0.10. Concerning 0.9(2), note that by [15] if λ is singular or
just λ < λ<λ and T has a saturated model of cardinality λ then T is stable
(even stable in λ) and cf(λ) ≥ κ(T )).

Proof. (1) Let Mi be a λ-saturated model of T of cardinality λ for i < λ
with 〈Mi : i < λ〉 ≺-increasing and set Mλ =

⋃
i<λMi. Now for every

A ⊆ Mλ of cardinality < λ there is i < λ such that A ⊆ Mi, so every
p ∈ S(A,Mλ) is realized in Mi, hence in Mλ; so clearly Mλ is λ-saturated.
Remembering the uniqueness of a λ-saturated model of T of cardinality λ
we finish.

(2) Use [15, III, 3.11]: if Mi is a λ-saturated model of T with 〈Mi : i < δ〉
increasing and cf(δ) ≥ κ(T ) then

⋃
i<δMi is λ-saturated.

(3) Let Kλ,κ = {M̄ : M̄ = 〈Mi : i ≤ κ〉 is ≺-increasing continuous,
Mi ∈ ECλ(T ) and (Mi+2, c)c∈Mi+1 is saturated for every i < κ}. Clearly
M̄, N̄ ∈ Kλ,κ ⇒ Mκ

∼= Nκ. Also for every M ∈ ECλ(T ) there is N such
that M ≺ N and (N, c)c∈M is saturated, as also Th((M, c)c∈M ) is stable in
λ; so there is an invariant F : ECλ(T )→ ECλ(T ) such that M ≺ F(M) and
(F(M), c)c∈M is saturated; such F witnesses the desired conclusion. 0.9

Definition 0.11. For a regular uncountable cardinal λ let

Ǐ[λ] = {S ⊆ λ: some pair (E, ā) witnesses S ∈ Ǐ[λ], see below}.
We say that (E, ū) is a witness for S ∈ Ǐ[λ] iff:

• E is a club of the regular cardinal λ,
• ū = 〈uα : α < λ〉, uα ⊆ α and β ∈ uα ⇒ uβ = β ∩ uα,
• for every δ ∈ E ∩S, uδ is an unbounded subset of δ of order-type cf(δ)

(and δ is a limit ordinal).

By [16, §1] we have

Claim 0.12. If κ+ < λ and κ, λ are regular then some stationary S ⊆
{δ < λ : cf(δ) = κ} belongs to Ǐ[λ].

By [11] we have

Claim 0.13. If λ= µ+, θ = cf(θ) ≤ cf(µ) and α<µ ⇒ |α|<θ ≤ µ then
Sλθ ∈ Ǐ[λ].
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1. On superstable non-ℵ0-stable T . We first note that superstable
T tend to have superlimit models.

Claim 1.1. Assume T is superstable and λ ≥ |T | + 2ℵ0. Then T has a
superlimit model of cardinality λ iff T has a saturated model of cardinality
λ iff T has a universal model of cardinality λ iff λ ≥ |D(T )|.

Proof. By [15, III, §5] we know that T is stable in λ iff λ ≥ |D(T )|. Now
if |T | ≤ λ < |D(T )| trivially there is no universal model of T of cardinality λ,
hence no saturated model and no superlimit model, etc., recalling 0.8(2). If
λ ≥ |D(T )|, then T is stable in λ, hence has a saturated model of cardinality
λ by [15, III] (hence universal) and the class of λ-saturated models of T is
closed under increasing elementary chains by [15, III], so we are done. 1.1

The following are the prototypical theories which we shall consider.

Definition 1.2.

T0 = Th(ω2, E0
n)n<ω where ηE0

nν ⇔ η�n = ν�n,

T1 = Th(ω(ω1), E1
n)n<ω where ηE1

nν ⇔ η�n = ν�n,

T2 = Th(R, <).

Recall

Observation 1.3.

(0) T` is a countable complete first order theory for ` = 0, 1, 2.
(1) T0 is superstable non-ℵ0-stable.
(2) T1 is strictly stable, that is, stable non-superstable.
(3) T2 is unstable.
(4) T` has elimination of quantifiers for ` = 0, 1, 2.

Claim 1.4. It is consistent with ZFC that ℵ1 < 2ℵ0 and some M ∈
ECℵ1(T0) is a superlimit model.

