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COMPLETELY CONTINUOUS OPERATORS

BY

IOANA GHENCIU (River Falls, WI) and PAUL LEWIS (Denton, TX)

Abstract. A Banach space X has the Dunford–Pettis property (DPP) provided that
every weakly compact operator T from X to any Banach space Y is completely continuous
(or a Dunford–Pettis operator). It is known thatX has the DPP if and only if every weakly
null sequence in X is a Dunford–Pettis subset of X. In this paper we give equivalent
characterizations of Banach spaces X such that every weakly Cauchy sequence in X is a
limited subset of X. We prove that every operator T : X → c0 is completely continuous if
and only if every bounded weakly precompact subset of X is a limited set.

We show that in some cases, the projective and the injective tensor products of
two spaces contain weakly precompact sets which are not limited. As a consequence,
we deduce that for any infinite compact Hausdorff spaces K1 and K2, C(K1) ⊗π C(K2)
and C(K1)⊗ε C(K2) contain weakly precompact sets which are not limited.

1. Definitions and notation. Our notation and terminology are stan-
dard. We denote the canonical unit vector basis of c0 by (en) and the canon-
ical unit vector basis of `1 by (e∗n). Throughout this paper, X, Y , E, and F
will denote real Banach spaces. The set of all operators from X to Y will
be denoted by L(X,Y ), and the set of all completely continuous operators
will be denoted by CC(X,Y ). The w∗-w continuous (resp. w∗-w continu-
ous compact) maps from X∗ to Y will be denoted by Lw∗(X

∗, Y ) (resp.
Kw∗(X

∗, Y )). An operator is completely continuous (or Dunford–Pettis) if it
maps weakly Cauchy sequences to norm convergent sequences, and weakly
completely continuous (or Dieudonné) if it maps weakly Cauchy sequences
to weakly convergent sequences.

A bounded subset A of X is called a Dunford–Pettis (DP) subset (resp.
limited subset) of X if each weakly null sequence in X∗ (resp. w∗-null se-
quence in X∗) tends to 0 uniformly on A. A Banach space X has the
Dunford–Pettis property (DPP) if every weakly compact operator T with do-
main X is completely continuous. Equivalently, X has the DPP if and only
if x∗n(xn) → 0 for all weakly null sequences (xn) in X and (x∗n) in X∗ [19].
Schur spaces, C(K) spaces, and L1(µ) spaces have the DPP [3], [39], [27].
The reader can check Diestel [19], [18], Diestel and Uhl [22], and Andrews [2]
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for a guide to the extensive classical literature dealing with the DPP, equiv-
alent formulations of the preceding definitions, and undefined notation and
terminology.

A subset S of X is said to be weakly precompact provided that every
bounded sequence from S has a weakly Cauchy subsequence. Every DP set
is weakly precompact (see, e.g., [51, p. 377], [2], [36]). Since any limited set
is a DP set, any limited set is weakly precompact. An operator T is weakly
precompact (or almost weakly compact) if T (BX) is weakly precompact.

A bounded subset A of X∗ is called an L-subset of X∗ if each weakly
null sequence (xn) in X tends to 0 uniformly on A, i.e.,

lim
n

sup{|x∗(xn)| : x∗ ∈ A} = 0.

A Banach space X has the DPrcP (resp. X has the property RDP∗) if
every DP subset of X is relatively compact (resp. relatively weakly com-
pact) [6], [29], and X has the Gelfand–Phillips (GP) property (resp. the
(BD) property) if every limited subset of X is relatively compact (resp. rela-
tively weakly compact) [14], [22]. Emmanuele and Bator [33], [4] showed that
`1 X↪→ X iff any L-subset of X∗ is relatively compact iff X∗ has the DPrcP.

The space c0 does not have the property RDP∗ and has the DPP. Note
that (sn) = (

∑n
i=1 ei) is a DP subset of c0 which is not relatively weakly

compact. The space `2 has the property RDP∗ and does not have the DPP.
If X has the DPrcP, then X has the (GP) property (since any limited set

is a DP set). The space c0 has the (GP) property (since it is separable [14]),
and does not have the DPrcP (since it does not have the property RDP∗).

If X has the (GP) property, then X has the (BD) property. Schlumprecht
constructed a C(K) space which has the (BD) property, but does not have
the (GP) property ([57, Proposition 5.1.7, p. 144]).

IfX contains no copies of `1, thenX has the (BD) property [14]. Schlump-
recht gave an example of a Banach space Y such that Y contains no copies
of `1 and Y does not have the (GP) property ([57, Theorem 5.2.4, p. 149]).

If X has the DPrcP, then X has the property RDP∗. Let X be the
Bourgain–Delbaen space which is infinite-dimensional, has the Schur prop-
erty, and X∗ is weakly sequentially complete [13]. Note that DP subsets of
X∗ are weakly precompact, and thus relatively weakly compact. Hence X∗
has the property RDP∗ and does not have the DPrcP (since X contains
copies of `1, [4], [33]).

If X has the property RDP∗, then X has the (BD) property. Note that
c0 has the (BD) property (since c0 contains no copies of `1 [14]), and c0 does
not have the property RDP∗.

A series
∑
xn of elements ofX is weakly unconditionally convergent (wuc)

if
∑
|x∗(xn)| < ∞ for each x∗ ∈ X∗. A bounded subset A of X (resp. A
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of X∗) is called a V ∗-subset of X (resp. a V -subset of X∗) provided that
lim
n

sup{|x∗n(x)| : x ∈ A} = 0

(resp. lim
n

sup{|x∗(xn)| : x∗ ∈ A} = 0)

for each wuc series
∑
x∗n in X∗ (resp. wuc series

∑
xn in X). A Banach space

X has property (V ) if every V -subset of X∗ is relatively weakly compact, and
X has property (V ∗) if every V ∗-subset ofX is relatively weakly compact [47].
Pełczyński [47] proved that C(K) spaces have property (V ).

A topological space S is called scattered (or dispersed) if every nonempty
closed subset of S has an isolated point [60]. A compact Hausdorff space K
is scattered if and only if `1 X↪→ C(K) [48].

The Banach–Mazur distance d(E,F ) between two isomorphic Banach
spaces E and F is defined by inf(‖T‖ ‖T−1‖), where the infinum is taken
over all isomorphisms T from E onto F . A Banach space E is called an L∞-
space (resp. L1-space) [10] if there is a λ ≥ 1 so that every finite-dimensional
subspace of E is contained in another subspace N with d(N, `n∞) ≤ λ (resp.
d(N, `n1 ) ≤ λ) for some integer n. Complemented subspaces of C(K) spaces
(resp. L1(µ)) spaces) are L∞-spaces (resp. L1-spaces) (Proposition 1.26
of [10]). The dual of an L1-space (resp. L∞-space) is an L∞-space (resp.
L1-space) (Proposition 1.27 of [10]). L∞-spaces, L1-spaces, and their duals
have the DPP (Corollary 1.30 of [10]).

It is known that if E and F are L∞-spaces, then E⊗ε F is an L∞-space.
If E and F are L1- spaces, then E⊗πF is an L1-space (Theorem 34.9 of [17]).
Further, if E is an L1-space and F is an L∞-space, then E⊗ε F and E⊗π F
have the DPP [9], [30].

2. Completely continuous operators and limited sets. The fol-
lowing theorem is similar in spirit to Theorem 1 of [19] and gives equivalent
conditions for a Banach space X with the property that every bounded
weakly precompact subset of X is limited. We note that if X is a Schur
space, then L(X, c0) = CC(X, c0).

Theorem 1. The following statements are equivalent:

(1) L(X, c0) = CC(X, c0).
(2) L(X,Y ) = CC(X,Y ) for every Banach space Y so that BY ∗ is

w∗-sequentially compact.
(3) |x∗n(xn)| → 0 whenever (xn) is weakly null in X and (x∗n) is w∗-null

in X∗.
(4) |x∗n(xn)| → 0 whenever (xn) is weakly Cauchy in X and (x∗n) is

w∗-null in X∗.
(5) |x∗n(xn)| → 0 whenever (xn) is weakly null in X and (x∗n) is w∗-

Cauchy in X∗.
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(6) Every operator T ∈ Lw∗(X
∗, c0) is w∗-norm sequentially continu-

ous.
(7) Every operator T ∈ Lw∗(X∗, Y ) is w∗-norm sequentially continuous

for every Banach space Y so that BY ∗ is w∗-sequentially compact.
(8) Every operator T ∈ Lw∗(Y ∗, X) has a w∗-norm sequentially contin-

uous adjoint for every Banach space Y .
(9) Every operator T ∈ Lw∗(l1, X) has a w∗-norm sequentially contin-

uous adjoint.
(10) Every weakly precompact operator T : Y → X has a w∗-norm se-

quentially continuous adjoint for every Banach space Y .
(11) If T ∈ L(X,Y ) and T ∗(BY ∗) is w∗-sequentially compact, then T is

completely continuous.

