# DEFORMED MESH ALGEBRAS OF DYNKIN TYPE $\mathbb{C}_{n}$ <br> BY <br> JERZY BIAŁKOWSKI (Toruń), KARIN ERDMANN (Oxford) and ANDRZEJ SKOWROŃSKI (Toruń) 


#### Abstract

In our recent paper (J. Algebra 345 (2011)) we prove that the deformed preprojective algebras of generalized Dynkin type $\mathbb{L}_{n}$ (in the sense of our earlier work in Trans. Amer Math. Soc. 359 (2007)) are exactly (up to isomorphism) the stable Auslander algebras of simple plane singularities of Dynkin type $\mathbb{A}_{2 n}$. In this article we complete the picture by showing that the deformed mesh algebras of Dynkin type $\mathbb{C}_{n}$ are isomorphic to the canonical mesh algebras of type $\mathbb{C}_{n}$, and hence to the stable Auslander algebras of simple plane curve singularities of type $\mathbb{A}_{2 n-1}$. Moreover, we describe the minimal (periodic) bimodule projective resolutions of the canonical mesh algebras of type $\mathbb{C}_{n}$.


Introduction and the main results. Throughout this article, $K$ will denote a fixed algebraically closed field. By an algebra we mean an associative finite-dimensional $K$-algebra with identity, which we moreover assume to be basic and connected. For an algebra $A$, we denote by $\bmod A$ the category of finite-dimensional right $A$-modules and by $\Omega_{A}$ the syzygy operator which assigns to a module $M$ in $\bmod A$ the kernel of a minimal projective cover $P_{A}(M) \rightarrow M$ of $M$ in $\bmod A$. Then a module $M$ in $\bmod A$ is called periodic if $\Omega_{A}^{n}(M) \cong M$ for some $n \geq 1$. Further, the category of finite-dimensional $A$ - $A$-bimodules over an algebra $A$ is canonically equivalent to the module category $\bmod A^{e}$ over the enveloping algebra $A^{e}=A^{\mathrm{op}} \otimes_{K} A$ of $A$. Then the algebra $A$ is called a periodic algebra if $A$ is a periodic module in $\bmod A^{e}$. It is known that any periodic algebra $A$ is selfinjective, and that every module $M$ in $\bmod A$ without non-zero projective direct summands is periodic. Periodic algebras play currently a prominent rôle in representation theory of algebras and have attracted much attention (see the survey article [12]). In particular, it has been proved recently in [9] that all selfinjective algebras of finite representation type (different from $K$ ) are periodic.

Important examples of periodic algebras are the deformed mesh algebras of generalized Dynkin types $\mathbb{A}_{n}(n \geq 2)$, $\mathbb{B}_{n}(n \geq 2), \mathbb{C}_{n}(n \geq 3)$, $\mathbb{D}_{n}(n \geq 4)$, $\mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}, \mathbb{F}_{4}, \mathbb{G}_{2}$, and $\mathbb{L}_{n}(n \geq 1)$ (defined in [5], [12]), for which the third

[^0]syzygy permutes the isomorphism classes of simple modules. This class of algebras contains the deformed preprojective algebras of generalized Dynkin types $\mathbb{A}_{n}(n \geq 2), \mathbb{D}_{n}(n \geq 4), \mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}$, and $\mathbb{L}_{n}(n \geq 1)$, which occur naturally in very different contexts. For these, the third syzygy of any simple module is isomorphic to its shift by the Nakayama functor (see [5]). Mesh algebras of Dynkin types include in particular the stable Auslander algebras of Arnold's simple hypersurface singularities [1]. In fact, it is an exciting open problem whether the stable Auslander algebra of any simple hypersurface singularity over an arbitrary closed field $K$ is a deformed mesh algebra of the corresponding Dynkin type. We now briefly explain the related context.

A hypersurface singularity over $K$ is a quotient algebra $R$ of the $K$ algebra $K\left[\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right]$ of formal power series in $n+1$ variables by the principal ideal $(f)$ generated by a non-zero element $f$ of the square $\mathfrak{m}^{2}$, where $\mathfrak{m}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is the unique maximal ideal of $K\left[\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right]$. That is, $R=K\left[\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right] /(f)$. We denote by $\operatorname{CM}(R)$ the category of finitely generated maximal Cohen-Macaulay $R$-modules, that is, the finitely generated $R$-modules $M$ whose depth $\operatorname{depth}(M)$ is the Krull dimension $\operatorname{dim} R$ of $R$. Then $\mathrm{CM}(R)$ is a Krull-Schmidt category, that is, every object in $\mathrm{CM}(R)$ has a decomposition into a direct sum of indecomposable objects, which is unique up to isomorphism.

The hypersurface singularity $R$ is called of finite Cohen-Macaulay type if $\mathrm{CM}(R)$ has only finitely many pairwise non-isomorphic indecomposable objects. We note that by a result of Auslander [4] every hypersurface singularity $R$ of finite Cohen-Macaulay type is an isolated singularity, and then, by an observation of Greuel and Kröning [14, $R \cong K\left[\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right] /(F)$ for a polynomial $F$ in $K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ (so $F$ defines a hypersurface in the affine space $K^{n+1}$ having an isolated singularity at the origin).

The hypersurface singularities of finite Cohen-Macaulay type have a beautiful characterization via the deformation theory. Namely, the concept of finite deformation type of a hypersurface singularity was introduced by Arnold [1 (in characteristic 0) and by Greuel and Kröning [14] (in positive characteristic). Roughly speaking, an isolated hypersurface singularity $R$ is of finite deformation type if $R$ can be deformed only into finitely many non-isomorphic singularities (see [1], [14). Independently, the simple hypersurface singularities (ADE singularities) have been investigated and classified in [1], [2], 17], [18], [20] (see [14, Section 1] for their normal forms). Then, for a hypersurface singularity $R$, the following statements are equivalent:

- $R$ is simple;
- $R$ is of finite deformation type;
- $R$ is of finite Cohen-Macaulay type,
by results established in [1], 4], 7], [14, [17, [20]. We note that in char-
acteristic $\neq 2,3,5$ the simple hypersurface singularities are isomorphic to Arnold's simple hypersurface singularities from [1]. In general, the normal forms of simple curve singularities (dimension 1) were classified by Kiyek and Steinke [17], the normal forms of simple surface singularities (dimension 2) were classified by Artin [2], and the normal forms of simple hypersurface singularities of dimensions $\geq 3$ are obtained from those of dimensions 1 and 2 by double suspensions (see [14], [20]).