Proof. By [12], for notational simplicity we start with V = L.

So T0 is defined in 1.2 and it is the T from Theorem [12, 1.1]. Let S be
the set of η ∈ (ω2)L. We define T ′ (called T1 there) as the following theory:

~1 (i) for each n the sentence saying En is an equivalence relation with
2n equivalence classes, each En equivalence class divided into two
by En+1, En+1 refines En, E0 is trivial,

(ii) the sentences saying that

(α) for every x0, the function z 7→ F (x0, z) is one-to-one and
(β) x0EnF (x0, z) for each n < ω,

(iii) En(cη, cν)if(η�n=ν�n) for η, ν ∈ S.
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In [12] it is proved that in some forcing (5) extension LP of L, P an ℵ2-c.c.
proper forcing of cardinality ℵ2, and in V = LP, the class PC(T ′, T0) =
{M�τT0 : M is a τ -model of T ′} is categorical in ℵ1.

However, letting M∗ be any model from PC(T ′, T0) of cardinality ℵ1, it
is easy to see that (in V = LP):

~2 the following conditions on M are equivalent:

(a) M is isomorphic to M∗,
(b) M ∈ PC(T ′, T0),
(c) (α) M is a model of T0 of cardinality ℵ1,

(β) M∗ can be elementarily embedded into M ,
(γ) for every a ∈M the set

⋂
{a/EMn : n < ω} has cardinality ℵ1.

But

~3 every model M1 of T of cardinality ≤ ℵ1 has a proper elementary
extension to a model satisfying (c), i.e., (α)–(γ) of ~2 above,

~4 if 〈Mα : α < δ〉 is an increasing chain of models satisfying (c) of ~2

and δ < ω2 then also
⋃
{Mα : α < δ} does.

Altogether we are done. 1.4

Naturally we ask

Question 1.5. What occurs to T0 for λ > ℵ1 but λ < 2ℵ0?

Question 1.6. Does the theory T2 of linear order consistently have an
(ℵ1,ℵ0)-superlimit (or only strongly limit) model? (but see §3).

Question 1.7. What is the answer for T when T is countable super-
stable non-ℵ0-stable and D(T ) is countable for ℵ1 < 2ℵ0 and ℵ2 < 2ℵ0?

By the above for some such T , in some universe, for ℵ1 the answer is
yes, there is a superlimit model.

2. A strictly stable consistent example. We now look at models of
T1 (redefined below) in cardinality ℵ1; recall

Definition 2.1. T1 = Th(ω(ω1), En)n<ω where En = {(η, ν) : η, ν ∈
ω(ω1) and η�n = ν�n}.

Remark 2.2. Note that T1 has elimination of quantifiers. Moreover, if
λ =

∑
{λn : n < ω} and λn = λℵ0n , then T1 has a (λ,ℵ0)-superlimit model

in λ (see 2.15).

Definition/Claim 2.3. Any model of T1 of cardinality λ is isomorphic
to MA,h := ({(η, ε) : η ∈ A, ε < h(η)}, En)n<ω for some A ⊆ ωλ and h :

(5) We can replace L by any V0 which satisfies 2ℵ0 = ℵ1, 2ℵ1 = ℵ2.
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ωλ→ (Car∩λ+) \ {0} where (η1, ε1)En(η2, ε2)⇔ η1�n = η2�n; pedantically

we should write E
MA,h
n = En�|MA,n|.

We write MA for MA,h when A is as above and h : A → {|A|}, so
constantly |A| when A is infinite.

For A ⊆ ωλ and h as above the model MA,h is a model of T1 iff A is
non-empty and (∀η ∈ A)(∀n < ω)(∃ℵ0ν ∈ A)(ν�n = η�n ∧ ν(n) 6= η(n)).

Above MA,h has cardinality λ iff
∑
{h(η) : η ∈ A} = λ.

Definition 2.4. We say that A is a (T1, λ)-witness when:

• A ⊆ ωλ has cardinality λ,
• if B1, B2 ⊆ ωλ are (T1, A)-big (see below) of cardinality λ then

(B1 ∪ ω>λ, /) is isomorphic to (B2 ∪ ω>λ, /).