Proof. We proved that (1), (2), and (3) are equivalent in Theorem 2.2
of [35].

To see that (3)⇒(4), let (xn) be weakly Cauchy in X and (x∗n) be w∗-null
in X∗. Suppose by contradiction that |x∗n(xn)| 9 0. Without loss of gener-
ality assume that |x∗n(xn)| > ε for each n ∈ N, for some ε > 0. Let n1 = 1
and choose n2 > n1 so that |x∗n2

(xn1)| < ε/2. We can do this since (x∗n) is
w∗-null. Continue inductively. Choose nk > nk−1 so that |x∗nk(xnk−1

)| < ε/2.
By hypothesis, |x∗nk(xnk − xnk−1

)| → 0. However,

|x∗nk(xnk − xnk−1
)| ≥ |x∗nk(xnk)| − |x

∗
nk
(xnk−1

)| > ε/2,

a contradiction. Clearly (4)⇒(3). Hence (1)–(4) are equivalent.
To see that (3)⇒(5), let (xn) be weakly null in X and (x∗n) be w∗-Cauchy

in X∗, and suppose that |x∗n(xn)| 9 0. Without loss of generality assume
that |x∗n(xn)| > ε for each n ∈ N, for some ε > 0. Let n1 = 1 and choose
n2 > n1 so that |x∗n1

(xn2)| < ε/2. We can do this since (xn) is weakly null.
Continue inductively. Choose nk+1 > nk so that |x∗nk(xnk+1

)| < ε/2. By
hypothesis, |(x∗nk+1

− x∗nk)(xnk+1
)| → 0. Since

|(x∗nk+1
− x∗nk)(xnk+1

)| ≥ |x∗nk+1
(xnk+1

)| − |x∗nk(xnk+1
)| > ε/2,

we have a contradiction.
To see that (5)⇒(1), let T : X → c0 be an operator, (xn) be a weakly

null sequence in X, and suppose that T (xn) 9 0. Without loss of generality
‖T (xn)‖ ≥ ε for each n ∈ N, for some ε > 0. Choose (y∗n) in B`1 so that
y∗n(T (xn)) = ‖T (xn)‖ ≥ ε. Since B`1 is w∗-sequentially compact, we can
assume that (y∗n) is w∗-Cauchy. Then (T ∗(y∗n)) is w∗-Cauchy in X∗, and
thus T ∗(y∗n)(xn) = y∗n(T (xn))→ 0, a contradiction.

To see that (4)⇒(7), suppose that T ∈ Lw∗(X∗, Y ), BY ∗ is w∗-sequen-
tially compact and let (x∗n) be a w∗-null sequence in X∗. If (T (x∗n)) is not
norm null, we can assume without loss of generality that (T (x∗n)) is a weakly
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null normalized basic sequence in Y . Let (f∗n) be a bounded sequence in Y ∗
such that f∗i (T (x

∗
n)) = δij . Without loss of generality (f∗n) is w∗-Cauchy, thus

(T ∗(f∗n)) is weakly Cauchy in X. By (4), T ∗(f∗n)(x∗n)→ 0, a contradiction.
Note that (7)⇒(6). To see that (6)⇒(3), let (xn) be weakly null in X

and (x∗n) be w∗-null in X∗. Define T : X∗ → c0 by T (x∗) = (x∗(xn)). Note
that T ∗(e∗n) = xn, T ∗(`1) ⊆ X, and thus T is w∗-w continuous. Hence T is
w∗-norm sequentially continuous. Therefore

|x∗n(xn)| ≤ sup
i
|x∗n(xi)| = ‖T (x∗n)‖ → 0.

Hence, (7), (6), (3), and (4) are equivalent.
To see that (4)⇒(8), let T ∈ Lw∗(Y ∗, X). Note that T is weakly compact,

and thus weakly precompact. If (x∗n) is w∗-null inX∗, then (T ∗(x∗n)) is weakly
null in Y . If (T ∗(x∗n)) is not norm null, by the Bessaga–Pełczyński selection
principle we may assume that (T ∗(x∗n)) is basic. Let (y∗n) be a bounded
sequence in Y ∗ so that y∗i (T

∗(x∗j )) = δij . Since T is weakly precompact, we
may assume without loss of generality that (T (y∗n)) is weakly Cauchy. Then
x∗n(T (y

∗
n))→ 0, and we have a contradiction.

To see that (8)⇒(3), suppose that (xn) is weakly null in X and (x∗n) is
w∗-null inX∗. Let T : X∗ → c0 be defined by T (x∗) = (x∗(xn)). Note that T ,
and thus T ∗, is w∗-w continuous. By (8), T ∗∗ = T is w∗-norm sequentially
continuous. Then ‖T (x∗n)‖ → 0, hence |x∗n(xn)| ≤ ‖T (x∗n)‖ → 0.

We note that (8)⇒(9). To see that (9)⇒(3), suppose that (xn) is weakly
null in X and (x∗n) is w∗-null in X∗ and continue as in (8)⇒(3).

To see that (4)⇒(10), let T : Y → X be an almost weakly compact
operator. Suppose (x∗n) is a w∗-null sequence in X∗ and ‖T ∗(x∗n)‖ > ε for
some ε > 0. Choose (yn) in BY so that x∗n(T (yn)) > ε/2. Since T is almost
weakly compact, we may assume that (T (yn)) is weakly Cauchy. By (4),
x∗n(T (yn))→ 0, a contradiction.

To see that (10)⇒(3), suppose that (xn) is weakly null in X and (x∗n)
is w∗-null in X∗. Define T : `1 → X by T (y) =

∑
ynxn for y = (yn) ∈ `1.

Since T (B`1) = co{xn} is weakly compact, T is weakly compact. Then T is
weakly precompact, and thus T ∗ is w∗-norm sequentially continuous. Note
that T ∗(x∗) = (x∗(xn)), x∗ ∈ X∗. Therefore |x∗n(xn)| ≤ ‖T ∗(x∗n)‖ → 0.
Hence, (4), (8), (9), (10), and (3) are equivalent.

To see that (5)⇒(11), let T : X → Y be an operator such that
T ∗(BY ∗) is w∗-sequentially compact. Suppose (xn) is weakly null in X and
‖T (xn)‖ > ε for some ε > 0. Choose (y∗n) in BY ∗ so that y∗n(T (xn)) > ε.
Without loss of generality, (T ∗(y∗n)) is w∗-convergent, thus w∗-Cauchy.
By (5), T ∗(y∗n)(xn)→ 0, a contradiction.

To see that (11)⇒(3), suppose that (xn) is weakly null in X and (x∗n) is
w∗-null in X∗. Define T : X → c0 by T (x) = (x∗n(x)). Note that B`1 , and
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thus T ∗(B`1), is w∗-sequentially compact. Then T is completely continuous,
and thus |x∗n(xn)| ≤ ‖T (xn)‖ → 0.

Corollary 2.

(i) If X is infinite-dimensional and L(X, c0) = CC(X, c0), then X has
the DPP and `1 ↪→ X.

(ii) If K is scattered, then L(C(K), c0) 6= CC(C(K), c0).
(iii) If X is infinite-dimensional and X∗ has the Schur property, then

L(X, c0) 6= CC(X, c0).

Proof. (i) Let (x∗n) be a normalized w∗-null sequence in X∗ (use the
Josefson–Nissenzweig theorem). Let (xn) be a sequence in BX so that
x∗n(xn) > 1/2 for each n. If `1 X↪→ X, by Rosenthal’s `1 theorem we can as-
sume without loss of generality that (xn) is weakly Cauchy. By Theorem 1,
x∗n(xn)→ 0, a contradiction. Hence `1 ↪→ X.