Let $R$ be a simple hypersurface singularity. Then $\operatorname{CM}(R)$ is a Frobenius category, with $R$ the unique (up to isomorphism) indecomposable projective object, and we may consider the stable category $\underline{\mathrm{CM}}(R)$ of $\mathrm{CM}(R)$ modulo the ideal consisting of all morphisms which factor through direct sums of copies of $R$. Since $R$ is of finite Cohen-Macaulay type, we may choose a finite complete set $M_{1}, \ldots, M_{n}$ of pairwise non-isomorpic indecomposable non-projective objects in $\mathrm{CM}(R)$, and consider the endomorphism algebra

$$
\underline{\mathcal{A}}(R)=\operatorname{End}_{\underline{\mathrm{CM}(R)}}\left(M_{1} \oplus \cdots \oplus M_{n}\right)
$$

called the stable Auslander algebra of $R$. It is known that $\underline{\mathcal{A}}(R)$ is a finitedimensional selfinjective algebra over $K$, and it would be interesting to know when $\underline{\mathcal{A}}(R)$ is a periodic algebra (see [12, Problem 8]). We also mention that the Auslander-Reiten quiver of the category $\operatorname{CM}(R)$ is isomorphic to the Auslander-Reiten quiver of $\operatorname{CM}\left(R^{*}\right)$ for an Arnold's simple hypersurface singularity $R^{*}$ of dimension 1 or 2 , canonically associated to $R$ (by results of [8], [18], [20]), and hence the Gabriel quivers of $\mathcal{A}(R)$ and $\mathcal{A}\left(R^{*}\right)$ coincide. Moreover, the stable Auslander algebras of Arnold's simple singularities of dimensions 1 and 2 are mesh algebras of generalized Dynkin types $\mathbb{A}_{n}(n \geq 1)$, $\mathbb{B}_{n}(n \geq 2), \mathbb{C}_{n}(n \geq 3), \mathbb{D}_{n}(n \geq 4), \mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}, \mathbb{F}_{4}, \mathbb{G}_{2}$, and $\mathbb{L}_{n}(n \geq 1)$ (see [12]). Therefore, it is natural to ask when the stable Auslander algebra $\underline{\mathcal{A}}(R)$ of an arbitrary simple hypersurface singularity $R$ is a deformed mesh algebra of generalized Dynkin type (as introduced in [5], [12]).

In our recent paper [6] we established a complete classification of the isomorphism classes of deformed preprojective algebras of generalized Dynkin types

or equivalently, deformations of the canonical mesh algebras of types $\mathbb{L}_{n}$. Moreover, we proved in [6] that these are the isomorphism classes of the stable Auslander algebras of plane curve singularities of Dynkin types $\mathbb{A}_{2 n}$ $(n \geq 1)$. We recall from [17] that, if the characteristic of $K$ is different from 2, then $R=R_{n}^{(n)}=K[[x, y]] /\left(x^{2}+y^{2 n+1}\right)$ is the unique simple plane singularity of type $\mathbb{A}_{2 n}$, up to isomorphism. For $K$ of characteristic 2 , the plane curve
singularities

$$
R_{n}^{(r)}=K[[x, y]] /\left(x^{2}+y^{2 n+1}+x y^{n+r}\right), \quad r \in\{1, \ldots, n-1\}
$$

together with $R_{n}^{(n)}$, form a complete set of representatives for the isomorphism classes of simple curve singularities of type $\mathbb{A}_{2 n}$.

On the other hand, by [17], for an integer $n \geq 1$, and $K$ of any characteristic, there is only one simple curve singularity of Dynkin type $\mathbb{A}_{2 n-1}$ (up to isomorphism), namely $R_{n}=K[[x, y]] /\left(x^{2}+x y^{n}\right)$, and this is isomorphic to Arnold's simple plane singularity $K[[x, y]] /\left(x^{2}+y^{2 n}\right)$ if $K$ is of characteristic $\neq 2$. Moreover, $\underline{\mathcal{A}}\left(R_{1}\right) \cong K \times K, \underline{\mathcal{A}}\left(R_{2}\right)$ is the canonical mesh algebra $\Lambda\left(\mathbb{B}_{2}\right)$ of Dynkin type $\mathbb{B}_{2}=\mathbb{C}_{2}$ : $\bullet \frac{(1,2)}{\bullet}$, and, for $n \geq 3, \underline{\mathcal{A}}\left(R_{n}\right)$ is the canonical mesh algebra $\Lambda\left(\mathbb{C}_{n}\right)$ of Dynkin type

$$
\mathbb{C}_{n}: \quad \bullet \frac{(2,1)}{} \bullet-\bullet-\ldots-\bullet-\quad(n \text { vertices })
$$

Hence, it is natural to ask if the algebras $\Lambda\left(\mathbb{C}_{n}\right), n \geq 3$, have no proper deformations in the sense of [12]. We note that this is obvious for $\Lambda\left(\mathbb{B}_{2}\right)$, and clearly for $K \times K$.

THEOREM A. Let $n \geq 3$ be an integer and $\Lambda^{f}=\Lambda^{f}\left(\mathbb{C}_{n}\right)$ be a deformed mesh algebra of type $\mathbb{C}_{n}$. Then $\Lambda^{f}$ is isomorphic to the canonical mesh algebra $\Lambda\left(\mathbb{C}_{n}\right)$.

The following theorem is a direct consequence of Theorem $A$ and [6, Theorems 2 and 3].

Theorem B. Let $A$ be an algebra and $m \geq 2$ an integer. The following statements are equivalent:
(i) $A$ is isomorphic to the stable Auslander algebra of a simple curve singularity of Dynkin type $\mathbb{A}_{m}$.
(ii) $A$ is isomorphic to one of the algebras:
(a) a deformed mesh algebra of type $\mathbb{C}_{n}$, if $m=2 n-1$ is odd;
(b) a deformed preprojective algebra of type $\mathbb{L}_{n}$, if $m=2 n$ is even.

Theorem C. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be a canonical mesh algebra of type $\mathbb{C}_{n}$, $n \geq 3$. Then $\Lambda$ is a periodic algebra of period 6 .

We note that it has been proved in [5, Proposition 2.3] that all deformed preprojective algebras of type $\mathbb{L}_{n}$ are periodic algebras but the proof presented there does not allow us to determine their periods.

We also mention that the canonical mesh algebra $\Lambda\left(\mathbb{B}_{2}\right)=\Lambda\left(\mathbb{C}_{2}\right)$ is a special biserial symmetric algebra, derived equivalent to the symmetric Nakayama algebra with three simple modules and of Loewy length 4, and consequently it is a periodic algebra of period 6 (see 4.2 in [11]).

For basic background on the relevant representation theory we refer to [3], 19]; and for background on sigularities and Cohen-Macaulay modules to [15], [21].

