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Abstract. In our recent paper (J. Algebra 345 (2011)) we prove that the deformed
preprojective algebras of generalized Dynkin type Ln (in the sense of our earlier work in
Trans. Amer Math. Soc. 359 (2007)) are exactly (up to isomorphism) the stable Auslander
algebras of simple plane singularities of Dynkin type A2n. In this article we complete the
picture by showing that the deformed mesh algebras of Dynkin type Cn are isomorphic
to the canonical mesh algebras of type Cn, and hence to the stable Auslander algebras
of simple plane curve singularities of type A2n−1. Moreover, we describe the minimal
(periodic) bimodule projective resolutions of the canonical mesh algebras of type Cn.

Introduction and the main results. Throughout this article, K will
denote a fixed algebraically closed field. By an algebra we mean an associative
finite-dimensional K-algebra with identity, which we moreover assume to be
basic and connected. For an algebra A, we denote by modA the category
of finite-dimensional right A-modules and by ΩA the syzygy operator which
assigns to a module M in modA the kernel of a minimal projective cover
PA(M)→M of M in modA. Then a module M in modA is called periodic
if Ωn

A(M) ∼= M for some n ≥ 1. Further, the category of finite-dimensional
A-A-bimodules over an algebra A is canonically equivalent to the module
category modAe over the enveloping algebra Ae = Aop⊗K A of A. Then the
algebra A is called a periodic algebra if A is a periodic module in modAe. It
is known that any periodic algebra A is selfinjective, and that every module
M in modA without non-zero projective direct summands is periodic. Pe-
riodic algebras play currently a prominent rôle in representation theory of
algebras and have attracted much attention (see the survey article [12]). In
particular, it has been proved recently in [9] that all selfinjective algebras of
finite representation type (different from K) are periodic.

Important examples of periodic algebras are the deformed mesh algebras
of generalized Dynkin types An (n ≥ 2), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4),
E6, E7, E8, F4, G2, and Ln (n ≥ 1) (defined in [5], [12]), for which the third
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syzygy permutes the isomorphism classes of simple modules. This class of
algebras contains the deformed preprojective algebras of generalized Dynkin
types An (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, and Ln (n ≥ 1), which occur
naturally in very different contexts. For these, the third syzygy of any simple
module is isomorphic to its shift by the Nakayama functor (see [5]). Mesh
algebras of Dynkin types include in particular the stable Auslander algebras
of Arnold’s simple hypersurface singularities [1]. In fact, it is an exciting open
problem whether the stable Auslander algebra of any simple hypersurface
singularity over an arbitrary closed field K is a deformed mesh algebra of
the corresponding Dynkin type. We now briefly explain the related context.

A hypersurface singularity over K is a quotient algebra R of the K-
algebra K[[x0, x1, . . . , xn]] of formal power series in n + 1 variables by the
principal ideal (f) generated by a non-zero element f of the square m2, where
m = (x0, x1, . . . , xn) is the unique maximal ideal of K[[x0, x1, . . . , xn]]. That
is, R = K[[x0, x1, . . . , xn]]/(f). We denote by CM(R) the category of finitely
generated maximal Cohen–Macaulay R-modules, that is, the finitely gener-
ated R-modules M whose depth depth(M) is the Krull dimension dimR of
R. Then CM(R) is a Krull–Schmidt category, that is, every object in CM(R)
has a decomposition into a direct sum of indecomposable objects, which is
unique up to isomorphism.

The hypersurface singularity R is called of finite Cohen–Macaulay type
if CM(R) has only finitely many pairwise non-isomorphic indecomposable
objects. We note that by a result of Auslander [4] every hypersurface singu-
larity R of finite Cohen–Macaulay type is an isolated singularity, and then,
by an observation of Greuel and Kröning [14], R ∼= K[[x0, x1, . . . , xn]]/(F )
for a polynomial F in K[x0, x1, . . . , xn] (so F defines a hypersurface in the
affine space Kn+1 having an isolated singularity at the origin).