(ii) If K is scattered, then `1 X↪→ C(K). Apply (i).
(iii) If X∗ has the Schur property, then `1 X↪→ X. Otherwise `1 ↪→ X,

L1 ↪→ X∗, and thus X∗ does not have the Schur property. Apply (i).

Corollary 3.

(i) If L(X, c0) = CC(X, c0) and Y
c
↪→ X, then L(Y, c0) = CC(Y, c0).

(ii) If c0
c
↪→ X, then L(X, c0) 6= CC(X, c0).

(iii) If c0 ↪→X and X has the (BD) property, then L(X, c0) 6=CC(X, c0).

Proof. (i) Suppose (yn) is weakly null in Y and (y∗n) is w∗-null in Y ∗.
If P : X → Y is a projection, then (P ∗y∗n) is w∗-null in X∗. By Theo-
rem 1, P ∗y∗n(yn)→ 0, hence y∗n(yn)→ 0. Another application of Theorem 1
concludes the proof.

(ii) Note that L(c0, c0) 6= CC(c0, c0), as the identity map on c0 is not
completely continuous. Apply (i).

(iii) If c0 ↪→ X and X has the (BD) property, then c0
c
↪→ X, by Corol-

lary 1.3.3 of [57]. Apply (ii).

We remark that the property L(X, c0) = CC(X, c0) is inherited by
complemented subspaces, but not by quotients. For instance, L(`1, c0) =
CC(`1, c0), `2 is a quotient of `1 ([46, Proposition 3]), and the natural in-
jection from `2 to c0 is continuous and not completely continuous. In this
respect, this property is similar to the DPP. (The same example shows that
the DPP is not inherited by quotients.) It is known that if X∗ has the DPP,
then X has the DPP [19]. This result is no longer true for the property
L(X, c0) = CC(X, c0). For instance, L(`1, c0) = CC(`1, c0), and the identity
map on c0 is not completely continuous.
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Corollary 4.

(i) If X has the (BD) (resp. (GP)) property and L(Y, c0) = CC(Y, c0),
then every operator T : Y → X is weakly completely continuous
(resp. completely continuous).

(ii) If X has the property RDP∗ (resp. X has the DPrcP) and Y has the
DPP, then every operator T : Y → X is weakly completely continuous
(resp. completely continuous).

Proof. (i) Suppose X has (BD). Let T : Y → X be an operator and let
(yn) be a weakly Cauchy sequence in Y . If (x∗n) is w∗-null in X∗, then (T ∗x∗n)
is w∗-null in Y ∗, and Theorem 1 implies that x∗nT (yn) = T ∗x∗n(yn)→ 0. Then
(T (yn)) is limited in X, and thus relatively weakly compact. Hence (T (yn))
is weakly convergent, and T is weakly completely continuous.

Suppose X has the (GP) property and (yn) is weakly null in Y . The
previous argument shows that (T (yn)) is limited, thus relatively compact.
Hence T (yn)→ 0.

(ii) Suppose X has RDP∗. Let T : Y → X be an operator and let (yn)
be weakly Cauchy in Y . If (x∗n) is weakly null in X∗, then (T ∗x∗n) is weakly
null in Y ∗. Since Y has the DPP, x∗nT (yn) = T ∗x∗n(yn)→ 0. Then (T (yn)) is
a DP subset of X, thus relatively weakly compact. Hence (T (yn)) is weakly
convergent.

Suppose X has the DPrcP and (yn) is weakly null in Y . Then (T (yn)) is
a DP set, thus relatively compact. Hence T (yn)→ 0.

A Banach space X has the Grothendieck property if weak∗ and weak
convergences of sequences in X∗ coincide. The Grothendieck property is
stable under complemented subspaces. Grothendieck spaces with the DPP
are important in the theory of Banach spaces and vector measures (see [22,
p. 179]). Some of the known Grothendieck spaces with the DPP are L∞,
injective spaces (e.g. `∞), B(Σ), where Σ is a σ-algebra, certain C(K)
spaces, and the space H∞ of all bounded analytic functions on the open
unit disk [11], [12].

Recall that K is called extremally disconnected or Stonean (resp. σ-
Stonean) if the closure of each open set (resp. Fσ-set) is open, and K is
called an F -space if the closures of disjoint open Fσ-sets are disjoint.
The Stone–Čech compactification of a discrete topological space [39, p. 167],
as well as the order complete spaces `∞(Γ ) (Γ infinite), L∞(µ) (µ σ-finite),
are C(K) spaces with K Stonean [22, p. 156]. Every Stonean space is σ-
Stonean and every σ-Stonean space is an F -space. Grothendieck ([22, Corol-
lary VI.2.12], [39]) proved that if K is Stonean, then C(K) has the Grothen-
dieck property. The same result is due to Andô [1] for K σ-Stonean (a fact
also noted by Semadeni [59]), and Seever [58] for K an F -space.
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Corollary 5.

(i) ([57]) IfX has the DPP and the Grothendieck property, then L(X, c0)
= CC(X, c0). Consequently, a bounded subset of X is weakly pre-
compact if and only if it is limited.

(ii) If µ is a positive σ-finite measure, then every operator T : L∞(µ)→
c0 is completely continuouus.

(iii) If K is scattered, then every operator T : C(K)∗ → c0 is completely
continuous. Further, every operator T : C(K)∗∗ → c0 is completely
continuous.

(iv) If X is an L1-space, then every operator T : X∗ → c0 is completely
continuous.

(v) If X is an L∞-space, then every operator T : X∗∗ → c0 is completely
continuous.

Proof. (i) Let (xn) be weakly null in X and (x∗n) be w∗-null in X∗. Then
(x∗n) is weakly null, and thus |x∗n(xn)| → 0 (since X has the DPP). By The-
orem 1, L(X, c0) = CC(X, c0). Further, every bounded weakly precompact
subset of X is limited (by Theorem 1(4)). Since every limited set is weakly
precompact [14], the conclusion follows.

(ii) Note that L∞(µ) has the Grothendieck property [22, p. 156]. Since
L∞(µ) is a C(K) space, it has the DPP (Corollary VI.2.6 of [22]).

(iii) If K is scattered, then `1 X↪→ C(K). Since C(K) has the DPP, C(K)∗

has the Schur property [19], [37], and thus every operator T : C(K)∗ → c0
is completely continuous. Further, C(K)∗∗ is isomorphic to `∞(I) for some
set I [48]. Then C(K)∗∗ has the DPP and the Grothendieck property. Ap-
ply (i).

(iv) If X is an L1-space, then X∗ is an injective space [41], and thus X∗
has the Grothendieck property. Since X∗ has the DPP, the result follows
by (i).

(v) If X is an L∞-space, then X∗ is an L1-space. Apply (iv).

The previous result shows that for any compact Hausdorff space K, every
operator T : C(K)∗∗ → c0 is completely continuous, since C(K) spaces are
L∞-spaces.

If X = C(K) has the Grothendieck property, then a bounded subset
of X is weakly precompact if and only if it is limited. It is known that
`∞ contains limited sets which are not relatively weakly compact (see Ex-
ample 1.1.8 of [57]). For instance, let (sn) = (

∑n
i=1 ei). Note that (sn) is

bounded, (sn) ⊆ c0, and (sn) is weakly precompact (in fact, (sn) is a DP set).
Further, (sn) is not relatively weakly compact (since (1, 1, 1, . . .) is not in c0).
Haydon [40] has given an example of a C(K) space which is a Grothendieck
space and does not contain `∞. Such a space must contain limited sets which
are not relatively weakly compact [57, pp. 27–28].
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Corollary 6. If X does not have the Schur property and BX∗ is w∗-
sequentially compact, then L(X, c0) 6= CC(X, c0).

Proof. Let (xn) be a weakly null normalized sequence in X. Without
loss of generality we may assume that (xn) is basic. Let (x∗n) be a bounded
sequence in X∗ such that x∗i (xj) = δij . We may assume that (x∗n) is w∗-
convergent, and thus w∗-Cauchy. Apply Theorem 1.

Remark. The previous corollary shows that if X is separable and not
a Schur space, then L(X, c0) 6= CC(X, c0). Consequently, X must contain
a bounded and weakly precompact subset which is not limited. Bourgain
and Diestel [14] showed that a limited subset of a separable space must be
relatively compact. Therefore ifX is weakly sequentially complete, separable,
and not a Schur space, then X must contain a relatively weakly compact
subset which is not limited. Specifically, if X = Lp[0, 1], 1 ≤ p < ∞, or
X = `p, 1 ≤ p < ∞, then X contains a relatively weakly compact subset
which fails to be limited, and L(X, c0) 6= CC(X, c0). The next result deals
with analogous results for spaces of Bochner integrable functions.