1. Deformed mesh algebras of type $\mathbb{C}_{n}$. Let $n$ be an integer $\geq 3$. Following [12, Section 7], we denote by $\Lambda\left(\mathbb{C}_{n}\right)$ the canonical mesh algebra of type $\mathbb{C}_{n}$ given by the quiver

and the relations

$$
\begin{aligned}
& a_{0} \bar{a}_{0}=0, \quad a_{1} \bar{a}_{1}=0, \quad \bar{a}_{1} a_{0}+\bar{a}_{0} a_{1}+a_{2} \bar{a}_{2}=0, \\
& \bar{a}_{i} a_{i}+a_{i+1} \bar{a}_{i+1}=0 \quad \text { for } i \in\{2, \ldots, n-2\}, \quad \bar{a}_{n-1} a_{n-1}=0 .
\end{aligned}
$$

We note that $\Lambda\left(\mathbb{C}_{n}\right)$ is a symmetric algebra. Further, consider the local commutative algebra

$$
R\left(\mathbb{C}_{n}\right)=K\langle x, y\rangle /\left(x y, y x,(x+y)^{n-1}\right),
$$

which is isomorphic to the algebra $e_{2} \Lambda\left(\mathbb{C}_{n}\right) e_{2}$, where $e_{2}$ is the primitive idempotent in $\Lambda\left(\mathbb{C}_{n}\right)$ associated to the vertex 2 of $Q_{\mathbb{C}_{n}}$. For an element $f$ from the square $\operatorname{rad}^{2} R\left(\mathbb{C}_{n}\right)$ of the radical $\operatorname{rad} R\left(\mathbb{C}_{n}\right)$ of $R\left(\mathbb{C}_{n}\right)$, we denote by $\Lambda^{f}\left(\mathbb{C}_{n}\right)$ the algebra given by the quiver $Q_{\mathbb{C}_{n}}$ and the relations

$$
\begin{aligned}
& a_{0} \bar{a}_{0}=0, \quad a_{1} \bar{a}_{1}=0, \quad\left(\bar{a}_{1} a_{0}+\bar{a}_{0} a_{1}\right)^{n-1}=0, \\
& \bar{a}_{1} a_{0}+\bar{a}_{0} a_{1}+a_{2} \bar{a}_{2}+f\left(\bar{a}_{1} a_{0}, \bar{a}_{0} a_{1}\right)=0, \\
& \bar{a}_{i} a_{i}+a_{i+1} \bar{a}_{i+1}=0 \quad \text { for } i \in\{2, \ldots, n-2\}, \quad \bar{a}_{n-1} a_{n-1}=0 .
\end{aligned}
$$

Then $\Lambda^{f}\left(\mathbb{C}_{n}\right)$ is called a deformed mesh algebra of type $\mathbb{C}_{n}$ (see [12, Section 7]). Observe that $\Lambda^{f}\left(\mathbb{C}_{n}\right)$ is obtained from $\Lambda\left(\mathbb{C}_{n}\right)$ by deforming the relation at the exceptional vertex 2 of $Q_{\mathbb{C}_{n}}$, and $\Lambda^{f}\left(\mathbb{C}_{n}\right)=\Lambda\left(\mathbb{C}_{n}\right)$ if $f=0$.

Proof of Theorem A. Let $n \geq 3$ be a positive integer, $f$ an element of $\operatorname{rad}^{2} R\left(\mathbb{C}_{n}\right), \Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ and $\Lambda^{f}=\Lambda^{f}\left(\mathbb{C}_{n}\right)$. We will show that the algebras $\Lambda$ and $\Lambda^{f}$ are isomorphic. This will be done via a change of generators in $\Lambda^{f}$.

Observe first that $f$ is of the form

$$
f=\left(\sum_{i=1}^{n-2} \lambda_{i} x^{i+1}+\sum_{j=1}^{n-3} \mu_{j} y^{j+1}\right)+\left(x y, y x,(x+y)^{n-1}\right)
$$

for some elements $\lambda_{1}, \ldots, \lambda_{n-3}, \lambda_{n-2}, \mu_{1}, \ldots, \mu_{n-3}$ of $K$. Hence $\Lambda^{f}$ is given by the quiver $Q_{\mathbb{C}_{n}}$ and the relations

$$
\begin{aligned}
& a_{0} \bar{a}_{0}=0, \quad a_{1} \bar{a}_{1}=0, \quad\left(\bar{a}_{1} a_{0}+\bar{a}_{0} a_{1}\right)^{n-1}=0 \\
& \bar{a}_{1} a_{0}+\bar{a}_{0} a_{1}+a_{2} \bar{a}_{2}+\sum_{i=1}^{n-2} \lambda_{i}\left(\bar{a}_{1} a_{0}\right)^{i+1}+\sum_{j=1}^{n-3} \mu_{j}\left(\bar{a}_{0} a_{1}\right)^{j+1}=0 \\
& \bar{a}_{i} a_{i}+a_{i+1} \bar{a}_{i+1}=0 \quad \text { for } i \in\{2, \ldots, n-2\}, \quad \bar{a}_{n-1} a_{n-1}=0 .
\end{aligned}
$$

Let $\Gamma:=K[z] /\left(z^{n}\right)$; this algebra is isomorphic to the subalgebra of $e_{2} \Lambda^{f} e_{2}$ generated by $\bar{a}_{1} a_{0}$, and it is also isomorphic to the subalgebra generated by $\bar{a}_{0} a_{1}$. We write the deformed relation as $g\left(\bar{a}_{1} a_{0}\right)+h\left(\bar{a}_{0} a_{1}\right)+a_{2} \bar{a}_{2}=0$ with $g, h$ in $\Gamma$, namely if we write $\bar{z}=z+\left(z^{n}\right)$ and we set $\lambda_{0}=1$ and $\mu_{0}=1$, then we take

$$
g(\bar{z}):=\sum_{i=0}^{n-2} \lambda_{i} \bar{z}^{i+1}, \quad h(\bar{z}):=\sum_{j=0}^{n-3} \mu_{j} \bar{z}^{j+1}
$$

Then we have

$$
g(\bar{z})=\bar{z} u(\bar{z}), \quad h(\bar{z})=\bar{z} v(\bar{z})
$$

where

$$
u(\bar{z})=\left(\sum_{i=0}^{n-2} \lambda_{i} \bar{z}^{i}\right), \quad h(\bar{z})=\left(\sum_{j=0}^{n-3} \mu_{j} \bar{z}^{j}\right) .
$$

Since $\lambda_{0}=1=\mu_{0}$, it is clear that $u(\bar{z})$ and $v(\bar{z})$ are invertible in $\Gamma$.
Now we change generators in $\Lambda^{f}$. We replace $a_{0}$ by $\psi\left(a_{0}\right) \in \Lambda^{f}$ and $a_{1}$ by $\psi\left(a_{1}\right) \in \Lambda^{f}$, where

$$
\psi\left(a_{0}\right):=u\left(a_{0} \bar{a}_{1}\right) a_{0}, \quad \psi\left(a_{1}\right):=v\left(a_{1} \bar{a}_{0}\right) a_{1}
$$

We keep all other arrows as they are. Let $u^{*}$ and $v^{*}$ be the inverses of $u$ and $v$, respectively, in $\Gamma$. Then

$$
a_{0}=u^{*}\left(a_{0} \bar{a}_{1}\right) \psi\left(a_{0}\right), \quad a_{1}=v^{*}\left(a_{1} \bar{a}_{0}\right) \psi\left(a_{1}\right)
$$