The hypersurface singularities of finite Cohen–Macaulay type have a
beautiful characterization via the deformation theory. Namely, the concept
of finite deformation type of a hypersurface singularity was introduced by
Arnold [1] (in characteristic 0) and by Greuel and Kröning [14] (in posi-
tive characteristic). Roughly speaking, an isolated hypersurface singularity
R is of finite deformation type if R can be deformed only into finitely many
non-isomorphic singularities (see [1], [14]). Independently, the simple hyper-
surface singularities (ADE singularities) have been investigated and classified
in [1], [2], [17], [18], [20] (see [14, Section 1] for their normal forms). Then,
for a hypersurface singularity R, the following statements are equivalent:

• R is simple;
• R is of finite deformation type;
• R is of finite Cohen–Macaulay type,

by results established in [1], [4], [7], [14], [17], [20]. We note that in char-
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acteristic 6= 2, 3, 5 the simple hypersurface singularities are isomorphic to
Arnold’s simple hypersurface singularities from [1]. In general, the normal
forms of simple curve singularities (dimension 1) were classified by Kiyek
and Steinke [17], the normal forms of simple surface singularities (dimension
2) were classified by Artin [2], and the normal forms of simple hypersurface
singularities of dimensions ≥ 3 are obtained from those of dimensions 1 and
2 by double suspensions (see [14], [20]).

Let R be a simple hypersurface singularity. Then CM(R) is a Frobenius
category, with R the unique (up to isomorphism) indecomposable projective
object, and we may consider the stable category CM(R) of CM(R) modulo
the ideal consisting of all morphisms which factor through direct sums of
copies of R. Since R is of finite Cohen–Macaulay type, we may choose a
finite complete set M1, . . . ,Mn of pairwise non-isomorpic indecomposable
non-projective objects in CM(R), and consider the endomorphism algebra

A(R) = EndCM(R)(M1 ⊕ · · · ⊕Mn),

called the stable Auslander algebra of R. It is known that A(R) is a finite-
dimensional selfinjective algebra over K, and it would be interesting to know
when A(R) is a periodic algebra (see [12, Problem 8]). We also mention that
the Auslander–Reiten quiver of the category CM(R) is isomorphic to the
Auslander–Reiten quiver of CM(R∗) for an Arnold’s simple hypersurface
singularity R∗ of dimension 1 or 2, canonically associated to R (by results of
[8], [18], [20]), and hence the Gabriel quivers of A(R) and A(R∗) coincide.
Moreover, the stable Auslander algebras of Arnold’s simple singularities of di-
mensions 1 and 2 are mesh algebras of generalized Dynkin types An (n ≥ 1),
Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, G2, and Ln (n ≥ 1)
(see [12]). Therefore, it is natural to ask when the stable Auslander algebra
A(R) of an arbitrary simple hypersurface singularity R is a deformed mesh
algebra of generalized Dynkin type (as introduced in [5], [12]).

In our recent paper [6] we established a complete classification of the iso-
morphism classes of deformed preprojective algebras of generalized Dynkin
types

Ln : • • . . . • • (n vertices), n ≥ 1,

or equivalently, deformations of the canonical mesh algebras of types Ln.
Moreover, we proved in [6] that these are the isomorphism classes of the
stable Auslander algebras of plane curve singularities of Dynkin types A2n

(n ≥ 1). We recall from [17] that, if the characteristic ofK is different from 2,
then R = R

(n)
n = K[[x, y]]/(x2+y2n+1) is the unique simple plane singularity

of type A2n, up to isomorphism. For K of characteristic 2, the plane curve
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singularities

R(r)
n = K[[x, y]]/(x2 + y2n+1 + xyn+r), r ∈ {1, . . . , n− 1},

together with R
(n)
n , form a complete set of representatives for the isomor-

phism classes of simple curve singularities of type A2n.
On the other hand, by [17], for an integer n ≥ 1, and K of any character-

istic, there is only one simple curve singularity of Dynkin type A2n−1 (up to
isomorphism), namely Rn = K[[x, y]]/(x2 + xyn), and this is isomorphic to
Arnold’s simple plane singularity K[[x, y]]/(x2 +y2n) if K is of characteristic
6= 2. Moreover, A(R1) ∼= K×K, A(R2) is the canonical mesh algebra Λ(B2)

of Dynkin type B2 = C2: •
(1,2)

• , and, for n ≥ 3, A(Rn) is the canonical
mesh algebra Λ(Cn) of Dynkin type

Cn : •
(2,1)

• • . . . • • (n vertices).