A set B ⊆ ωλ is called (T1, A)-big when it is (λ, λ)-(T1, A)-big; see below.
B is (µ, λ)-(T1, A)-big means: B ⊆ ωλ, |B| = |A| = µ and for every

η ∈ ω>λ there is an isomorphism f from (ω≥λ, /) onto ({ηˆν : ν ∈ ω≥λ}, /)
mapping A into {ν : ηˆν ∈ B}.

A ⊆ ω(ω1) is ℵ1-suitable when:

• |A| = ℵ1,
• for a club of δ < ω1, A∩ ωδ is everywhere non-meagre in the space ωδ,

i.e., for every η ∈ ω>δ the set {ν ∈ A ∩ ωδ : η / ν} is a non-meagre
subset of ωδ (that is what is really used in [12]).

Claim 2.5. It is consistent with ZFC that 2ℵ0 > ℵ1 + there is a (T1,ℵ1)-
witness; moreover every ℵ1-suitable set is a (T1,ℵ1)-witness.

Proof. By [12, §2]. 2.5

Remark 2.6. The witness does not give rise to an (ℵ1,ℵ0)-limit model
as for the union of any “fast enough” ≺-increasing ω-chain of members of
ECℵ1(T1), the relevant sets are meagre.

Definition 2.7. Let A be a (T1, λ)-witness. We define K1
T1,A

as the

family of M = (|M |, <M , PMα )α≤ω such that:

(α) (|M |, <M ) is a tree with ω + 1 levels,
(β) PMα is the αth level; let PM<ω =

⋃
{PMn : n < ω},

(γ) M is isomorphic to M1
B for some B ⊆ ωλ of cardinality λ where

M1
B is defined by |M1

β | = (ω>λ) ∪ B, P
M1
B

n = nλ, P
M1
B

ω = B and

<M
1
B = /�|M1

B|, i.e., being an initial segment,
(δ) moreover B is such that some f satisfies:

• f : ω>λ→ ω and f(〈〉) = 0 for simplicity,
• η E ν ∈ ω>λ⇒ f(η) ≤ f(ν),
• if η ∈ B then 〈f(η�n) : n < ω〉 is eventually constant,
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• if η ∈ ω>λ then {ν ∈ ωλ : η_ν ∈ B and m < ω ⇒ f(η_(ν�m)) =
f(η)} is (T1, A)-big,
• for η ∈ ω>λ and n ∈ [f(η), ω) for λ ordinals α < λ, we have
f(η_〈α〉) = n.

Claim 2.8 (The Global Axiom of Choice). If A is a (T1,ℵ1)-witness
then:

(a) K1
T1,A
6= ∅,

(b) any two members of K1
T1,A

are isomorphic,

(c) there is a function F from K1
T1,A

to itself (up to isomorphism, i.e.,
(M,F(M)) is defined only up to isomorphism) satisfying M ⊆ F(M)
such that K1

T1,A
is closed under increasing unions of sequences 〈Mn :

n < ω〉 such that F(Mn) ⊆Mn+1.

Proof. (a): Trivial.
(b): By the definition of “A is a (T1,ℵ1)-witness” and of K1

T1,A
.

(c): We choose F such that

• if M ∈ K1
A,T1

then M ⊆ F(M) ∈ K1
A,T1

and for every k < ω and

a ∈ PMk , the set {b ∈ PF(M)
k+1 : a <F(M) b and b /∈ M} has cardinal-

ity ℵ1.

Assume M =
⋃
{Mn : n < ω} where 〈Mn : n < ω〉 is ⊆-increasing,

Mn ∈ K1
A,T1

, F(Mn) ⊆ Mn+1. Clearly M is as required at the beginning
of Definition 2.7, that is, satisfies clauses (α)–(γ) there. To prove (δ), we
define f : PM<ω → ω by f(a) = Min{n : a ∈ Mn}. Pedantically, F is defined
only up to isomorphism. 2.8

Claim 2.9. If A is a (T1, λ)-witness then:

(a) K1
T1,A
6= ∅,

(b) any two members of K1
T1,A

are isomorphic,

(c) if Mn ∈ K1
T1,A

and n < ω ⇒Mn ⊆Mn+1 then M :=
⋃
{Mn : n < ω}

∈ K1
T1,A

.