Let (S,Σ, µ) be a non-purely atomic measure space and X be a Banach
space. Let Lp(µ,X) denote the Banach space of X-valued p-Bochner µ-
integrable functions with its usual norm, 1 ≤ p <∞. Emmanuele [32] proved
that if X contains a copy of c0, then Lp(µ,X) contains a complemented copy
of c0. Thus, if c0 ↪→ X, there is an operator T : Lp(µ,X)→ c0 which is not
completely continuous (by Corollary 3(ii)). The following result is inspired
by Emmanuele’s result.

Theorem 7. If X is not a Schur space, then there is an operator T :
Lp(µ,X)→ c0 which is not completely continuous.

Proof. By Theorem 1, it is enough to show that Lp(µ,X) contains a
weakly null sequence which is not limited. Since Lp(µ,X) contains a com-
plemented copy of Lp([0, 1], X) (Proposition 1.6.5 of [16]), it suffices to con-
sider the case of [0, 1] with the Lebesgue measure. Let (xn) be a weakly null
normalized sequence in X. Without loss of generality suppose that (xn) is
basic. Let (x∗n) be a bounded sequence in X∗ such that 〈x∗n, xm〉 = δnm. Let
(rn) be the sequence of Radamacher functions, and define fn ∈ Lp([0, 1], X)
by fn(t) = rn(t)xn and f∗n ∈ Lp([0, 1], X)∗ by f∗n(t) = rn(t)x

∗
n, for each n.

We claim that (fn) is a weakly null, nonlimited sequence in Lp([0, 1], X).
Let f∗ ∈ Lp([0, 1], X)∗. Suppose that Ψ : [0, 1] → X∗ is a w∗-measurable
function such that ‖Ψ(·)‖ is measurable, ‖Ψ(·)‖ ∈ Lq([0, 1]) (where q is the
conjugate of p), and 〈f∗, f〉 =

	1
0〈Ψ(t), f(t)〉 dt for all f ∈ Lp([0, 1], X) (see

Theorem 1.5.4 of [16]). Since

〈f∗, fn〉 =
1�

0

rn(t)〈Ψ(t), xn〉 dt,
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(xn) is weakly null, and |〈Ψ(t), xn〉| ≤ ‖Ψ(t)‖ for all n ∈ N and t ∈ [0, 1], the
Lebesgue dominated convergence theorem implies that 〈f∗, fn〉 → 0. Thus
(fn) is weakly null.

Now suppose that f ∈ Lp([0, 1], X) is a simple function and note that
1�

0

rn(t)f(t) dt→ 0,

because (rn) is w∗-null in L1([0, 1])
∗ = L∞([0, 1]). Then, since the simple

functions are dense in Lp([0, 1], X),
	1
0 rn(t)f(t) dt → 0 for each f ∈

Lp([0, 1], X). This implies that

|〈f∗n, f〉| =
∣∣∣ 1�
0

〈rn(t)x∗n, f(t)〉 dt
∣∣∣= ∣∣∣ 1�

0

〈x∗n, rn(t)f(t)〉 dt
∣∣∣= ∣∣∣〈x∗n, 1�

0

rn(t)f(t) dt
〉∣∣∣

≤ ‖x∗n‖
∥∥∥ 1�

0

rn(t)f(t) dt
∥∥∥≤C∥∥∥ 1�

0

rn(t)f(t) dt
∥∥∥→ 0

for each f ∈ Lp([0, 1], X). Hence (f∗n) is w∗-null. Further, we have

〈f∗n, fn〉 =
1�

0

r2n(t)〈x∗n, xn〉 dt = 1

for all n, and thus (fn) is not limited.

Maurey and Pisier [44], [50] proved that if (Ω,Σ, µ) is an arbitrary mea-
sure space and 1 < p <∞, then Lp(µ,X) contains a copy of `1 iff X contains
a copy of `1. Thus, if X does not contain a copy of `1, then there is an oper-
ator T : Lp(µ,X)→ c0 which is not completely continuous (by Corollary 2).

Corollary 8. Suppose that (S,Σ, µ) is a finite non-purely atomic mea-
sure space. If X has the DPP and X contains no copy of `1, then there is
an operator T : L1(µ,X)→ c0 which is not weakly compact.

Proof. By Theorem 7, there is an operator T : L1(µ,X) → c0 which is
not completely continuous. Since X has the DPP and X contains no copy
of `1, L1(µ,X) has the DPP (cf. [2]). Hence, T is not weakly compact.

Theorem 1, and Lohman’s lemma below, will be used to prove some
permanence properties of Banach spaces X with the property that every op-
erator T : X → c0 is completely continuous. We start by recalling Lohman’s
lemma.

Lemma 9 (Lohman’s Lemma, [42]). Let X be a Banach space and let
Y be a closed linear subspace of X such that `1 X↪→ Y . Then each weakly
Cauchy sequence in X/Y has a subsequence that is the image of a weakly
Cauchy sequence in X under the natural quotient map Q : X → X/Y .
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Theorem 10. Suppose that L(X, c0) = CC(X, c0) and let Y be a closed
linear subspace of X such that `1 X↪→ Y . Then L(X/Y, c0) = CC(X/Y, c0).

Proof. By Theorem 1, it is enough to show that every weakly null se-
quence in X/Y is limited. Suppose that (un) is a weakly null sequence in
X/Y and (u∗n) is a w∗-null sequence in (X/Y )∗. Let Q : X → X/Y be the
natural quotient map. By Lohman’s lemma, we can assume without loss of
generality that un = Q(xn), where (xn) is a weakly Cauchy sequence in X.
By Theorem 1, (xn) is limited in X. Since (Q∗u∗n) is w∗-null in X∗,

Q∗u∗n(xn) = u∗n(Q(xn)) = u∗n(un)→ 0.

Then L(X/Y, c0) = CC(X/Y, c0).

We recall that if X is a Banach space and Y is a linear subspace of X,
then

Y ⊥ = {x∗ ∈ X∗ : x∗(x) = 0 for all x ∈ Y }
is a subspace of X∗.

Corollary 11. Suppose that L(X∗, c0) = CC(X∗, c0) and Y is a closed
linear subspace of X such that `1 X↪→ Y ⊥. Then L(Y ∗, c0) = CC(Y ∗, c0).

Proof. Use the fact that there is an isometric isomorphismφ :X∗/Y ⊥→ Y ∗

that identifies X∗/Y ⊥ with Y ∗, given by

〈φ(x∗ + Y ⊥), y〉 = x∗(y)

for all x∗ ∈ X∗, y ∈ Y , i.e. φ(x∗ + Y ⊥) = x∗ restricted to Y (see The-
orem 1.10.16 of [45]). By Theorem 10, every operator T : X∗/Y ⊥ → c0
is completely continuous. Then every operator T : Y ∗ → c0 is completely
continuous.

3. Completely continuous operators on tensor products. In this
section we study completely continuous operators on the projective and in-
jective tensor product of two Banach spaces. First, we give some results
about completely continuous operators on the projective tensor product of
X and Y .

We begin by noting that there are examples so that all operators from
the projective tensor product to c0 are completely continuous. Specifically,
since `1 ⊗π `1 ' `1 ([53, p. 43]), L(`1 ⊗π `1, c0) = CC(`1 ⊗π `1, c0). As a
counter-demonstration, Corollary 2 above can easily be applied to establish
the existence of non-completely continuous operators in many cases. For
example, Theorem 2.2 of [8] shows that if K1 and K2 are infinite compact
Hausdorff spaces, then C(K1)⊗π C(K2) has the DPP if and only if both K1

and K2 are scattered (`1 X↪→ C(K1) and `1 X↪→ C(K2)). Therefore, if either
K1 or K2 is not scattered, Corollary 2 immediately shows that L(C(K1)⊗π
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C(K2), c0) 6= CC(C(K1)⊗π C(K2), c0). Corollary 14 below strengthens this
observation.

Further, Theorem 3 of [38] shows that if E does not have the Schur
property, F contains a copy of `1, and L(E,F ∗) = CC(E,F ∗), then E⊗π F
does not have the DPP. Another application of Corollary 2 shows that in
this case L(E ⊗π F, c0) 6= CC(E ⊗π F, c0).