Hence, it is natural to ask if the algebras Λ(Cn), n ≥ 3, have no proper
deformations in the sense of [12]. We note that this is obvious for Λ(B2), and
clearly for K ×K.

Theorem A. Let n ≥ 3 be an integer and Λf = Λf (Cn) be a deformed
mesh algebra of type Cn. Then Λf is isomorphic to the canonical mesh algebra
Λ(Cn).

The following theorem is a direct consequence of Theorem A and [6,
Theorems 2 and 3].

Theorem B. Let A be an algebra and m ≥ 2 an integer. The following
statements are equivalent:

(i) A is isomorphic to the stable Auslander algebra of a simple curve
singularity of Dynkin type Am.

(ii) A is isomorphic to one of the algebras:

(a) a deformed mesh algebra of type Cn, if m = 2n− 1 is odd;
(b) a deformed preprojective algebra of type Ln, if m = 2n is even.

Theorem C. Let Λ = Λ(Cn) be a canonical mesh algebra of type Cn,
n ≥ 3. Then Λ is a periodic algebra of period 6.

We note that it has been proved in [5, Proposition 2.3] that all deformed
preprojective algebras of type Ln are periodic algebras but the proof pre-
sented there does not allow us to determine their periods.

We also mention that the canonical mesh algebra Λ(B2) = Λ(C2) is
a special biserial symmetric algebra, derived equivalent to the symmetric
Nakayama algebra with three simple modules and of Loewy length 4, and
consequently it is a periodic algebra of period 6 (see 4.2 in [11]).
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For basic background on the relevant representation theory we refer to
[3], [19]; and for background on sigularities and Cohen–Macaulay modules
to [15], [21].

1. Deformed mesh algebras of type Cn. Let n be an integer ≥ 3.
Following [12, Section 7], we denote by Λ(Cn) the canonical mesh algebra of
type Cn given by the quiver

0
a0

��
QCn : 2

ā1

^^

ā0

��

a2 // 3
ā2
oo oo ... // n− 1

an−1 // n
ān−1

oo

1

a1

@@

and the relations

a0ā0 = 0, a1ā1 = 0, ā1a0 + ā0a1 + a2ā2 = 0,

āiai + ai+1āi+1 = 0 for i ∈ {2, . . . , n− 2}, ān−1an−1 = 0.

We note that Λ(Cn) is a symmetric algebra. Further, consider the local
commutative algebra

R(Cn) = K〈x, y〉/(xy, yx, (x+ y)n−1),

which is isomorphic to the algebra e2Λ(Cn)e2, where e2 is the primitive
idempotent in Λ(Cn) associated to the vertex 2 of QCn . For an element f
from the square rad2R(Cn) of the radical radR(Cn) of R(Cn), we denote
by Λf (Cn) the algebra given by the quiver QCn and the relations

a0ā0 = 0, a1ā1 = 0, (ā1a0 + ā0a1)n−1 = 0,

ā1a0 + ā0a1 + a2ā2 + f(ā1a0, ā0a1) = 0,

āiai + ai+1āi+1 = 0 for i ∈ {2, . . . , n− 2}, ān−1an−1 = 0.

Then Λf (Cn) is called a deformed mesh algebra of type Cn (see [12, Sec-
tion 7]). Observe that Λf (Cn) is obtained from Λ(Cn) by deforming the
relation at the exceptional vertex 2 of QCn , and Λf (Cn) = Λ(Cn) if f = 0.

Proof of Theorem A. Let n ≥ 3 be a positive integer, f an element of
rad2R(Cn), Λ = Λ(Cn) and Λf = Λf (Cn). We will show that the algebras Λ
and Λf are isomorphic. This will be done via a change of generators in Λf .