Remark 2.10. If we omit clause (b), we can weaken the demand on the
set A.

Proof. Assume M =
⋃
{Mn : n < ω}, Mn ⊆ Mn+1, Mn ∈ K1

T1,A
and fn

witnesses Mn ∈ K1
T1,A

. Clearly M satisfies clauses (α)–(γ) of Definition 2.7;
we just have to find a witness f as in (δ) there.

For each a ∈M let n(a) = Min{n : a ∈Mn}; clearly if M |= “a < b < c”
then n(a) ≤ n(b) and n(a) = n(c) ⇒ n(a) = n(b). Let gn : M → M be
defined by: gn(a) = b iff b ≤M a, b ∈ Mn and b is ≤M -maximal under
those restrictions; clearly it is well defined. Now we define f ′n : Mn → ω by
induction on n < ω such that m < n⇒ f ′m ⊆ f ′n, as follows.



WHEN A FIRST ORDER T HAS LIMIT MODELS 197

If n = 0 let f ′n = fn.
If n = m + 1 and a ∈ Mn we let f ′n(a) be f ′m(a) if a ∈ Mm and be

(fn(a) − fn(gm(a))) + f ′m(gm(a)) + 1 if a ∈ Mn\Mm. Clearly f :=
⋃
{f ′n :

n < ω} is a function from M to ω, a ≤M b ⇒ f(a) ≤ f(b), and for any
a ∈ M the set {b ∈ M : a ≤M b and f(b) = f(a)} is equal to {b ∈ Mn(a) :

fn(a)(a) = fn(a)(b) and a ≤M b}. 2.9

Definition 2.11. Let A be a (T1, λ)-witness. We define K2
T1,A

as in
Definition 2.7 but f is constantly zero.

Claim 2.12 (The Global Axiom of Choice). If A is a (T1,ℵ1)-witness
then:

(a) K2
T1,A
6= ∅,

(b) any two members of K2
T1,A

are isomorphic,

(c) there is a function F from
⋃
{α+2(K2

T0,A
) : α < ω1} to K2

T1,A
which

satisfies:

(α) if M̄ = 〈Mi : i ≤ α + 1〉 is an ≺-increasing sequence of models
of T then Mα+1 ⊆ F(M̄) ∈ K2

T1,A
,

(β) when ω1 = sup{α : F(M̄�r(α+2)) ⊆Mα+2) and is a well defined
embedding of Mα into Mα+2}, the union of any increasing ω1-
sequence M̄ = 〈Mα : α < ω1〉 of members of K2

T1,A
belongs

to K2
T1,A

.

Remark 2.13. Instead of the global axiom of choice, we can restrict the
models to have universe a subset of λ+ (or just a set of ordinals).

Proof. (a): Easy.
(b): By the definition.
(c): Let 〈Uε : ε < ω1〉 be an increasing sequence of subsets of ω1 with

union ω1 such that ε < ω1 ⇒ |Uε\
⋃
ζ<ε Uζ | = ℵ1. Let M∗ ∈ K2

T1,A
be such

that ω>(ω1) ⊆ |M∗| ⊆ ω≥(ω1) and M∗ε := M∗�ω≥(Uε) belongs to K2
T1,A

for
every ε < ω1.

We choose a pair (F, f) of functions with domain {M̄ : M̄ an increasing
sequence of members of K2

T1,A
of length < ω1} such that:

• F(M̄) is an extension of
⋃
{Mi : i < `g(M̄)} from K2

T1,A
,

• f(M̄) is an embedding from M∗
`g(M̄)

into F(M̄),

• if M̄ ` = 〈Mα : α < α`〉 for ` = 1, 2 and α1 < α2, M̄1 = M̄2�α1 and
F(M̄1) ⊆Mα1 then f(M̄1) ⊆ f(M̄2),
• if a ∈ F(M̄) and n < ω then for some b ∈ M∗

`g(M̄)
we have F(M) |=

aEn(f(M̄)(b)).

Now check. 2.12
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Conclusion 2.14. Assume there is a (T1,ℵ1)-witness (see Definition 2.4)
for the first-order complete theory T1 from 2.1. Then:

(1) T1 has an (ℵ1,ℵ0)-strongly limit model.
(2) T1 has an (ℵ1,ℵ1)-medium limit model.
(3) T1 has an (ℵ1,ℵ0)-superlimit model.