Therefore this is an invertible change of generators. Moreover, using this we can write down the relations in terms of the new generators. First

$$
\psi\left(a_{0}\right) \bar{a}_{0}=u\left(a_{0} \bar{a}_{1}\right) a_{0} \bar{a}_{0}=0, \quad \psi\left(a_{1}\right) \bar{a}_{1}=v\left(a_{1} \bar{a}_{0}\right) a_{1} \bar{a}_{1}=0
$$

Next, we have

$$
\begin{aligned}
& g\left(\bar{a}_{1} a_{0}\right)=\bar{a}_{1}\left(\sum_{i=0}^{n-2} \lambda_{i}\left(a_{0} \bar{a}_{1}\right)^{i}\right) a_{0}=\bar{a}_{1} u\left(a_{0} \bar{a}_{1}\right) a_{0}=\bar{a}_{1} \psi\left(a_{0}\right), \\
& h\left(\bar{a}_{0} a_{1}\right)=\bar{a}_{0}\left(\sum_{j=0}^{n-3} \mu_{j}\left(a_{1} \bar{a}_{0}\right)^{j}\right) a_{1}=\bar{a}_{0} \psi\left(a_{1}\right) .
\end{aligned}
$$

Therefore

$$
0=g\left(\bar{a}_{1} a_{0}\right)+h\left(\bar{a}_{0} a_{1}\right)+a_{2} \bar{a}_{2}=\bar{a}_{1} \psi\left(a_{0}\right)+\bar{a}_{0} \psi\left(a_{1}\right)+a_{2} \bar{a}_{2} .
$$

This is precisely the branch relation in the undeformed algebra $\Lambda\left(\mathbb{C}_{n}\right)$.
All other relations remain unchanged. Hence with these new generators, $\Lambda^{f}$ satisfies the relations of $\Lambda$, and consequently the algebras $\Lambda$ and $\Lambda^{f}$ are isomorphic.
2. Periodicity of mesh algebras of type $\mathbb{C}_{n}$. The first part in this section is more general, here $A$ is an arbitrary algebra. Let $e_{0}, e_{1}, \ldots, e_{n}$ be a set of pairwise orthogonal primitive idempotents of $A$ with $1_{A}=$ $e_{0}+e_{1}+\cdots+e_{n}$. Then $e_{i} \otimes e_{j}$ for $i, j \in\{0,1, \ldots, n\}$ form a set of pairwise orthogonal primitive idempotents of the enveloping algebra $A^{e}=A^{\mathrm{op}} \otimes A$ with $1_{A^{e}}=\sum_{0 \leq i, j \leq n} e_{i} \otimes e_{j}$. Hence $P(i, j)=\left(e_{i} \otimes e_{j}\right) A^{e}=A e_{i} \otimes e_{j} A$ for $i, j \in\{0,1, \ldots, n\}$ form a complete set of pairwise non-isomorphic indecomposable projective right $A^{e}$-modules ( $A$ - $A$-bimodules). Moreover, the right $A$-modules $S_{i}=e_{i} A / e_{i} \operatorname{rad} A$ for $i \in\{0,1, \ldots, n\}$ give a complete set of pairwise non-isomorphic simple right $A$-modules.

The following result by Happel [16, Lemma 1.5] describes the terms of a minimal projective bimodule resolution of an algebra.

Proposition 2.1. Let $A$ be an algebra. Then $A$ admits $i n \bmod A^{e} a$ minimal projective resolution of the form

$$
\cdots \rightarrow \mathbb{P}_{r} \rightarrow \mathbb{P}_{r-1} \rightarrow \cdots \rightarrow \mathbb{P}_{1} \rightarrow \mathbb{P}_{0} \rightarrow A \rightarrow 0
$$

where

$$
\mathbb{P}_{r}=\bigoplus_{0 \leq i, j \leq n} P(i, j)^{\operatorname{dim}_{K} \operatorname{Ext}_{A}^{r}\left(S_{i}, S_{j}\right)}
$$

Let $\Lambda$ be a symmetric algebra of the form $\Lambda=K Q / I$, where $Q$ is a finite connected quiver and $I$ is an admissible ideal in the path algebra $K Q$ of $Q$. We assume that $\Lambda$ is graded by the powers of the radical and $I$ is generated by homogeneous relations. We denote by $|b|$ the degree of a homogeneous element $b$ in $\Lambda$. We also write $(X)_{d}$ for the set of elements in a subset $X$ of $\Lambda$ which are homogeneous of degree $d$. For an arrow $a$ of $Q$, we denote by $i a$ and $t a$ the starting and ending vertex of $a$, respectively. Moreover, we denote by $e_{i}$ the primitive idempotent of $\Lambda$ corresponding to a vertex $i$ of $Q$ and by $\omega_{i}$ a fixed non-zero element of the socle of $e_{i} \Lambda$. We fix a $K$-basis $\mathcal{B}$ of $\Lambda$ consisting of homogeneous elements such that each $v \in \mathcal{B}$ belongs to $e_{i} \Lambda e_{j}$ for some vertices $i, j$, and moreover assume that the basis $\mathcal{B}$ contains the primitive idempotents $e_{i}$, the arrows of $Q$, and the fixed elements $\omega_{i}$. Then we may take the non-degenerate symmetric associative $K$-bilinear form
$(-,-): \Lambda \times \Lambda \rightarrow K$ such that, for $b_{1}, b_{2} \in \mathcal{B}$ and $b_{1}=e_{i} b_{1}$, we have

$$
\left(b_{1}, b_{2}\right):=\text { the coefficient of } \omega_{i} \text { in } b_{1} b_{2}
$$

when $b_{1} b_{2}$ is expressed in terms of $\mathcal{B}$. Consider also the dual $K$-basis $\mathcal{B}^{*}=$ $\left\{b^{*} ; b \in \mathcal{B}\right\}$ of $\Lambda$ such that $\left(b, c^{*}\right)=\delta_{b c}$ for $b, c \in \mathcal{B}$. Since the relations generating $I$ and elements of $\mathcal{B}$ are homogeneous, for $b_{1}=e_{i} b_{1}$ and $b_{2} \in \mathcal{B}$, $\left(b_{1}, b_{2}\right)$ can only be non-zero if $b_{2}=b_{2} e_{i}$ and $\left|b_{1}\right|+\left|b_{2}\right|=\left|\omega_{i}\right|$. In particular, if $b \in e_{i} \mathcal{B} e_{j}$ then $b^{*} \in e_{j} \mathcal{B} e_{i}$, and $b^{*}$ is homogeneous of degree $\left|\omega_{i}\right|-|b|$.