Observe first that f is of the form

f =
( n−2∑
i=1

λix
i+1 +

n−3∑
j=1

µjy
j+1
)

+ (xy, yx, (x+ y)n−1)
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for some elements λ1, . . . , λn−3, λn−2, µ1, . . . , µn−3 of K. Hence Λf is given
by the quiver QCn and the relations

a0ā0 = 0, a1ā1 = 0, (ā1a0 + ā0a1)n−1 = 0,

ā1a0 + ā0a1 + a2ā2 +
n−2∑
i=1

λi(ā1a0)i+1 +
n−3∑
j=1

µj(ā0a1)j+1 = 0,

āiai + ai+1āi+1 = 0 for i ∈ {2, . . . , n− 2}, ān−1an−1 = 0.

Let Γ := K[z]/(zn); this algebra is isomorphic to the subalgebra of
e2Λ

fe2 generated by ā1a0, and it is also isomorphic to the subalgebra gener-
ated by ā0a1. We write the deformed relation as g(ā1a0)+h(ā0a1)+a2ā2 = 0
with g, h in Γ , namely if we write z̄ = z+(zn) and we set λ0 = 1 and µ0 = 1,
then we take

g(z̄) :=

n−2∑
i=0

λiz̄
i+1, h(z̄) :=

n−3∑
j=0

µj z̄
j+1.

Then we have
g(z̄) = z̄u(z̄), h(z̄) = z̄v(z̄),

where

u(z̄) =
( n−2∑
i=0

λiz̄
i
)
, h(z̄) =

( n−3∑
j=0

µj z̄
j
)
.

Since λ0 = 1 = µ0, it is clear that u(z̄) and v(z̄) are invertible in Γ .
Now we change generators in Λf . We replace a0 by ψ(a0) ∈ Λf and a1

by ψ(a1) ∈ Λf , where
ψ(a0) := u(a0ā1)a0, ψ(a1) := v(a1ā0)a1.

We keep all other arrows as they are. Let u∗ and v∗ be the inverses of u
and v, respectively, in Γ . Then

a0 = u∗(a0ā1)ψ(a0), a1 = v∗(a1ā0)ψ(a1).

Therefore this is an invertible change of generators. Moreover, using this we
can write down the relations in terms of the new generators. First

ψ(a0)ā0 = u(a0ā1)a0ā0 = 0, ψ(a1)ā1 = v(a1ā0)a1ā1 = 0.

Next, we have

g(ā1a0) = ā1

( n−2∑
i=0

λi(a0ā1)i
)
a0 = ā1u(a0ā1)a0 = ā1ψ(a0),

h(ā0a1) = ā0

( n−3∑
j=0

µj(a1ā0)j
)
a1 = ā0ψ(a1).
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Therefore

0 = g(ā1a0) + h(ā0a1) + a2ā2 = ā1ψ(a0) + ā0ψ(a1) + a2ā2.

This is precisely the branch relation in the undeformed algebra Λ(Cn).
All other relations remain unchanged. Hence with these new generators,

Λf satisfies the relations of Λ, and consequently the algebras Λ and Λf are
isomorphic.

2. Periodicity of mesh algebras of type Cn. The first part in this
section is more general, here A is an arbitrary algebra. Let e0, e1, . . . , en
be a set of pairwise orthogonal primitive idempotents of A with 1A =
e0 + e1 + · · ·+ en. Then ei ⊗ ej for i, j ∈ {0, 1, . . . , n} form a set of pairwise
orthogonal primitive idempotents of the enveloping algebra Ae = Aop ⊗ A
with 1Ae =

∑
0≤i,j≤n ei ⊗ ej . Hence P (i, j) = (ei ⊗ ej)Ae = Aei ⊗ ejA for

i, j ∈ {0, 1, . . . , n} form a complete set of pairwise non-isomorphic indecom-
posable projective right Ae-modules (A-A-bimodules). Moreover, the right
A-modules Si = eiA/ei radA for i ∈ {0, 1, . . . , n} give a complete set of
pairwise non-isomorphic simple right A-modules.

The following result by Happel [16, Lemma 1.5] describes the terms of a
minimal projective bimodule resolution of an algebra.

Proposition 2.1. Let A be an algebra. Then A admits in modAe a
minimal projective resolution of the form

· · · → Pr → Pr−1 → · · · → P1 → P0 → A→ 0,

where
Pr =

⊕
0≤i,j≤n

P (i, j)dimK ExtrA(Si,Sj).