Proof. (1) By 2.8 the reduction of problems on (EC(T1),≺) to K1
T1,A

(which is easy) is exactly as in [12].
(2) By 2.12.
(3) Like part (1) using Claim 2.9. 2.14

Claim 2.15. If λ =
∑
{λn : n < ω} and λn = λℵ0n , then T1 has a

(λ,ℵ0)-superlimit model in λ.

Proof. Let Mn be the model MAn,hn where An = ω(λn) and hn : An →
λ+
n is constantly λn. Clearly,

(∗)1 Mn is a saturated model of T1 of cardinality λn,
(∗)2 Mn ≺Mn+1,
(∗)3 Mω =

⋃
{Mn : n < ω} is a special model of T1 of cardinality λ.

The main point is:

(∗)4 Mω is (λ,ℵ0)-superlimit model of T1.

[Why? Toward this assume:

• Nn is isomorphic to Mω, say fn : Mω → Nn is an isomorphism,
• Nn ≺ Nn+1 for n < ω.

Let Nω =
⋃
{Nn : n < ω} and we should prove Nω

∼= Mω, so just Nω is a
special model of T1 of cardinality λ suffice.

Let N ′n = Nω�(
⋃
{fn(Mk) : k ≤ n}). Clearly N ′n ≺ N ′n+1 ≺ Nω and⋃

{N ′n : n < ω} = Nω∗ and ‖N ′n‖ = λn. So it suffices to prove that N ′n is
saturated and direct inspection shows this. 2.15

3. On non-existence of limit models. Naturally we assume that
non-existence of superlimit models for unstable T is easier to prove. For
other versions we need to look more. We first show that for λ ≥ |T |+ ℵ1, if
T is unstable then it does not have a superlimit model of cardinality λ, and
if T is unsuperstable, we show this for “most” cardinals λ. On “Φ proper for
Kor or Kω

tr”, see [15, VII] or [7] or hopefully some day in [8, III]. We assume
some knowledge of stability.

Claim 3.1. (1) If T is unstable, λ ≥ |T |+ ℵ1, then T has no superlimit
model of cardinality λ.

(2) If T is stable non-superstable and λ ≥ |T | + iω or λ = λℵ0 ≥ |T |
then T has no superlimit model of cardinality λ.
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Remark 3.2. We assume some knowledge of EM models for linear orders
I and members of Kω

tr as index models (see, e.g., [15, VII]).
(2) We use the following definition in the proof, as well as a result from

[17] or [18].

Definition 3.3. For cardinals λ > κ let λ[κ] be the minimal µ such
that for some, equivalently for every set A of cardinality λ there is PA ⊆
[A]≤κ = {B ⊆ A : |B| ≤ κ} of cardinality λ such that any B ∈ [λ]≤κ is the
union of < κ members of PA.

Proof of Claim 3.1. (1) Towards a contradiction assume M∗ is a super-
limit model of T of cardinality λ. As T is unstable we can find m and ϕ(x̄, ȳ)
such that

• ϕ(x̄, ȳ) ∈ Lτ(T ) linearly orders some infinite I ⊆ mM,M |= T so
`g(x̄) = `g(ȳ) = m.

We can find a Φ which is proper for linear orders ([15, VII]) and F`(` < m)
such that F` ∈ τΦ\τT is a unary function symbol for ` < m, τT ⊆ τ(Φ)
and for every linear order I, EM(I, Φ) has Skolem functions and its τT -
reduct EMτ(T )(I, Φ) is a model of T of cardinality |T | + |I| and τ(Φ) is of
cardinality |T | + ℵ0 and 〈as : s ∈ I〉 is the skeleton of EM(I, Φ), that is, it
is an indiscernible sequence in EM(I, Φ) and EM(I, Φ) is the Skolem hull
of {as : s ∈ I}, and letting ās = 〈F`(as) : ` < m〉 in EM(I, Φ) we have
EMτ(T )(I, Φ) |= ϕ[ās, āt]

if(s<t) for s, t ∈ I.
Next we can find Φn (for n < ω) such that:

(a) Φn is proper for linear orders and Φ0 = Φ,
(b) EMτ(Φ)(I, Φn) ≺ EMτ(Φ)(I, Φn+1) for every linear order I and n < ω;

moreover
(b)+ τ(Φn) ⊆ τ(Φn+1) and EM(I, Φn) ≺ EMτ(Φn)(I, Φn+1) for every

n < ω and linear order I,
(c) if |I| ≤ n then EMτ(Φ)(I, Φn) = EMτ(Φ)(I, Φn+1) and EMτ(T )(I, Φn)
∼= M∗,

(d) |τ(Φn)| = λ.