Assume now that $\sigma$ is an algebra automorphism of $\Lambda$ which permutes the primitive idempotents $e_{i}, i \in Q_{0}$, and the arrows $a \in Q_{1}$ of $\Lambda$. Consider the projective right $\Lambda^{e}$-module

$$
P=\bigoplus_{i \in Q_{0}} \Lambda e_{i} \otimes \sigma\left(e_{i}\right) \Lambda
$$

and the homomorphism of right $\Lambda^{e}$-modules $R: P \rightarrow \Lambda^{e}$ given by

$$
R\left(e_{i} \otimes \sigma\left(e_{i}\right)\right):=\sum_{a \in Q_{0}, i a=i} a \otimes \sigma\left(e_{i}\right)+\sum_{c \in Q_{0}, t c=i} e_{i} \otimes \sigma(c)
$$

Moreover, we define the elements in $P$

$$
\xi_{i}:=\sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|}\left(b \otimes \sigma\left(b^{*}\right)\right), \quad i \in Q_{0}
$$

Then we have the following proposition (similar to [13, Proposition 2.3], there is also some variation in [10]).

Proposition 2.2. Let $i$ be a vertex of the quiver $Q$ of $\Lambda$. Then:
(i) $R\left(\xi_{i}\right)=0$.
(ii) $\xi_{i} \Lambda=\sigma\left(e_{i}\right) \Lambda$ as right $\Lambda$-modules.
(iii) $\Lambda \xi_{i}=\Lambda e_{i}$ as left $\Lambda$-modules.

Proof. (i) We have the equalities

$$
\begin{aligned}
R\left(\xi_{i}\right)= & \sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|} R\left(b \otimes \sigma\left(b^{*}\right)\right)=\sum_{j \in Q_{0}} \sum_{b \in e_{i} \mathcal{B} e_{j}}(-1)^{|b|} R\left(b \otimes \sigma\left(b^{*}\right)\right) \\
= & \sum_{j \in Q_{0}} \sum_{b \in e_{i} \mathcal{B} e_{j}}(-1)^{|b|} b R\left(e_{j} \otimes \sigma\left(e_{j}\right)\right) \sigma\left(b^{*}\right) \\
= & \sum_{j \in Q_{0}} \sum_{b \in e_{i} \mathcal{B} e_{j}} \sum_{a \in Q_{0}, i a=j}(-1)^{|b|} b a \otimes \sigma\left(b^{*}\right) \\
& +\sum_{j \in Q_{0}} \sum_{b \in e_{i} \mathcal{B} \mathcal{B}_{j}} \sum_{c \in Q_{0}, t c=j}(-1)^{|b|} b \otimes \sigma(c) \sigma\left(b^{*}\right) .
\end{aligned}
$$

We fix some degree and an arrow $a: j \rightarrow k$ of $Q$. We must show that the terms $(-1)^{|b|} b a \otimes \sigma\left(b^{*}\right)$ cancel when $b$ runs through all elements $b$ in $e_{i} \mathcal{B} e_{j}$
of degree $d$. Let $\left\{x_{1}, \ldots, x_{s}\right\}=\left(e_{i} \mathcal{B} e_{j}\right)_{d}$ and $\left\{y_{1}, \ldots, y_{t}\right\}=\left(e_{i} \mathcal{B} e_{k}\right)_{d+1}$. The claim will follow if we show the equality

$$
\sum_{l=1}^{s} x_{l} a \otimes \sigma\left(x_{l}^{*}\right)=\sum_{m=1}^{t} y_{m} \otimes \sigma(a) \sigma\left(y_{m}^{*}\right)
$$

For $l \in\{1, \ldots, s\}, x_{l} a \in e_{i} \Lambda e_{k}$ and has degree $d+1$, so we can write

$$
x_{l} a=\sum_{m=1}^{t} b_{m l} y_{m}
$$

for some elements $b_{1 l}, \ldots, b_{t l} \in K$. We now find the elements $a y_{m}^{*}$ for $m \in$ $\{1, \ldots, t\}$. Let $z$ be an element of $\mathcal{B}$ with $\left(z, a y_{m}^{*}\right) \neq 0$. Then $\left(z a, y_{m}^{*}\right)=$ $\left(z, a y_{m}^{*}\right) \neq 0$, and hence $z a \in\left(e_{i} \mathcal{B} e_{k}\right)_{d+1}$, because $y_{m}^{*} \in\left(e_{k} \mathcal{B} e_{i}\right)_{\left|\omega_{i}\right|-d-1}$. This shows that $z \in\left(e_{i} \mathcal{B} e_{j}\right)_{d}$, and consequently $z=x_{l}$ for some $l \in\{1, \ldots, s\}$. Thus we obtain

$$
\left(x_{l}, a y_{m}^{*}\right)=\left(x_{l} a, y_{m}^{*}\right)=\left(\sum_{j=1}^{t} b_{j l} y_{j}, y_{m}^{*}\right)=b_{m l} .
$$

Therefore, $a y_{m}^{*}=\sum_{l=1}^{s} b_{m l} x_{l}^{*}$ for any $m \in\{1, \ldots, t\}$. Finally, we obtain the equalities

$$
\begin{aligned}
\sum_{m=1}^{t} y_{m} \otimes \sigma(a) \sigma\left(y_{m}^{*}\right) & =\sum_{m=1}^{t} y_{m} \otimes \sigma\left(a y_{m}^{*}\right)=\sum_{m=1}^{t}\left[y_{m} \otimes \sigma\left(\sum_{l=1}^{s} b_{m l} x_{l}^{*}\right)\right] \\
& =\sum_{m=1}^{t}\left[y_{m} \otimes\left(\sum_{l=1}^{s} b_{m l} \sigma\left(x_{l}^{*}\right)\right)\right] \\
& =\sum_{l=1}^{s}\left[\left(\sum_{m=1}^{t} b_{m l} y_{m}\right) \otimes \sigma\left(x_{l}^{*}\right)\right]=\sum_{l=1}^{s} x_{l} a \otimes \sigma\left(x_{l}^{*}\right),
\end{aligned}
$$

as required.
(ii) It follows from our assumption on $\sigma$ that $\sigma\left(e_{i}\right)=e_{j}$ for a vertex $j \in Q_{0}$. Then, for any $b \in e_{i} \mathcal{B}$, we have $\sigma\left(b^{*}\right) \in \Lambda \sigma\left(e_{i}\right)=\Lambda e_{j}$, and hence $\xi_{i}=\xi_{i} e_{j}$. Consider the epimorphism of right $\Lambda$-modules $\pi_{i}: e_{j} \Lambda \rightarrow \xi_{i} \Lambda$ given by $\pi_{i}(x)=\xi_{i} x$ for any $x \in e_{j} \Lambda$. Further, the socle of $e_{j} \Lambda$ is simple and spanned (over $K$ ) by $\omega_{j}$. Moreover, since $\omega_{i}=\omega_{i} e_{i}$, we conclude that $\omega_{i}^{*}=e_{i}$. Observe also that $\omega_{j}$ annihilates the radical of $\Lambda$. Then we obtain the equalities