Let Λ be a symmetric algebra of the form Λ = KQ/I, where Q is a finite
connected quiver and I is an admissible ideal in the path algebra KQ of Q.
We assume that Λ is graded by the powers of the radical and I is generated
by homogeneous relations. We denote by |b| the degree of a homogeneous
element b in Λ. We also write (X)d for the set of elements in a subset X
of Λ which are homogeneous of degree d. For an arrow a of Q, we denote
by ia and ta the starting and ending vertex of a, respectively. Moreover, we
denote by ei the primitive idempotent of Λ corresponding to a vertex i of
Q and by ωi a fixed non-zero element of the socle of eiΛ. We fix a K-basis
B of Λ consisting of homogeneous elements such that each v ∈ B belongs to
eiΛej for some vertices i, j, and moreover assume that the basis B contains
the primitive idempotents ei, the arrows of Q, and the fixed elements ωi.
Then we may take the non-degenerate symmetric associativeK-bilinear form
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(−,−) : Λ× Λ→ K such that, for b1, b2 ∈ B and b1 = eib1, we have

(b1, b2) := the coefficient of ωi in b1b2
when b1b2 is expressed in terms of B. Consider also the dual K-basis B∗ =
{b∗; b ∈ B} of Λ such that (b, c∗) = δbc for b, c ∈ B. Since the relations
generating I and elements of B are homogeneous, for b1 = eib1 and b2 ∈ B,
(b1, b2) can only be non-zero if b2 = b2ei and |b1|+ |b2| = |ωi|. In particular,
if b ∈ eiBej then b∗ ∈ ejBei, and b∗ is homogeneous of degree |ωi| − |b|.

Assume now that σ is an algebra automorphism of Λ which permutes the
primitive idempotents ei, i ∈ Q0, and the arrows a ∈ Q1 of Λ. Consider the
projective right Λe-module

P =
⊕
i∈Q0

Λei ⊗ σ(ei)Λ

and the homomorphism of right Λe-modules R : P → Λe given by

R(ei ⊗ σ(ei)) :=
∑

a∈Q0, ia=i

a⊗ σ(ei) +
∑

c∈Q0, tc=i

ei ⊗ σ(c).

Moreover, we define the elements in P

ξi :=
∑
b∈eiB

(−1)|b|(b⊗ σ(b∗)), i ∈ Q0.

Then we have the following proposition (similar to [13, Proposition 2.3],
there is also some variation in [10]).

Proposition 2.2. Let i be a vertex of the quiver Q of Λ. Then:

(i) R(ξi) = 0.
(ii) ξiΛ = σ(ei)Λ as right Λ-modules.
(iii) Λξi = Λei as left Λ-modules.

Proof. (i) We have the equalities

R(ξi) =
∑
b∈eiB

(−1)|b|R(b⊗ σ(b∗)) =
∑
j∈Q0

∑
b∈eiBej

(−1)|b|R(b⊗ σ(b∗))

=
∑
j∈Q0

∑
b∈eiBej

(−1)|b|bR
(
ej ⊗ σ(ej)

)
σ(b∗)

=
∑
j∈Q0

∑
b∈eiBej

∑
a∈Q0, ia=j

(−1)|b|ba⊗ σ(b∗)

+
∑
j∈Q0

∑
b∈eiBej

∑
c∈Q0, tc=j

(−1)|b|b⊗ σ(c)σ(b∗).

We fix some degree and an arrow a : j → k of Q. We must show that the
terms (−1)|b|ba ⊗ σ(b∗) cancel when b runs through all elements b in eiBej
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of degree d. Let {x1, . . . , xs} = (eiBej)d and {y1, . . . , yt} = (eiBek)d+1. The
claim will follow if we show the equality

s∑
l=1

xla⊗ σ(x∗l ) =

t∑
m=1

ym ⊗ σ(a)σ(y∗m).