Lemma 12 ([8]). Suppose that L(E,F ∗) = CC(E,F ∗), (xn) is a weakly
null sequence in E and (yn) is a bounded sequence in F . Then the sequence
(xn ⊗ yn) is weakly null in E ⊗π F .

Theorem 13. Suppose that X does not have the Schur property, Y is
infinite-dimensional and L(X,Y ∗) = CC(X,Y ∗). Then L(X ⊗π Y, c0) 6=
CC(X ⊗π Y, c0).

Proof. Let (xn) be a weakly null normalized sequence in X. Without loss
of generality assume that (xn) is basic and let (x∗n) be a bounded sequence in
X∗ so that x∗i (xj) = δij . Use the Josefson–Nissenzweig theorem [18, Chap-
ter XII] to choose a w∗-null sequence (y∗n) of norm one in Y ∗. Suppose (yn) is
a sequence in BY such that y∗n(yn) > 1/2 for each n. Define T : X⊗π Y → c0
by

T (x⊗ y) = (x∗i (x)y
∗
i (y))i, x ∈ X, y ∈ Y.

Note that T is a well-defined, linear and continuous operator. By Lemma 12,
(xn ⊗ yn) is weakly null in X ⊗π Y . For each n ∈ N, ‖T (xn ⊗ yn)‖ ≥ 1/2,
hence T is not completely continuous.

It is known that every linear operator from any C(K) space into the
dual of another C(K) space is weakly compact, and thus completely contin-
uous [47].

Corollary 14. L(C(K1)⊗πC(K2), c0) 6= CC(C(K1)⊗πC(K2), c0) for
all infinite compact Hausdorff spaces K1 and K2.

Proof. Since K1 is infinite, c0 embeds in C(K1) ([15], [16, p. 16]), and
thus C(K1) does not have the Schur property. Apply Theorem 13.

Observe that we have L(`∞, c0) = CC(`∞, c0) (by Corollary 5(i)), but
L(`∞⊗π `∞, c0) 6= CC(`∞⊗π `∞, c0) (by Corollary 14). Moreover, `∞⊗π `∞
does not have the DPP [8].

Corollary 15. Suppose X does not have the Schur property and
L(X,X∗) = CC(X,X∗). Then L(X ⊗π X, c0) 6= CC(X ⊗π X, c0).

Corollary 16.

(i) Suppose that X has the DPP and property (V ), and does not have the
Schur property. If Y is infinite-dimensional and `1

c
X↪→ Y , then there

is an operator T : X ⊗π Y → c0 which is not completely continuous.
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(ii) If K is an infinite compact Hausdorff space, Y is infinite-dimen-
sional, and `1

c
X↪→ Y , then there is an operator T : C(K) ⊗π Y → c0

which is not completely continuous.

Proof. (i) Since `1
c

X↪→ Y , we have c0 X↪→ Y ∗ [7]. If T : X → Y ∗ is an
operator, then T is is unconditionally converging [7]. Property (V ) and the
DPP imply that T is weakly compact [47], and thus completely continuous.
Apply Theorem 13.

(ii) follows from (i), since C(K) has the DPP [39] and property (V ) [47],
and does not have the Schur property.

Corollary 5 [38] shows that if E and F are infinite-dimensional L∞-
spaces and E ⊗π F has the DPP, then either E and F have the Schur
property or E∗ and F ∗ have the Schur property. We note that if E and
F are infinite-dimensional L∞-spaces, then L(E,F ∗) = CC(E,F ∗) and
L(F,E∗) = CC(F,E∗) (Theorems 3.7 and 2.17 of [20]). Bourgain and Del-
baen [13] gave an example of a separable infinite-dimensional L∞-space with
the Schur property.

Corollary 17.
(i) If E and F are infinite-dimensional L∞-spaces and L(E⊗πF, c0) =

CC(E ⊗π F, c0), then E and F have the Schur property.
(ii) If E and F are infinite-dimensional L1-spaces, then L(E∗⊗πF ∗, c0)
6= CC(E∗ ⊗π F ∗, c0).

(iii) If E and F are infinite-dimensional L∞-spaces, then
L(E∗∗ ⊗π F ∗∗, c0) 6= CC(E∗∗ ⊗π F ∗∗, c0).

Proof. (i) Note that F ⊗π E ' E ⊗π F . Theorem 13 implies that E and
F have the Schur property.

(ii) If E and F are infinite-dimensional L1-spaces, then E∗ and F ∗ are
infinite-dimensional L∞-spaces and E and F contain complemented copies
of `1 (Proposition 1.24 of [10]). Suppose L(E∗⊗πF ∗, c0) = CC(E∗⊗πF ∗, c0).
By (i), E∗ and F ∗ have the Schur property. Thus E and F contain no copies
of `1 (see the proof of Corollary 2(iii)), a contradiction which concludes the
proof.

(iii) If E and F are infinite-dimensional L∞-spaces, then E∗ and F ∗ are
infinite-dimensional L1-spaces. Apply (ii).

We observe that if E and F are infinite-dimensional L∞-spaces, then
L(E∗∗, c0) = CC(E∗∗, c0), L(F ∗∗, c0) = CC(F ∗∗, c0), but L(E∗∗ ⊗π F ∗∗, c0)
6= CC(E∗∗ ⊗π F ∗∗, c0) (by Corollaries 5(v) and 17).

Next we give some results about completely continuous operators on the
injective tensor product of X and Y . We consider X ⊗ε Y canonically em-
bedded in Lw∗(X∗, Y ). The space Lw∗(X∗, Y ) was studied by many authors;
see for instance [25], [28], [29], [31], [36], [54].



244 I. GHENCIU AND P. LEWIS

Lust [43] and Ryan [54] showed that Lw∗(X∗, Y ) has the Schur property
if and only if X and Y have the Schur property. Thus, if X and Y have
the Schur property, then every operator T : Lw∗(X

∗, Y )→ c0 is completely
continuous.

It is known that (E ⊗ε F )∗ = I(E,F ∗), the space of integral operators
from E to F ∗ (Corollary VII.2.12 of [22]). The following lemma is essen-
tially contained in [38] (see the proof of Theorem 12 there). We include the
argument for the convenience of the reader.

Lemma 18 ([38]). If (xn) is weakly null in E and (yn) is bounded in F ,
then (xn ⊗ yn) is weakly null in E ⊗ε F .

Proof. If T ∈ I(E,F ∗) = (E ⊗ε F )∗, then T is completely continuous
(Theorem VIII.2.9 of [22]; note that the natural inclusion I : L∞(µ) →
L1(µ) is weakly compact, hence completely continuous). So 〈T, xn ⊗ yn〉 ≤
C‖T (xn)‖ → 0, and thus (xn ⊗ yn) is weakly null in E ⊗ε F .

We recall the following well-known isometries [52]:

(1) Lw∗(X∗, Y )'Lw∗(Y ∗, X) andKw∗(X
∗, Y )'Kw∗(Y

∗, X) (T 7→ T ∗);
(2) W (X,Y ) ' Lw∗(X∗∗, Y ) and K(X,Y ) ' Kw∗(X

∗∗, Y ) (T 7→ T ∗∗).

Theorem 19. Suppose that X and Y are infinite-dimensional. If
L(X, c0) 6= CC(X, c0) or L(Y, c0) 6= CC(Y, c0), then there is an operator
T : Kw∗(X

∗, Y )→ c0 which is not completely continuous.

Proof. Suppose that L(X, c0) 6= CC(X, c0). Let (xn) be a weakly null
sequence in X which is not limited. Choose a w∗-null sequence (x∗n) in X∗ so
that x∗n(xn) = 1 for each n. Use the Josefson–Nissenzweig theorem to choose
a w∗-null sequence (y∗n) of norm one in Y ∗. Suppose (yn) is a sequence in
BY such that y∗n(yn) > 1/2 for each n.

We claim that (xn ⊗ yn) is weakly null and not limited in Kw∗(X
∗, Y ).

By Lemma 18, (xn⊗ yn) is weakly null in X ⊗ε Y , and thus in Kw∗(X
∗, Y ).