$$
\begin{aligned}
\pi_{i}\left(\omega_{j}\right) & =\xi_{i} \omega_{j}=\sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|}\left(b \otimes \sigma\left(b^{*}\right)\right) \omega_{j}=\sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|}\left(b \otimes\left(\sigma\left(b^{*}\right) \omega_{j}\right)\right) \\
& =(-1)^{\left|\omega_{i}\right|}\left(\omega_{i} \otimes \sigma\left(\omega_{i}^{*}\right) \omega_{j}\right)=(-1)^{\left|\omega_{i}\right|}\left(\omega_{i} \otimes \sigma\left(e_{i}\right) \omega_{j}\right)=(-1)^{\left|\omega_{i}\right|}\left(\omega_{i} \otimes \omega_{j}\right),
\end{aligned}
$$

and so $\pi_{i}\left(\omega_{j}\right) \neq 0$. This shows that $\pi_{i}$ is an isomorphism of right $\Lambda$-modules.
(iii) Since $b=e_{i} b$ for any $b \in e_{i} \mathcal{B}$, we have $\xi_{i}=e_{i} \xi_{i}$. Consider the epimorphism of left $\Lambda$-modules $\theta_{i}: \Lambda e_{i} \rightarrow \Lambda \xi_{i}$ given by $\theta_{i}(x)=x \xi_{i}$ for any $x \in \Lambda e_{i}$. The socle of the left $\Lambda$-module $\Lambda e_{i}$ is simple and spanned (over $K$ ) by $\omega_{i}$, and clearly $\omega_{i}$ annihilates the radical of $\Lambda$. Then we obtain the equalities

$$
\begin{aligned}
\theta_{i}\left(\omega_{i}\right) & =\omega_{i} \xi_{i}=\sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|} \omega_{i}\left(b \otimes \sigma\left(b^{*}\right)\right) \\
& =\sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|}\left(\omega_{i} b\right) \otimes \sigma\left(b^{*}\right)=\omega_{i} \otimes \sigma\left(e_{i}^{*}\right)
\end{aligned}
$$

and so $\theta_{i}\left(\omega_{i}\right) \neq 0$. This proves that $\theta_{i}$ is an isomorphism of left $\Lambda$-modules.
Now we apply these to the algebra $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$; this has a basis with all properties needed for the previous result, and we fix such a basis $\mathcal{B}$.

Proposition 2.3. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be the canonical mesh algebra of type $\mathbb{C}_{n}(n \geq 3)$ and let $\sigma$ be the automorphism of $\Lambda$ of order 2 which interchanges the idempotents $e_{0}$ and $e_{1}$, and the adjacent arrows. Then the first few terms of a minimal projective bimodule resolution of $\Lambda$ are

$$
\mathbb{P}_{3} \xrightarrow{S} \mathbb{P}_{2} \xrightarrow{R} \mathbb{P}_{1} \xrightarrow{d} \mathbb{P}_{0} \xrightarrow{u} \Lambda \rightarrow 0,
$$

where

$$
\begin{aligned}
& \mathbb{P}_{0}=\bigoplus_{i \in Q_{0}} \Lambda e_{i} \otimes e_{i} \Lambda, \quad \mathbb{P}_{1}=\bigoplus_{a \in Q_{1}} \Lambda e_{i a} \otimes e_{t a} \Lambda, \\
& \mathbb{P}_{2}=\mathbb{P}_{3}=\bigoplus_{a \in Q_{0}} \Lambda e_{i} \otimes \sigma\left(e_{i}\right) \Lambda, \\
& u\left(e_{i} \otimes e_{i}\right)=e_{i} \quad \text { for } i \in\{0,1, \ldots, n\}, \\
& d\left(e_{i a} \otimes e_{t a}\right)=a \otimes e_{t a}-e_{i a} \otimes a \quad \text { for } a \in Q_{1}, \\
& R\left(e_{i} \otimes \sigma\left(e_{i}\right)\right)=\sum_{a \in Q_{0}, i a=i} a \otimes \sigma\left(e_{i}\right)+\sum_{c \in Q_{0}, t c=i} e_{i} \otimes \sigma(c) \quad \text { for } i \in Q_{0}, \\
& S\left(e_{i} \otimes \sigma\left(e_{i}\right)\right)=\xi_{i}:=\sum_{b \in e_{i} \mathcal{B}}(-1)^{|b|} b \otimes \sigma\left(b^{*}\right) \quad \text { for } i \in Q_{0} .
\end{aligned}
$$

Proof. We denote by $\sigma$ the automorphism of order 2 of $Q=Q_{\mathbb{C}_{n}}$ induced by the automorphism $\sigma$ of $\Lambda$. For $i \in Q_{0}=\{0,1, \ldots, n\}$, we denote by $P_{i}=e_{i} \Lambda$ and $S_{i}=e_{i} \Lambda / e_{i} \operatorname{rad} \Lambda$ the associated indecomposable projective right $\Lambda$-module and simple right $\Lambda$-module, respectively. Then the first few terms of a minimal projective resolution of a simple module $S_{i}$ in $\bmod \Lambda$ are given by the exact sequence

$$
0 \rightarrow S_{\sigma(i)} \rightarrow P_{\sigma(i)} \rightarrow \bigoplus_{a \in Q_{0}, i a=i} P_{t a} \rightarrow P_{i} \rightarrow S_{i} \rightarrow 0 .
$$

Hence the required presentations for $\mathbb{P}_{0}, \mathbb{P}_{1}, \mathbb{P}_{2}, \mathbb{P}_{3}$ are then consequences of Proposition 2.1. A simple checking shows that the sequence

$$
\mathbb{P}_{2} \xrightarrow{R} \mathbb{P}_{1} \xrightarrow{d} \mathbb{P}_{0} \xrightarrow{u} \Lambda \rightarrow 0
$$

is exact. We claim that $\Omega_{\Lambda^{e}}^{3}(\Lambda)=\operatorname{Ker} R$ is the $\Lambda-\Lambda$-bimodule generated by the elements $\xi_{i}$ for $i \in Q_{0}=\{0,1, \ldots, n\}$. It follows from Proposition 2.2 (i) that
(1) $\xi_{0}, \xi_{1}, \ldots, \xi_{n}$ belong to Ker $R$;
(2) $\xi_{i} \Lambda \cong \sigma\left(e_{i}\right) \Lambda=e_{\sigma(i)} \Lambda$ as right $\Lambda$-modules for all $i \in\{0,1, \ldots, n\}$;
(3) $\Lambda \xi_{i}=\Lambda e_{i}$ as left $\Lambda$-modules for all $i \in\{0,1, \ldots, n\}$.

This shows that $S: \mathbb{P}_{2} \rightarrow \operatorname{Ker} R$ is a minimal projective cover of the $\Lambda$ - $\Lambda$-bimodule $\operatorname{Ker} R=\Omega_{\Lambda^{e}}^{3}(\Lambda)$.