This is easy. Let Φω be the limit of 〈Φn : n < ω〉, i.e. τ(Φω) =
⋃
{τ(Φn) :

n < ω} and if k < ω then EMτ(Φk)(I, Φω) =
⋃
{EMτ(Φk)(I, Φn) : n ∈ [k, ω)}.

So as M∗ is a superlimit model, for any linear order I of cardinality λ,
EMτ(T )(I, Φω) is the direct limit of 〈EMτ(T )(J, Φω) : J ⊆ I finite〉, each
isomorphic to M∗, so as we have assumed that M∗ is a superlimit model it
follows that EMτ(T )(I, Φω) is isomorphic to M∗. But by [14, III] or [7] which

may eventually be [8, III] there are 2λ many pairwise non-isomorphic models
of this form varying I on the linear orders of cardinality λ, contradiction.

(2) First assume λ = λℵ0 . Let τ ⊆ τT be countable such that T ′ =
T ∩ L(τ) is not superstable. Clearly if M∗ is a (λ,ℵ0)-limit model then
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M∗�τ ′ is not ℵ1-saturated. [Why? As in [10, Ch. VI, §6], but we shall give full
details: there are N∗ |= T, p = {ϕn(λ, ān) : n < ω} a type in N∗, ān/ān+1, ā〈〉
empty and ϕn+1(x, ān+1) forks over ān. Let F(M) be such that if n < ω
and b̄n ⊆ M realizes tp(ān, ∅, N∗) then for some b̄n+1 from F,M realizing
tp(ān+1, ∅, N∗), the type tp(b̄n+1,M,F(M)) does not fork over bn.] But if
κ = cf(κ) ∈ [ℵ1, λ] and M∗ is a (λ, κ)-limit then M∗�τ ′ is ℵ1-saturated,
contradiction.

The case λ ≥ |T | + iω is more complicated (the assumption λ ≥ iω is
to enable us to use [17] or see [18] for a simpler proof; we can use weaker
but less transparent assumptions; maybe λ ≥ 2ℵ0 suffices).

As T is stable non-superstable by [15] for some ∆̄:

~1 for any µ there are M and 〈aη,α : η ∈ ωµ and α < µ〉 such that

(a) M is a model of T ,
(b) Iη = {aη,α : α < µ} ⊆M is an indiscernible set (and α < β < µ
⇒ aη,α 6= aη,β),

(c) ∆̄ = 〈∆n : n < ω〉 and ∆n ⊆ Lτ(T ) infinite,
(d) for η, ν ∈ ωµ we have Av∆n(M, Iη) = Av∆n(M, Iν) iff η�n = ν�n.

Hence by [15, VIII] (or see [7] assuming M∗ is a universal model of T of
cardinality λ):

~2.1 there is Φ such that:

(a) Φ is proper for Kω
tr, τT ⊆ τ(Φ), |τ(Φ)| = λ ≥ |T |+ ℵ0,

(b) for I ⊆ ω≥λ, EMτ(Φ)(I, Φ) is a model of T and I ⊆ J ⇒
EM(I, Φ) ≺ EM(J, Φ),

(c) for some two-place function symbol F if for I∈Kω
tr and η∈P Iω ,

I a subtree of ω≥λ, for transparency we let II,η = {F (aη, aν) :
ν ∈ I}, then 〈II,η : η ∈ P Iω〉 are as in ~1(b), (d).