Consider the sequence (x∗n ⊗ y∗n) in the dual of Kw∗(X
∗, Y ), where

〈x∗n ⊗ y∗n, T 〉 = 〈T (x∗n), y∗n〉, T ∈ Kw∗(X
∗, Y ). If T ∈ Kw∗(X

∗, Y ), then
T ∗ is w∗-w continuous and compact. Then ‖T ∗(y∗n)‖ → 0, and thus

〈x∗n ⊗ y∗n, T 〉 = 〈T ∗(y∗n), x∗n〉 ≤ ‖T ∗(y∗n)‖ → 0.

Therefore (x∗n⊗y∗n) is w∗-null in (Kw∗(X
∗, Y ))∗. Since 〈x∗n⊗y∗n, xn⊗yn〉 > 1/2

for each n, (xn ⊗ yn) is not limited in Kw∗(X
∗, Y ). Apply Theorem 1.

If L(Y, c0) 6= CC(Y, c0), use the previous argument and the isometry (1)
stated above.

Corollary 20. Suppose X and Y are infinite-dimensional. If L(X, c0)
6= CC(X, c0) or L(Y, c0) 6= CC(Y, c0), then L(X⊗εY, c0) 6= CC(X⊗εY, c0).
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Proof. Suppose that L(X, c0) 6= CC(X, c0). Let (xn), (x∗n), (yn), and
(y∗n) be as in the proof of Theorem 19. The previous argument shows that
(xn ⊗ yn) is weakly null in X ⊗ε Y . Further, (xn ⊗ yn) is not limited in
Kw∗(X

∗, Y ). Hence (xn⊗ yn) is not limited in X ⊗ε Y . Apply Theorem 1.

Corollary 21. Suppose X and Y are infinite-dimensional. If Y has
a complemented subspace F such that L(F, c0) 6= CC(F, c0) (or X has a
complemented subspace E such that L(E, c0) 6= CC(E, c0)), then there is an
operator T : X ⊗ε Y → c0 which is not completely continuous.

Proof. Suppose F is complemented in Y and L(F, c0) 6= CC(F, c0). By
Corollary 20, there is an operator L : X ⊗ε F → c0 which is not completely
continuous. If I is the identity on X and P : Y → F is a projection, then
I ⊗ε P : X ⊗ε Y → X ⊗ε F is a projection. Apply Corollary 3(i).

Corollary 22. Suppose that X and Y are infinite-dimensional. If
L(X∗, c0) 6= CC(X∗, c0) or L(Y, c0) 6= CC(Y, c0), then there is an opera-
tor T : K(X,Y )→ c0 which is not completely continuous.

Proof. Apply Theorem 19 and the isometry K(X,Y ) ' Kw∗(X
∗∗, Y )

(see [52]).

Consider the the space `1[X] of all unconditionally convergent series in
X with the norm

‖(xn)‖ = sup
{∑

|x∗(xn)| : x∗ ∈ BX∗
}
.

Corollary 23. Suppose that X is infinite-dimensional and L(X, c0) 6=
CC(X, c0). Then there is an operator T : `1[X]→ c0 which is not completely
continuous.

Proof. It is known that `1[X] is isometrically isomorphic toK(c0, X) [29].
Since L(X, c0) 6= CC(X, c0), there is an operator T : K(c0, X) → c0 which
is not completely continuous (by Corollary 22).

We recall the following results about the complementability of c0 in
X ⊗ε Y , Kw∗(X

∗, Y ), and C(K,X).

Theorem 24.

(i) ([55]–[57]) Suppose X and Y are infinite-dimensional. If c0 ↪→ X,
then X ⊗ε Y contains an isomorphic copy of c0 which is comple-
mented in X ⊗ε Y .

(ii) ([28], [34]) Suppose X and Y are infinite-dimensional. If c0 ↪→ X
or c0 ↪→ Y , then Kw∗(X

∗, Y ) contains a copy of c0 which is com-
plemented in Kw∗(X

∗, Y ).
(iii) ([15]) If K is an infinite compact Hausdorff space and X is an

infinite-dimensional Banach space, then C(K,X) contains a com-
plemented copy of c0.
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Corollary 20 shows that ifX and Y are infinite-dimensional, and L(X, c0)
6= CC(X, c0) or L(Y, c0) 6= CC(Y, c0), then L(X⊗ε Y, c0) 6= CC(X⊗ε Y, c0).
Our next result shows that there are infinite-dimensional spaces X and Y
so that L(X, c0) = CC(X, c0), L(Y, c0) = CC(Y, c0), and L(X ⊗ε Y, c0) 6=
CC(X ⊗ε Y, c0). For example, we can take X and Y to be Grothendieck
C(K) spaces; X = C(K1)

∗∗, Y = C(K2)
∗∗, with K1, K2 infinite compact

Hausdorff spaces; or X = E∗∗, Y = F ∗∗, with E and F infinite-dimensional
L∞-spaces.

Corollary 25.

(i) Suppose X and Y are infinite-dimensional. If c0 ↪→ X or c0 ↪→ Y ,
then there is a non-completely continuous operator T : X ⊗ε Y
→ c0. Further, there is a non-completely continuous operator S :
Kw∗(X

∗, Y )→ c0.
(ii) If K1 and K2 are infinite compact Hausdorff spaces, then there is a

non-completely continuous operator T : C(K1)⊗ε C(K2)→ c0.
(iii) If K is an infinite compact Hausdorff space and X is an infinite-

dimensional space, then there is a non-completely continuous oper-
ator T : C(K,X)→ c0.

(iv) If X and Y are infinite-dimensional and X (or Y ) is an L1-space,
then there is a non-completely continuous operator T : X∗ ⊗ε Y ∗
→ c0.

(v) If X and Y are infinite-dimensional and X (or Y ) is an L∞-space,
then there is a non-completely continuous operator T : X∗∗ ⊗ε Y ∗∗
→ c0.

Proof. (i) Note that L(c0, c0) 6= CC(c0, c0), since the identity map i :
c0 → c0 is not completely continuous. Apply Theorem 24 and Corollary 3(ii).

(ii) If K is infinite, C(K) contains a copy of c0. Apply (i).
(iii) Apply Theorem 24 and Corollary 3(ii). Alternatively, apply (i) and

use the isometry C(K,X) ' C(K)⊗ε X (cf. [52]).
(iv) If X is an infinite-dimensional L1-space, then X contains a comple-

mented copy of `1 (Proposition 1.24 of [10]), and thus c0 ↪→ X∗. Apply (i).
(v) If X is an infinite-dimensional L∞-space, then X∗ is an infinite-

dimensional L1-space. Apply (iv).

Remark. Dobrakov [23] showed that ifX is a Schur space, then C(K,X)
has the DPP. Andrews [2] proved that if X∗ is a Schur space, then L1(µ,X)
has the DPP if µ is finite. Bourgain [9] proved that for any countable mea-
sure µ and any compact Hausdorff space K, the spaces L1(µ,C(K)) and
C(K,L1(µ)) have the DPP. By Corollary 25, there are non-completely con-
tinuous operators T : C(K,X)→ c0 and S : C(K,L1(µ))→ c0.
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IfX∗ is a Schur space, then there is a non-completely continuous operator
T : L1(µ,X)→ c0. To see this, note thatX∗ being a Schur space implies that
`1 X↪→ X (see the proof of Corollary 2(iii)), and thus L(X, c0) 6= CC(X, c0).
Now, L1(µ,X) ' L1(µ) ⊗π X contains complemented copies of X [53].
Hence Corollary 3 (i) implies that there is a non-completely continuous op-
erator T : L1(µ,X) → c0. A similar argument shows that if K is scat-
tered (`1 X↪→ C(K)), then there is a non-completely continuous operator
T : L1(µ,C(K))→ c0. Thus we obtain examples of injective and projective
tensor products with the DPP so that not every operator defined on them
is completely continuous.

We recall that a Banach space X has the DPrcP (resp. the (GP)) if
every DP (resp. limited) subset of X is relatively compact. We note that
X has the DPrcP (resp. the (GP)) if and only if every weakly null DP
(resp. limited) sequence in X is norm null [26], [35]. If X is a Banach space
and P(N) is the power class of N, then ca(P(N), X) denotes the Banach
space of all countably additive vector measures µ : P(N)→ X with the sup
norm ‖µ‖ = sup{‖µ(E)‖ : E ∈ P(N)}. Drewnowski proved that if (mn)
is a sequence in ca(P(N), X) and (mn(A)) is norm null for all A ∈ P(N),
then ‖mn‖ → 0 (Lemma 3 of [24]). Using this result, we have the following
characterization of the DPrcP (resp. the (GP)) of ca(P(N), X).