Moreover, the above shows that $\Omega_{\Lambda^{e}}^{3}(\Lambda)$ is isomorphic to ${ }_{1} \Lambda_{\gamma}$ where $\gamma \in$ $\operatorname{Aut}(\Lambda)$ satisfies $a \xi_{i}=\xi_{j} \gamma(a)$ for $a \in e_{i} \Lambda e_{j}$.

Corollary 2.4. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be the canonical mesh algebra of type $\mathbb{C}_{n}(n \geq 3)$. Then there exists an isomorphism of $\Lambda$ - $\Lambda$-bimodules $\Omega_{\Lambda^{e}}^{3}(\Lambda) \cong$ ${ }_{1} \Lambda_{\gamma}$ for an algebra automorphism $\gamma$ of $\Lambda$.

We keep the basis $\mathcal{B}$ from before, and we determine $\gamma$ as above.
Lemma 2.5. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be the canonical mesh algebra of type $\mathbb{C}_{n}$ $(n \geq 3)$ and let $\gamma$ be the algebra automorphism of $\Lambda$ as above, such that $\Omega_{\Lambda^{e}}^{3}(\Lambda) \cong{ }_{1} \Lambda_{\gamma}$ as $\Lambda$ - $\Lambda$-bimodules. Then:
(i) $\gamma\left(e_{i}\right)=\sigma\left(e_{i}\right)$ for all $i \in\{0,1, \ldots, n\}$.
(ii) For any arrow $a: i \rightarrow j$ in $Q_{\mathbb{C}_{n}}$, there is a unique element $b=b^{(a)}$ in $\mathcal{B}$ such that $a b^{(a)}=\varepsilon_{a} \omega_{i}$, where $\varepsilon_{a}= \pm 1$.
(iii) For any arrow a in $Q_{\mathbb{C}_{n}}$, we have

$$
\gamma(a)=-\varepsilon_{a}\left(\left(b^{(a)}\right)^{*}\right)
$$

Proof. (i) We have $e_{i} \xi_{i}=\xi_{i}=\xi_{i} \sigma\left(e_{i}\right)$, and hence $\gamma\left(e_{i}\right)=\sigma\left(e_{i}\right)$ for any $i \in\{0,1, \ldots, n-1\}$.
(ii) Let $a: i \rightarrow j$ be an arrow in $Q_{\mathbb{C}_{n}}$. Then $a \xi_{j}=\xi_{i} \gamma(a)$, and the right hand side has a term $\omega_{i} \otimes \gamma(a)$. Hence, we only need to identify all terms $(-1)^{|b|} a b \otimes \sigma\left(b^{*}\right)$ from $a \xi_{j}$ where $a b$ involves $\omega_{i}$. If this is the case, then $b \in e_{j} \mathcal{B} e_{i}$ with $|b|+1=\left|\omega_{i}\right|=2 n-2$, so $b$ is in the second socle $\operatorname{soc}_{2}\left(e_{j} \Lambda\right)=\operatorname{soc}\left(e_{j} \Lambda / \operatorname{soc}\left(e_{j} \Lambda\right)\right)$ of $e_{j} \Lambda$ and ends in $i$. We note that the set $e_{j} \mathcal{B} e_{i}$ has only one element of degree $\left|\omega_{i}\right|-1=2 n-3$. Thus $b$ is unique, and we denote it by $b^{(a)}$. Moreover, $a b^{(a)}=\varepsilon_{a} \omega_{i}$ for some $\varepsilon_{a} \in\{-1,1\}$.
(iii) Let $a$ be an arrow of $Q_{\mathbb{C}_{n}}$. Since the homogeneous element $b^{(a)}$ is of odd degree $2 n-3$, we obtain from (ii) the formula

$$
\gamma(a)=-\varepsilon_{a}\left(\left(b^{(a)}\right)^{*}\right)
$$

Proposition 2.6. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be the canonical mesh algebra of type $\mathbb{C}_{n}(n \geq 3)$, and $\gamma$ be the automorphism of $\Lambda$ such that
(i) $\gamma\left(e_{i}\right)=\sigma\left(e_{i}\right)$ for any $i \in\{0,1, \ldots, n-1\}$;
(ii) $\gamma\left(a_{0}\right)=-a_{1}, \gamma\left(a_{1}\right)=a_{0}, \gamma\left(\bar{a}_{0}\right)=\bar{a}_{1}, \gamma\left(\bar{a}_{1}\right)=-\bar{a}_{0}$;
(iii) $\gamma\left(a_{k}\right)=(-1)^{k} a_{k}$ and $\gamma\left(\bar{a}_{k}\right)=(-1)^{k} \bar{a}_{k}$ for any $k \in\{2, \ldots, n-1\}$. Then $\Omega_{\Lambda^{e}}^{3}(\Lambda) \cong{ }_{1} \Lambda_{\gamma}$ as $\Lambda$ - $\Lambda$-bimodules.

Proof. In order to apply Lemma 2.5, we fix some explicit elements of the socle $\operatorname{soc}(\Lambda)$ of $\Lambda$, and also basis elements of the second socle $\operatorname{soc}_{2}(\Lambda)=$ $\operatorname{soc}(\Lambda / \operatorname{soc}(\Lambda))$ of $\Lambda$. Let $\alpha=\bar{a}_{1} a_{0}, \beta=\bar{a}_{0} a_{1}, \eta=a_{2} \bar{a}_{2}$. Then we have the relations

$$
\alpha \beta=0, \quad \beta \alpha=0, \quad \alpha^{n-1}=-\beta^{n-1} \neq 0, \quad \eta^{n-1}=0, \quad \eta^{n-2} \neq 0
$$

Moreover, we take the socle elements of $e_{i} \Lambda, i \in\{0,1, \ldots, n-1\}$ :

$$
\begin{aligned}
\omega_{0} & =a_{0} \alpha^{n-2} \bar{a}_{1} \\
\omega_{1} & =a_{1} \beta^{n-2} \bar{a}_{0} \\
\omega_{2} & =\alpha^{n-1} \\
\omega_{3} & =\bar{a}_{2} \alpha^{n-2} a_{2} \\
\omega_{4} & =\bar{a}_{3} \bar{a}_{2} \alpha^{n-3} a_{2} a_{3} \\
& \vdots \\
\omega_{k} & =\bar{a}_{k-1} \bar{a}_{k-2} \ldots \bar{a}_{2} \alpha^{n-k+1} a_{2} a_{3} \ldots a_{k-1} \quad \text { for } k \in\{3, \ldots, n\} .
\end{aligned}
$$