Also

~2.2 if Φ1 satisfies (a)–(c) of ~2.1 and M is a universal model of T then
there is Φ∗2 satisfying (a)–(c) of ~2.1 and Φ1 ≤ Φ∗2 (see ~2.3(a)) and
for every finitely generated J ∈ Kω

tr (see ~2.3(b)) there is M ′ ∼= M
such that EMτ(T )(J, Φ1) ≺M ′ ≺ EMτ(T )(J, Φ

∗
2),

~2.3 (a) we say Φ1 ≤ Φ2 when τ(Φ1) ⊆ τ(Φ2) and J ∈ Kω
tr ⇒ EM(J, Φ1)

≺ EMτ(Φ1)(J, Φ2),

(b) we say that J ⊆ I is finitely generated if it has the form {η` :
` < n}∪{ρ: for some n, ` we have ρ ∈ P In and ρ <I η`} for some
η0, . . . , ηn−1 ∈ P Iω ,

~2.4 if M∗ ∈ ECλ(T ) is superlimit (or just weakly S-limit, with S ⊆ λ+

stationary) then there is Φ as in ~2.1 above such that EMτ(T )(J, Φ)
∼= M∗ for every finitely generated J ∈ Kω

tr,
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~2.5 we fix Φ as in ~2.4 for M∗ ∈ ECλ(T ) superlimit.

Hence (mainly by clause (b) of ~2.1 and ~2.4 as in the proof of part (1))

~3 if I ∈ Kω
tr has cardinality ≤ λ then EMτ(Φ)(I, Φ) is isomorphic to M∗.

Now by [17], we can find regular uncountable κ < iω such that λ = λ[κ]

(see Definition 3.3).
Let S = {δ < κ : cf(δ) = ℵ0} and η̄ = 〈ηδ : δ ∈ S〉 be such that ηδ is an

increasing sequence of length ω with limit δ.
For a model M of T let OBη̄(M) = {ā : ā = 〈aηδ,α : δ ∈ W and

α < κ〉,W ⊆ S and in M they are as in ~1(b), (d)}. For ā ∈ OBη̄(M) let
W [ā] be W as above and let

Ξ(ā,M) = {η ∈ ωκ : there is an indiscernible set

I = {aα : α < κ} in M such that for every n,

for some δ ∈W [ā], η�n = ηδ�n and

Av∆n(M, I) = Av∆n(M, {aηδ,α : α < κ})}.
Clearly:

~4 (a) if M ≺ N then OBη̄(M) ⊆ OBη̄(N),
(b) if M ≺ N and ā ∈ OBη̄(M) then Ξ(ā,M) ⊆ Ξ(ā, N).

Now by the choice of κ it should be clear that:

~5 if M |= T is of cardinality λ then we can find an elementary extension
N of M of cardinality λ such that for every ā ∈ OBη̄(M) with W [ā]
a stationary subset of κ, for some stationary W ′ ⊆ W [ā] the set
Ξ[ā, N ] includes {η ∈ ωκ : (∀n)(∃δ ∈ W ′)(η�n = ηδ�n)} (moreover
we can even find ε∗ < κ and Wε ⊆ W for ε < ε∗ satisfying W [ā] =⋃
{Wε : ε < ε∗}),

~6 we find M ∈ ECλ(T ) isomorphic to M∗ such that for every ā ∈
OBη̄(M) with W [ā] a stationary subset of κ, we can find a stationary
subset W ′ of W [ā] such that the set Ξ[ā,M ] includes {η ∈ ωµ :
(∀n)(∃δ ∈W ′)(η�n = ηδ�n)}.

[Why? We choose (Mi, Ni) for i < κ+ such that:

• Mi ∈ ECλ(T ) is ≺-increasing continuous,
• Mi+1 is isomorphic to M∗,
• Mi ≺ Ni ≺Mi+1,
• (Mi, Ni) are like (M,N) in ~5.

Now M =
⋃
{Mi : i < κ+} is as required. The model M is isomorphic to

M∗ as M∗ is superlimit.]
Now the model from ~6 is not isomorphic to M ′ = EMτ(T )(

ω>λ ∪ {ηδ :
δ ∈ S}, Φ) where Φ is from ~2.1. But M ′ ∼= M∗ by ~3.

Altogether we are done. 3.1
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The following claim says in particular that if some not unreasonable pcf
conjectures hold, the conclusion holds for every λ ≥ 2ℵ0 .

Claim 3.4. Assume T is stable non-superstable, λ ≥ |T | and λ ≥ κ =
cf(κ) > ℵ0.