Theorem 26. X has the DPrcP (resp. (GP)) if and only if ca(P(N), X)
has the DPrcP (resp. (GP)).

Proof. We present the proof of the result relative to the DPrcP; the other
case is similar. Suppose that X has the DPrcP and let (mn) be a weakly null,
DP sequence in ca(P(N), X). Then (mn(A)) is weakly null, DP sequence in
X for all A ∈ P(N). Since X has the DPrcP, (mn(A)) is norm null for all
A ∈ P(N). By Lemma 3 of [24], (mn) is norm null, and thus ca(P(N), X)
has the DPrcP. The other implication is straightforward.

4. Unconditionally converging operators, property (V ) and V -
sets. An operator T : X → Y is called unconditionally converging if T maps
weakly unconditionally convergent (wuc) series in X into unconditionally
convergent series in Y . Unconditionally converging operators and completely
continuous operators are fundamentally linked as a result of the following
theorem of Pełczyński [47].

Theorem 27. Let K be a compact Hausdorff space and let Y be an
arbitrary Banach space. Then for every linear operator T : C(K) → Y the
following conditions are equivalent:

(i) T is unconditionally converging.
(ii) T is weakly compact.
(iii) T is completely continuous.
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Moreover, if an operator T : X → Y fails to be unconditionally converg-
ing, then T is an isomorphism on a copy of c0 (cf. [7]). Consequently, any
completely continuous operator is necessarily unconditionally converging.

For K infinite, C(K) spaces always contain copies of c0 ([16, p. 16], [15]).
However, they may not contain complemented copies of c0. Phillips’s theorem
shows that c0 is not complemented in `∞.

Recall that C(K) has the Grothendieck property if and only if it contains
no complemented copy of c0 ([15]). We present the following generalization
of this result.

Theorem 28. Suppose that X has property (V ). Then X has the Gro-
thendieck property if and only if c0 is not complemented in X.

Proof. If X has the Grothendieck property, then c0 is not complemented
in X, since c0 does not have the Grothendieck property.

Conversely, suppose that X does not have the Grothendieck property.
Let (x∗n) be a w∗-null sequence in X∗ with no weakly null subsequence.
Let T : X → c0 be defined by T (x) = (x∗n(x)). Since (T ∗(e∗n)) = (x∗n)
is not relatively weakly compact, T is not weakly compact. Since X has
property (V ), T is not unconditionally converging [47].

Let
∑
xn be wuc inX so that

∑
T (xn) is not unconditionally convergent.

Then T is an isomorphism on a copy of c0. Let ε > 0 and let (nk) and (mk)
be intertwining sequences of positive integers so that∥∥∥ nk∑

i=mk

T (xi)
∥∥∥ > ε

for each k. Hence ‖
∑nk

i=mk
xi‖ > ε/‖T‖ for each k. Let (yk) = (

∑nk
i=mk

xi).
Note that

∑
yn is wuc and inf ‖yk‖ > 0. By a result of Bessaga and Peł-

czyński (Lemma 3 on p. 160 of [7]), we may assume without loss of generality
that (yn) is equivalent to (en). Since ‖T (yn)‖9 0, x∗n(yn) 9 0. Hence (yn)
is not limited in X. By Theorem 1.3.2 of [57], (yn) has a subsequence whose
closed linear span is complemented in X.

Corollaries 5(i) and 3(ii), and the result mentioned before Theorem 28,
immediately produce the following result.

Theorem 29. A Banach space C(K) satisfies

L(C(K), c0) = CC(C(K), c0)

if and only if it has the Grothendieck property.

It follows that L(C(K), c0) 6= CC(C(K), c0) whenever K contains a non-
trivial converging sequence; indeed, if (tn) converges in K to t ∈ K, then
δtn → δt in the weak∗ topology but not weakly, if we assume that tn are all
different. This, in particular, covers Corollary 2(ii).
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Phillips’s theorem shows that c0 is not complemented in `∞. The fol-
lowing result generalizes this theorem. A subset K of X∗ is called relatively
w∗-sequentially compact if every sequence from K has a subsequence which
converges to a point in the w∗-topology of X∗.

Theorem 30. If K is a relatively w∗-sequentially compact subset of X∗∗,
then K is a V -subset of X∗∗.

Proof. Suppose not. Let
∑
x∗n be a wuc series inX∗ so that sup{|x∗∗(x∗n)| :

x∗∗ ∈ K}9 0 as n→∞. Without loss of generality, suppose that δ > 0 and
|x∗∗n (x∗n)| > δ for each n, where x∗∗n ∈ K. Moreover, suppose that x∗∗n → x∗∗

in the w∗-topology.
If A ⊆ N, then w∗-limn

∑
i∈A, i≤n x

∗
i exists. Denote this limit by x∗A, and

define µn : P(N)→ R by
µn(A) = x∗∗n x

∗
A

for A ⊆ N.
Since

∑
n x
∗
n is wuc, µn is countably additive for each n. Additionally,

the w∗-convergence of (x∗∗n ) guarantees that (µn(A)) converges for every
A ⊆ N. An application of the Vitali–Hahn–Saks–Nikodym theorem ensures
that (µn) is uniformly strongly additive ([22], p. 23). Therefore µn(i)

i→ 0
uniformly in n. This produces an immediate contradiction since |µn(n)| > δ
for each n.

Corollary 31.

(i) If (x∗∗n ) is a w∗-null sequence in X∗∗, then (x∗∗n ) is a V -subset
of X∗∗.

(ii) ([19]) If X∗ has property (V ), then X∗ has the Grothendieck prop-
erty.

(iii) If X∗ has the DPP and property (V ), then every operator T :
X∗ → c0 is completely continuous.

Proof. (i) Apply Theorem 30.
(ii) Let (x∗∗n ) be w∗-null in X∗∗. By (i), (x∗∗n ) is a V -subset of X∗∗. Since

X∗ has property (V ), (x∗∗n ) is weakly null. Hence X∗ has the Grothendieck
property.

(iii) Let T : X∗ → c0 be an operator. By (ii), X∗ has the Grothendieck
property. Then T is completely continuous (by Corollary 5).

Corollary 32. If BX∗∗ is w∗-sequentially compact, then every operator
T : c0 → X∗ is compact.

Proof. Suppose that
∑
x∗n is wuc inX∗. By Theorem 30, BX∗∗ is a V -set.

Then ‖x∗n‖ ≤ sup{|x∗∗(x∗n)| : x∗∗ ∈ BX∗∗} → 0. This implies that any weakly
unconditionally convergent series in X∗ is unconditionally convergent.
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Let T : c0 → X∗ be an operator. The preceding argument shows that∑
T (en) is unconditionally convergent, and thus norm subseries convergent.

Hence T is compact [18, p. 113, Problem 2].
As noted before Theorem 28, c0 is not complemented in `∞. Corollary 2,

p. 169 of [39] shows that a separable infinite-dimensional space cannot be
complemented in C(K) with K Stonean. In fact, the results in this section
easily produce stronger results.

Corollary 33.
(i) Suppose Y has the DPP and the Grothendieck property. If X is a

complemented subspace of Y and BX∗ is w∗-sequentially compact,
then X is finite-dimensional.

(ii) If T : `∞ → c0 is an operator, then T|c0 is compact.

Proof. (i) Suppose that P : Y → X is a projection. Let (x∗n) be a se-
quence in BX∗ . Then there is a subsequence (x∗ni) of (x∗n) which is w∗-
convergent, and thus (P ∗(x∗ni)) is weakly convergent (Y has the Grothen-
dieck property). Consequently, P ∗ and P are weakly compact. Since Y has
the DPP, P is completely continuous. Thus P 2 = P is compact (as the
composition of a completely continuous operator and a weakly compact op-
erator), BX is compact, and X is finite-dimensional.

(ii) Every operator from `∞ to c0 is completely continuous by Corol-
lary 31(iii) and every bounded sequence in c0 has a weakly Cauchy subse-
quence.

Corollary 34.
(i) Every bounded and weakly precompact subset of X∗∗ is a V -subset

of X∗∗.
(ii) ([47]) If K is a bounded and weakly precompact subset of X∗, then

K is a V -subset of X∗.
(iii) ([47]) If X has property (V ), then X∗ is weakly sequentially com-

plete.