For l ∈ {1, . . . , s}, xla ∈ eiΛek and has degree d+ 1, so we can write

xla =
t∑

m=1

bmlym

for some elements b1l, . . . , btl ∈ K. We now find the elements ay∗m for m ∈
{1, . . . , t}. Let z be an element of B with (z, ay∗m) 6= 0. Then (za, y∗m) =
(z, ay∗m) 6= 0, and hence za ∈ (eiBek)d+1, because y∗m ∈ (ekBei)|ωi|−d−1. This
shows that z ∈ (eiBej)d, and consequently z = xl for some l ∈ {1, . . . , s}.
Thus we obtain

(xl, ay
∗
m) = (xla, y

∗
m) =

( t∑
j=1

bjlyj , y
∗
m

)
= bml.

Therefore, ay∗m =
∑s

l=1 bmlx
∗
l for any m ∈ {1, . . . , t}. Finally, we obtain the

equalities
t∑

m=1

ym ⊗ σ(a)σ(y∗m) =

t∑
m=1

ym ⊗ σ(ay∗m) =

t∑
m=1

[
ym ⊗ σ

( s∑
l=1

bmlx
∗
l

)]
=

t∑
m=1

[
ym ⊗

( s∑
l=1

bmlσ(x∗l )
)]

=
s∑
l=1

[( t∑
m=1

bmlym

)
⊗ σ(x∗l )

]
=

s∑
l=1

xla⊗ σ(x∗l ),

as required.
(ii) It follows from our assumption on σ that σ(ei) = ej for a vertex

j ∈ Q0. Then, for any b ∈ eiB, we have σ(b∗) ∈ Λσ(ei) = Λej , and hence
ξi = ξiej . Consider the epimorphism of right Λ-modules πi : ejΛ → ξiΛ
given by πi(x) = ξix for any x ∈ ejΛ. Further, the socle of ejΛ is simple
and spanned (over K) by ωj . Moreover, since ωi = ωiei, we conclude that
ω∗i = ei. Observe also that ωj annihilates the radical of Λ. Then we obtain
the equalities

πi(ωj) = ξiωj =
∑
b∈eiB

(−1)|b|(b⊗ σ(b∗))ωj =
∑
b∈eiB

(−1)|b|(b⊗ (σ(b∗)ωj))

= (−1)|ωi|(ωi ⊗ σ(ω∗i )ωj) = (−1)|ωi|(ωi ⊗ σ(ei)ωj)= (−1)|ωi|(ωi ⊗ ωj),
and so πi(ωj) 6= 0. This shows that πi is an isomorphism of right Λ-modules.
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(iii) Since b = eib for any b ∈ eiB, we have ξi = eiξi. Consider the
epimorphism of left Λ-modules θi : Λei → Λξi given by θi(x) = xξi for
any x ∈ Λei. The socle of the left Λ-module Λei is simple and spanned
(over K) by ωi, and clearly ωi annihilates the radical of Λ. Then we obtain
the equalities

θi(ωi) = ωiξi =
∑
b∈eiB

(−1)|b|ωi
(
b⊗ σ(b∗)

)
=
∑
b∈eiB

(−1)|b|(ωib)⊗ σ(b∗) = ωi ⊗ σ(e∗i ),

and so θi(ωi) 6= 0. This proves that θi is an isomorphism of left Λ-modules.

Now we apply these to the algebra Λ = Λ(Cn); this has a basis with all
properties needed for the previous result, and we fix such a basis B.

Proposition 2.3. Let Λ = Λ(Cn) be the canonical mesh algebra of type
Cn (n ≥ 3) and let σ be the automorphism of Λ of order 2 which interchanges
the idempotents e0 and e1, and the adjacent arrows. Then the first few terms
of a minimal projective bimodule resolution of Λ are

P3
S→ P2

R→ P1
d→ P0

u→ Λ→ 0,

where

P0 =
⊕
i∈Q0

Λei ⊗ eiΛ, P1 =
⊕
a∈Q1

Λeia ⊗ etaΛ,

P2 = P3 =
⊕
a∈Q0

Λei ⊗ σ(ei)Λ,

u(ei ⊗ ei) = ei for i ∈ {0, 1, . . . , n},
d(eia ⊗ eta) = a⊗ eta − eia ⊗ a for a ∈ Q1,

R(ei ⊗ σ(ei)) =
∑

a∈Q0, ia=i

a⊗ σ(ei) +
∑

c∈Q0, tc=i

ei ⊗ σ(c) for i ∈ Q0,

S(ei ⊗ σ(ei)) = ξi :=
∑
b∈eiB

(−1)|b|b⊗ σ(b∗) for i ∈ Q0.