(1) T has no (λ, κ)-superlimit model provided that κ = cf(κ) > ℵ0,
κℵ0 ≤ λ and λ = UD(λ) := Min{|P| : P ⊆ [λ]κ and for every f : κ → λ
for some u ∈ P we have {α < κ : f(α) ∈ u} ∈ D+}, where D is a normal
filter on κ to which {δ < κ : cf(δ) = ℵ0} belongs.

(2) Similarly if λ ≥ 2ℵ0 and letting J0 = {u ⊆ κ : |u| ≤ ℵ0}, J1 =
{u ⊆ κ : u ∩ Sκℵ0 non-stationary} we have λ = UJ1,J0(λ) := Min{|P| : P ⊆
[λ]ℵ0, and if u ∈ J1 and f : (κ\u) → λ then for some countable infinite
w ⊆ κ(u) and v ∈P, Rang(f�w) ⊆ v}.

Proof. Like 3.1.

Claim 3.5. (1) Assume T is unstable and λ ≥ |T | + iω. Then for at
most one regular κ ≤ λ, T has a weakly (λ, κ)-limit model and even a weakly
(λ, S)-limit model for some stationary S ⊆ Sλκ .

(2) Assume T is unsuperstable and λ ≥ |T | + iω(κ2) and κ1 = ℵ0 <
κ2 = cf(κ2). Then T has no model which is a weak (λ, S)-limit where S ⊆ λ
and S ∩ Sλκ` is stationary for ` = 1, 2.

Proof. (1) Assume κ1 6= κ2 form a counterexample. Let κ < iω be
regular large enough such that λ = λ[κ] (see Definition 3.3) and κ /∈ {κ1, κ2}.
Let m and ϕ(x̄, ȳ) be as in the proof of 3.1. Then

(∗) if M ∈ ECλ(T ) then there is N such that:

(a) N ∈ ECλ(T ),
(b) M ≺ N ,
(c) if ā = 〈āi : i < κ〉 ∈ κ(mM) for α < κ then for some U ∈ [κ]χ,

for every uniform ultrafilter D on κ to which U belongs there
is āD ∈ nN such that tp(āD, N,N) = Av(D, ā,M) = {ψ(x̄, c̄) :
ψ(x̄, z̄) ∈ L(τT ), c̄ ∈ `g(z̄)M and {{α < κ : N |= ψ[āiα , c̄]} ∈ D}.

Similarly

�1 for every function F with domain {M̄ : M̄ an ≺-increasing sequence
of models of T of length < λ+ each with universe ∈ λ+} such that
Mi ≺ F(M̄) for i < `g(M̄) and F(M̄) has universe ∈ λ+ there is
a sequence 〈Mε : ε < λ+〉 obeying F such that: for every ε < λ+

and ā ∈ κ(m(Mε)) for α < κ, there is U ∈ [κ]κ such that for every
ultrafilter D on κ to which U belongs, for every ζ ∈ (ε, λ+) there is
āD,ζ ∈ m(Mζ+1) realizing Av(D, ā,Mζ) in Mζ+1.
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Hence

�2 for 〈Mα : α < λ+〉 as in �1, for every limit δ < λ+ of cofinality 6= κ
and every ā = 〈āi : i < κ〉 ∈ κ(m(Mδ)), there is U ∈ [κ]κ such that
for every ultrafilter D on κ to which U belongs, there is a sequence
〈b̄ε : ε < cf(δ)〉 ∈ cf(δ)(m(Mδ)) such that for every ψ(x̄, z̄) ∈ L(τT ) and
c̄ ∈ `g(z̄)(Mδ), and for every ε < cf(δ) large enough, Mδ |= ψ[b̄ε, c̄] iff
ψ(x̄, c̄) ∈ Av(D, ā,Mδ).

The rest should be clear.

(2) Combine the above and the proof of 3.1(2). 3.5

Acknowledgements. I thank Alex Usvyatsov for urging me to resolve
the question of the superlimit case and John Baldwin for comments and
complaints.

I would like to thank the Israel Science Foundation for partial support of
this research (Grant No. 710/07). I would also like to thank Alice Leonhardt
for the beautiful typing.

REFERENCES
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