Proof. (i) Suppose that K is is a bounded weakly precompact subset
of X∗∗. Let (x∗∗n ) be a sequence in K, and without loss of generality suppose
that (x∗∗n ) is weakly Cauchy. Therefore there is an M > 0 so that (x∗∗n ) is a
w∗-Cauchy net in MBX∗∗ , a w∗-compact set. Thus (x∗∗n ) is w∗-convergent.
Apply Theorem 30.

(ii) Let η be the natural embedding of a space in its bidual. Then η(K) is
bounded and weakly precompact in X∗∗∗. By (i), η(K) is a V -subset of X∗∗∗.
Note that if

∑
xn is wuc in X, then

∑
η(xn) is wuc in X∗∗. Consequently,

K is a V -subset of X∗.
(iii) Let (x∗n) be a weakly Cauchy sequence in X∗. By (ii), (x∗n) is a V -set,

thus relatively weakly compact.
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Corollary 35.

(i) ([47]) If K is a bounded and weakly precompact subset of X, then K
is a V ∗-subset of X.

(ii) ([47]) If X has property (V ∗), then X is weakly sequentially complete.

Proof. (i) Let η be the natural embedding of X into X∗∗. Since η(K) is
a bounded and weakly precompact subset of X∗∗, η(K) is a V -subset of X∗∗
(by Corollary 34(i)). Then K is a V ∗-subset of X.

(ii) Let (xn) be a weakly Cauchy sequence in X. By (i), (xn) is a V ∗-set,
thus relatively weakly compact.

Theorem 36.

1. Suppose that T : X → Y is an operator. The following are equivalent:

(i) T ∗(BY ∗) is a V -subset of X∗.
(ii) ‖T (xn)‖ → 0 whenever

∑
xn is wuc in X.

(iii) T is unconditionally convergent.

Moreover, a bounded subset K of X∗ is a V -set iff there is a Banach
space Y and an unconditionally converging operator T : X → Y such
that K ⊆ T ∗(BY ∗).

2. Suppose that T : Y → X is an operator. The following are equivalent:

(i) T (BY ) is a V ∗-subset of X.
(ii) ‖T ∗(x∗n)‖ → 0 whenever

∑
x∗n is wuc in X∗.

(iii) T ∗ is unconditionally converging.

Further, a bounded subset K of X is a V ∗-set iff there is a Banach
space Y and an operator T : Y → X such that K ⊆ T (BY ) and T ∗ is
unconditionally converging.

Proof. 1. (i)⇔(ii). This follows directly from the equality

‖T (xn)‖ = sup{|〈T ∗(y∗), xn〉| : y∗ ∈ BY ∗}.
(ii)⇒(iii). Suppose that T is not unconditionally converging. Let

∑
xn

be a wuc series in X, ε > 0, π a permutation of N, and (mi) and (ni)
intertwining sequences of positive integers such that ‖

∑ni
n=mi

T (xπ(n))‖ > ε
for each i. If yi =

∑ni
n=mi

xπ(n), then
∑
yi is wuc. This is a contradiction

with (ii).
(iii)⇒(ii) is clear.
Now, let K be a bounded V -subset of X∗. Let Y = B(K) be the Banach

space of all bounded functions on K endowed with the sup norm, and define
T : X → Y by T (x)(x∗) = x∗(x), x ∈ X, x∗ ∈ K. If

∑
xn is wuc in

X, then ‖T (xn)‖ = sup{|x∗(xn)| : x∗ ∈ K} → 0, since K is a V -set. The
previous argument implies that T is unconditionally converging. Note that
T ∗(δx∗) = x∗, where δx∗ is the point mass at x∗ ∈ K. Hence, K ⊆ T ∗(BY ∗).
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IfK ⊆ T ∗(BY ∗) for some unconditionally converging operator T : X→ Y ,
then T ∗(BY ∗), thus K, is a V -subset of X∗.

2. (i)⇔(ii). This follows directly from the equality

‖T ∗(x∗n)‖ = sup{|〈T (y), x∗n〉| : y ∈ BY }.
(ii)⇒(iii) and (iii)⇒(i) are clear.
Now, suppose that K is a bounded subset of X. Let B(K) be the Banach

space of all bounded functions on K with sup norm, and let E : X∗ → B(K)
be the evaluation map defined by E(x∗)(x) = x∗(x), x∗ ∈ X∗, x ∈ K. If∑
x∗n is wuc in X∗, then ‖E(x∗n)‖ = sup{|E(x∗n)(x)| : x ∈ K} =

sup{|x∗n(x)| : x ∈ K}. Hence K is a V ∗-set iff E is unconditionally con-
verging.

We note that B(K) ' `∞(K) = `1(K)∗. Let T : `1(K) → X be defined
by T (f) =

∑
x∈K f(x)x. Set Y = `1(K), check that E = T ∗, and note that

K ⊆ T (BY ).
The following corollary extends Proposition 1 in Pełczyński [47].

Corollary 37. Suppose that X is a Banach space.

1. The following are equivalent:

(i) Every V -subset of X∗ is weakly precompact (resp. relatively weakly
compact, relatively compact).

(ii) If T : X → Y is an unconditionally converging operator, then T ∗
is weakly precompact (resp. weakly compact, compact).

Further, if every V -subset of X∗ is weakly precompact, then every
unconditionally convergent operator T : X → Y is weakly precompact.

2. ([36, Theorem 3.11])

(i) Every V ∗-subset of X is weakly precompact (resp. relatively weakly
compact, relatively compact).

(ii) If T : Y → X is an operator such that T ∗ is unconditionally
converging, then T is weakly precompact (resp. weakly compact,
compact).

Proof. We will show that the statements are equivalent in the weakly
precompact case. The arguments for all the remaining implications in the
theorem follow the same pattern.

1. (i)⇒(ii). Suppose that T : X → Y is unconditionally converging. By
Theorem 36, T ∗(BY ∗) is a V -subset of X∗, and thus weakly precompact.
Then T ∗ is weakly precompact.

(ii)⇒(i). Let K be a V -subset of X∗. Let Y be a Banach space and T :
X → Y be an unconditionally converging operator such that K ⊆ T ∗(BY ∗)
(use Theorem 36). Since T ∗(BY ∗) is weakly precompact, K is weakly pre-
compact.
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Now suppose that every V -subset of X∗ is weakly precompact and T :
X → Y is unconditionally converging. Then T ∗ is weakly precompact. By
Corollary 2 of [5], T is weakly precompact.

2. (i)⇒(ii) Suppose that T : Y → X is an operator and T ∗ is uncondi-
tionally converging. By Theorem 36, T (BY ) is a V ∗-subset of X, and thus
weakly precompact. Then T is weakly precompact.

(ii)⇒(i) Let K be a V ∗-subset of X. Suppose Y is a Banach space and
T : Y → X is an operator such that K ⊆ T (BY ) and T ∗ is unconditionally
converging. Since T (BY ) is weakly precompact, K is weakly precompact.

We remark that Corollary 37 implies that if every V -subset of X∗ is
relatively compact, then X∗ has the Schur property.

Theorem 38. Let A be a bounded subset of X∗ which is not a V -set.
For each ε > 0, there exists a sequence (x∗n) in A and a wuc series

∑
xn in

X such that
〈x∗n, xn〉 = 1 and

∑
m 6=n
|〈x∗n, xm〉| < ε for each n.

Proof. Suppose that A is a bounded subset of X∗ which is not a V -set.
Let (x∗n) be a sequence in A and

∑
zn be a wuc series in X such that

x∗n(zn) 9 0. Without loss of generality assume that ‖x∗n‖ ≤ 1, ‖zn‖ ≤ 1, and
x∗n(zn) = 1 for each n ∈ N. Let P be the power set of N. For each n, define
µn : P → R by

µn(A) =
∑
i∈A

x∗n(zi).

Note that for each n, µn is well defined since
∑
zi is wuc. Further, (µn) is

a bounded sequence of countably additive scalar measures. Fix ε > 0. By
Rosenthal’s lemma, there are subsequences of (zn) and of (x∗n), which we
still denote (zn) and (x∗n), such that

|µn|
( ⋃
m 6=n
{m}

)
=
∑
m6=n
|x∗n(zm)| < ε

for each n.
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