Proof. We denote by σ the automorphism of order 2 of Q = QCn induced
by the automorphism σ of Λ. For i ∈ Q0 = {0, 1, . . . , n}, we denote by
Pi = eiΛ and Si = eiΛ/ei radΛ the associated indecomposable projective
right Λ-module and simple right Λ-module, respectively. Then the first few
terms of a minimal projective resolution of a simple module Si in modΛ are
given by the exact sequence

0→ Sσ(i) → Pσ(i) →
⊕

a∈Q0, ia=i

Pta → Pi → Si → 0.
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Hence the required presentations for P0,P1,P2,P3 are then consequences of
Proposition 2.1. A simple checking shows that the sequence

P2
R→ P1

d→ P0
u→ Λ→ 0

is exact. We claim that Ω3
Λe(Λ) = KerR is the Λ-Λ-bimodule generated by

the elements ξi for i ∈ Q0 = {0, 1, . . . , n}. It follows from Proposition 2.2(i)
that

(1) ξ0, ξ1, . . . , ξn belong to KerR;
(2) ξiΛ ∼= σ(ei)Λ = eσ(i)Λ as right Λ-modules for all i ∈ {0, 1, . . . , n};
(3) Λξi = Λei as left Λ-modules for all i ∈ {0, 1, . . . , n}.
This shows that S : P2 → KerR is a minimal projective cover of the

Λ-Λ-bimodule KerR = Ω3
Λe(Λ).

Moreover, the above shows that Ω3
Λe(Λ) is isomorphic to 1Λγ where γ ∈

Aut(Λ) satisfies aξi = ξjγ(a) for a ∈ eiΛej .
Corollary 2.4. Let Λ = Λ(Cn) be the canonical mesh algebra of type

Cn (n ≥ 3). Then there exists an isomorphism of Λ-Λ-bimodules Ω3
Λe(Λ) ∼=

1Λγ for an algebra automorphism γ of Λ.

We keep the basis B from before, and we determine γ as above.

Lemma 2.5. Let Λ = Λ(Cn) be the canonical mesh algebra of type Cn
(n ≥ 3) and let γ be the algebra automorphism of Λ as above, such that
Ω3
Λe(Λ) ∼= 1Λγ as Λ-Λ-bimodules. Then:

(i) γ(ei) = σ(ei) for all i ∈ {0, 1, . . . , n}.
(ii) For any arrow a : i → j in QCn, there is a unique element b = b(a)

in B such that ab(a) = εaωi, where εa = ±1.
(iii) For any arrow a in QCn, we have

γ(a) = −εa((b(a))∗).

Proof. (i) We have eiξi = ξi = ξiσ(ei), and hence γ(ei) = σ(ei) for any
i ∈ {0, 1, . . . , n− 1}.

(ii) Let a : i → j be an arrow in QCn . Then aξj = ξiγ(a), and the
right hand side has a term ωi ⊗ γ(a). Hence, we only need to identify all
terms (−1)|b|ab ⊗ σ(b∗) from aξj where ab involves ωi. If this is the case,
then b ∈ ejBei with |b| + 1 = |ωi| = 2n − 2, so b is in the second socle
soc2(ejΛ) = soc(ejΛ/soc(ejΛ)) of ejΛ and ends in i. We note that the set
ejBei has only one element of degree |ωi| − 1 = 2n − 3. Thus b is unique,
and we denote it by b(a). Moreover, ab(a) = εaωi for some εa ∈ {−1, 1}.

(iii) Let a be an arrow of QCn . Since the homogeneous element b(a) is of
odd degree 2n− 3, we obtain from (ii) the formula

γ(a) = −εa((b(a))∗).
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Proposition 2.6. Let Λ = Λ(Cn) be the canonical mesh algebra of type
Cn (n ≥ 3), and γ be the automorphism of Λ such that

(i) γ(ei) = σ(ei) for any i ∈ {0, 1, . . . , n− 1};
(ii) γ(a0) = −a1, γ(a1) = a0, γ(ā0) = ā1, γ(ā1) = −ā0;
(iii) γ(ak) = (−1)kak and γ(āk) = (−1)kāk for any k ∈ {2, . . . , n− 1}.