Next we fix basis vectors of $\operatorname{soc}_{2}(\Lambda)$, and we find their dual elements. We note that the dual element is always of degree 1 , and it must be $\pm a$, where $a$ is an arrow, and the sign is given by the requirement that $b a=\omega_{i}$ if $b \in e_{i} \mathcal{B}$. Furthermore, for each chosen $b$ in $\operatorname{soc}_{2}(\Lambda)$, we list the arrow $a$ such that $b=b^{(a)}$, and the $\operatorname{sign} \varepsilon_{a} \in\{-1,1\}$ with $a b=\varepsilon_{a} \omega_{i}$ :


| $e_{k} \Lambda$ |  |
| :---: | :---: |
| $\left(\bar{a}_{k-1} \ldots \bar{a}_{2} \alpha^{n-k+1} a_{2} \ldots a_{k-2}\right.$ | $\bar{a}_{k-1} \ldots \bar{a}_{2} \alpha^{n-k} a_{2} \ldots a_{k-1} a_{k}$ |
| $a_{k-1}$ | $(-1)^{k+1} \bar{a}_{k}$ |
| $a_{k-1}$ | $\bar{a}_{k}$ |
| $(-1)^{k}$ | 1 |

Now a straightforward calculation shows that the algebra automorphism $\gamma$ of $\Lambda$ with $\Omega_{\Lambda^{e}}^{3}(\Lambda) \cong{ }_{1} \Lambda_{\gamma}$ as $\Lambda$ - $\Lambda$-bimodules, discussed in Lemma 2.5. is defined by the imposed conditions (i)-(iii).

Corollary 2.7. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be the canonical mesh algebra of type $\mathbb{C}_{n}(n \geq 3)$. Then there exists an algebra automorphism $\gamma$ of $\Lambda$ such that $\Omega_{\Lambda^{e}}^{6}(\Lambda) \cong{ }_{1} \Lambda_{\gamma^{2}}$ as $\Lambda$ - $\Lambda$-bimodules with $\gamma^{2}(a)=-a$ for $a \in\left\{a_{0}, a_{0}, \bar{a}_{0}, \bar{a}_{1}\right\}$ and $\gamma^{2}(a)=a$ for the remaining arrows $a$ of $Q_{\mathbb{C}_{n}}$.

The following lemma completes the proof of Theorem C.
Lemma 2.8. Let $\Lambda=\Lambda\left(\mathbb{C}_{n}\right)$ be the canonical mesh algebra of type $\mathbb{C}_{n}$ $(n \geq 3)$ and $\gamma$ the algebra automorphism of $\Lambda$ described in Proposition 2.6. Then
(i) $\gamma$ is not inner;
(ii) $\gamma^{2}$ is inner.

Proof. (i) Assume for a contradiction that $\gamma$ is inner. Then there exists an invertible element $c \in \Lambda$ such that $\gamma(x)=c x c^{-1}$ for any $x \in \Lambda$. In particular, we conclude that

$$
e_{0}=e_{0} e_{0} e_{0}=e_{0} \gamma\left(e_{1}\right) e_{0}=e_{0}\left(c e_{1} c^{-1}\right) e_{0}=\left(e_{0} c e_{1}\right)\left(e_{1} c^{-1} e_{0}\right)
$$

and this belongs to $\operatorname{rad} \Lambda$, a contradiction.
(ii) Let $c:=-e_{0}-e_{1}+\sum_{i=2}^{n} e_{i} \in \Lambda$. Then $c^{2}=1_{\Lambda}$, hence $c$ is a unit with $c=c^{-1}$. We have

$$
c a_{0} c^{-1}=\left(-e_{0}\right) a_{0} e_{2}=-a_{0}=\gamma^{2}\left(a_{0}\right)
$$

and similarly $c a c^{-1}=-a$ for $a$ one of $a_{1}, \bar{a}_{0}, \bar{a}_{1}$, and clearly $c$ commutes with all other arrows. Therefore, $\gamma^{2}(x)=c x c^{-1}$ for any $x \in \Lambda$.

## REFERENCES

[1] V. I. Arnol'd, Normal forms of functions near degenerate critical points, the Weyl groups $A_{k}, D_{k}, E_{k}$ and Lagrangian singularities, Funktsional. Anal. i Prilozhen. 6 (1972), no. 4, 3-25 (in Russian).
[2] M. Artin, Coverings of the rational double points in characteristic p, in: Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 11-22.
[3] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[4] M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), 511-531.
[5] J. Białkowski, K. Erdmann and A. Skowroński, Deformed preprojective algebras of generalized Dynkin type, Trans. Amer. Math. Soc. 359 (2007), 2625-2650.
[6] J. Białkowski, K. Erdmann and A. Skowroński, Deformed preprojective algebras of generalized Dynkin type $\mathbb{L}_{n}$ : Classification and symmetricity, J. Algebra 345 (2011), 150-170.
[7] R.-O. Buchweitz, G.-M. Greuel and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1987), 165-182.
[8] E. Dieterich and A. Wiedemann, The Auslander-Reiten quiver of a simple curve singularity, Trans. Amer. Math. Soc. 294 (1986), 455-475.
[9] A. S. Dugas, Periodic resolutions and self-injective algebras of finite type, J. Pure Appl. Algebra 214 (2010), 990-1000.
[10] A. S. Dugas, Resolutions of mesh algebras: Periodicity and Calabi-Yau dimensions, Math. Z., to appear.
[11] K. Erdmann and T. Holm, Twisted bimodules and Hochschild cohomology for selfinjective algebras of class $A_{n}$, Forum Math. 11 (1999), 177-201.
[12] K. Erdmann and A. Skowroński, Periodic algebras, in: Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, 201-251.
[13] K. Erdmann and N. Snashall, On Hochschild cohomology of preprojective algebras. I, J. Algebra 205 (1998), 391-412.
[14] G.-M. Greuel and H. Kröning, Simple singularities in positive characteristic, Math. Z. 203 (1990), 339-354.
[15] G.-M. Greuel, C. Lossen and E. Shustin, Introduction to Singularities and Deformations, Springer Monogr. Math., Springer, Berlin, 2007.
[16] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, Lecture Notes in Math. 1404, Springer, Berlin, 1989, 108-126.
[17] K. Kiyek und G. Steinke, Einfache Kurvensingularitäten in beliebiger Charakteristik, Arch. Math. (Basel) 45 (1985), 565-573.
[18] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987), 153-164.
[19] A. Skowroński and K. Yamagata, Frobenius Algebras I. Basic Representation Theory, EMS Textbooks Math., Eur. Math. Soc., Zürich, 2011.
[20] $\varnothing$. Solberg, Hypersurface singularities of finite Cohen-Macaulay type, Proc. London Math. Soc. 58 (1989), 258-280.
[21] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge Univ. Press, Cambridge, 1990.

Jerzy Białkowski, Andrzej Skowroński
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: jb@mat.uni.torun.pl skowron@mat.uni.torun.pl

Karin Erdmann
Mathematical Institute
University of Oxford
Oxford OX1 3LB, United Kingdom
E-mail: erdmann@maths.ox.ac.uk


[^0]:    2010 Mathematics Subject Classification: Primary 16D50, 16G50, 16G70, 14H20.
    Key words and phrases: mesh algebra, syzygy, periodic algebra, simple plane singularity, Cohen-Macaulay module, stable Auslander algebra.