Then Ω3
Λe(Λ) ∼= 1Λγ as Λ-Λ-bimodules.

Proof. In order to apply Lemma 2.5, we fix some explicit elements of
the socle soc(Λ) of Λ, and also basis elements of the second socle soc2(Λ) =
soc(Λ/soc(Λ)) of Λ. Let α = ā1a0, β = ā0a1, η = a2ā2. Then we have the
relations

αβ = 0, βα = 0, αn−1 = −βn−1 6= 0, ηn−1 = 0, ηn−2 6= 0.

Moreover, we take the socle elements of eiΛ, i ∈ {0, 1, . . . , n− 1}:

ω0 = a0α
n−2ā1,

ω1 = a1β
n−2ā0,

ω2 = αn−1,

ω3 = ā2α
n−2a2,

ω4 = ā3ā2α
n−3a2a3,

...
ωk = āk−1āk−2 . . . ā2α

n−k+1a2a3 . . . ak−1 for k ∈ {3, . . . , n}.

Next we fix basis vectors of soc2(Λ), and we find their dual elements. We
note that the dual element is always of degree 1, and it must be ±a, where a
is an arrow, and the sign is given by the requirement that ba = ωi if b ∈ eiB.
Furthermore, for each chosen b in soc2(Λ), we list the arrow a such that
b = b(a), and the sign εa ∈ {−1, 1} with ab = εaωi:

e0Λ e1Λ e2Λ e3Λ

a0α
n−2 a1β

n−2 αn−2ā1 βn−2ā0 αn−2a2 ā2α
n−2 ā2α

n−3a2a3

ā1 ā0 a0 −a1 −ā2 a2 ā3

ā1 ā0 a0 a1 ā2 a2 ā3

1 −1 1 1 1 −1 1

e4Λ enΛ

ā3ā2α
n−3a2 ā3ā2α

n−4a2a3a4 ān−1 . . . ā2αa2 . . . an−2

a3 −ā4 an−1

a3 ā4 an−1

1 1 (−1)n
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ekΛ

(āk−1 . . . ā2α
n−k+1a2 . . . ak−2 āk−1 . . . ā2α

n−ka2 . . . ak−1ak

ak−1 (−1)k+1āk

ak−1 āk

(−1)k 1

Now a straightforward calculation shows that the algebra automorphism γ of
Λ with Ω3

Λe(Λ) ∼= 1Λγ as Λ-Λ-bimodules, discussed in Lemma 2.5, is defined
by the imposed conditions (i)–(iii).

Corollary 2.7. Let Λ = Λ(Cn) be the canonical mesh algebra of type
Cn (n ≥ 3). Then there exists an algebra automorphism γ of Λ such that
Ω6
Λe(Λ) ∼= 1Λγ2 as Λ-Λ-bimodules with γ2(a) = −a for a ∈ {a0, a0, ā0, ā1}

and γ2(a) = a for the remaining arrows a of QCn.
The following lemma completes the proof of Theorem C.
Lemma 2.8. Let Λ = Λ(Cn) be the canonical mesh algebra of type Cn

(n ≥ 3) and γ the algebra automorphism of Λ described in Proposition 2.6.
Then

(i) γ is not inner;
(ii) γ2 is inner.
Proof. (i) Assume for a contradiction that γ is inner. Then there exists

an invertible element c ∈ Λ such that γ(x) = cxc−1 for any x ∈ Λ. In
particular, we conclude that

e0 = e0e0e0 = e0γ(e1)e0 = e0(ce1c
−1)e0 = (e0ce1)(e1c

−1e0)

and this belongs to radΛ, a contradiction.
(ii) Let c := −e0 − e1 +

∑n
i=2 ei ∈ Λ. Then c2 = 1Λ, hence c is a unit

with c = c−1. We have
ca0c

−1 = (−e0)a0e2 = −a0 = γ2(a0)

and similarly cac−1 = −a for a one of a1, ā0, ā1, and clearly c commutes with
all other arrows. Therefore, γ2(x) = cxc−1 for any x ∈ Λ.
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