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Abstract. We prove an invariance principle for non-stationary random processes and
establish a rate of convergence under a new type of mixing condition. The dependence
is exponentially decaying in the gap between the past and the future and is controlled
by an assumption on the characteristic function of the finite-dimensional increments of
the process. The distinctive feature of the new mixing condition is that the dependence
increases exponentially in the dimension of the increments. The proposed mixing property
is particularly suited to processes whose behavior can be described in terms of spectral
properties of some related family of operators. Several examples are discussed. We also
work out explicit expressions for the constants involved in the bounds. When applied to
Markov chains, our result specifies the dependence of the constants on the properties of
the underlying Banach space and on the initial state of the chain.

1. Introduction. Let (Xj)r>1 be a sequence of real valued random
variables (r.v.’s) defined on the probability space (£2, F,P), and let

[Nt]
SN(t):Nil/szk, t e [0,1].
k=1

The (weak) invariance principle states that the process TlN(SN(t))Ogtgl

converges weakly to the Brownian process (W (t))o<i<1, and is a powerful
tool for various applications in probability and statistics. It extends the
scope of the central limit theorem to continuous functionals of the stochastic
process (Sn(t))o<t<1, such as, for example, the maxima or the L?-norm of
the trajectory of the process, considered in the appropriate functional spaces.
The rates of convergence in the (weak) invariance principle, for independent
r.v.’s under the existence of the moments of order 2 + 2§, with § > 0,
have been obtained in Prokhorov [28], Borovkov [4], Komlds, Major and
Tusnddy [22], Einmahl [10], Sakhanenko [31], [32], Zaitsev [38], [39] among
others. In the case of martingale differences, for § < 1/2, the rates are
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essentially the same as in the independent case (see, for instance, Hall and
Heyde [20], Kubilius [23], Grama [I1]).

The almost sure invariance principle is a reinforcement of the weak in-
variance principle which states that the trajectories of a process are approx-
imated with the trajectories of the Brownian motion a.s. in the sense that
within a particular negligible error v — 0 it is true that

1
0221 \/NSN(t) W(t)| =0(ry) as.

There are many recent results concerning the rates of convergence in the
strong invariance principle for weakly dependent r.v.’s under various con-
ditions. We refer to Wu [37], Zhao and Woodroofe [40], Liu and Lin [24],
Cuny [5], Merlevede and Rio [25], Dedecker, Doukhan and Merlevede [6]
and to the references therein. However, in contrast to the case of indepen-
dent r.v.’s where it is found that the optimal rate is of order N ~9/(2+20) for
the strong invariance principle and N~9/(3+20) for the weak invariance prin-
ciple, the problem of obtaining the best rate of convergence in both the weak
and strong invariance principles for dependent variables is not yet settled
completely.

Gouézel [15] has introduced a new type of mixing condition which is tied
to spectral properties of the sequence (Xj)g>1. Consider the vectors X; =
(Xgseen, XJMl) and X9 = (ngaerJMlH, ... ,ngaerJMﬁMz), called the past
and the future, respectively, where Xz, = > c; Xitt, Jm = [Jm—1,Jm),
jo <+ < jny+My, and kgap is a gap between X7 and Xo. Roughly speak-
ing, the condition used in [I5] supposes that the characteristic function of
(X1,X5) is exponentially close to the product of the characteristic func-
tions of the past X; and the future Xo, with an error term of the form
Aexp(—Mkgap), where A is some non-negative constant and A is exponen-
tial in terms of the size of the blocks. This mixing property is particularly
suited to systems whose behavior can be described in terms of spectral prop-
erties of some related family of operators, as initiated by Nagaev [26], [27]
and Guivarc’h [16]. Examples are Markov chains whose perturbed transition
probability operators (P¢)j <., exhibit a spectral gap and enough regularity
in ¢, and dynamical systems whose characteristic functions can be coded
by a family of operators (Et)It\Sao with similar properties. Gouézel proves
in [I5] an almost sure invariance principle with rate of convergence of or-
der N_6/(2+46).

The scope of the present paper is to improve on the results of Gouézel
by quantifying the rate of convergence in the (weak) invariance principle for
dependent r.v.’s under the mixing condition introduced above. Although the
strong and weak invariance principles are closely related, it seems that the
rate of convergence in the (weak) invariance principle is less studied under
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weak dependence constraints. We refer to Doukhan, Leon and Portal [7],
Merlevede and Rio [25] and Grama and Neumann [12]. However, these re-
sults rely on mixing conditions which do not hold in the present setting.
Under the above mentioned mixing and some further mild conditions in-
cluding the moment assumption supys; E|X3|?>T2° < co we obtain a bound

of order N 71%0;3?%, for any a < . Moreover, we give explicit expressions
of some constants involved in the rate of convergence; for instance, in the
case of Markov walks we are able to figure out the dependence of the rate
of convergence on the properties of the Banach space related to the cor-
responding family (P;)j;<., of perturbed transition operators and on the
initial state Xy = = of the associated Markov chain. When compared with

1 @
the rate N~ 27+2a in the almost sure invariance principle of [15] ours appears

with a loss in the power of multiple gigg < 1. This loss in the power is ex-

actly the same as in the case of independent r.v.’s, when we compare the

almost sure invariance principle (rate N 7ﬁ) and the (weak) invariance
principle (rate N_ﬁs%).

As in the paper [I5] our proof relies on a progressive blocking technique
(see Bernstein [2]) coupled with a triadic Cantor-like scheme and on the
Komlés, Major and Tusnady approximation type results for independent
r.v.’s (see [22], [10], [38]), which is in contrast to approaches usually based
on martingale methods.

As a potential application of the results obtained we point out the asymp-
totic equivalence of statistical experiments as developed in [13], [14], [12],
whose scope can be extended to various models under weak dependence
constraints.

Our paper is organized as follows. In Sections [2] and [3| we formulate
our main results and give an application to the case of Markov chains. In
Section [4] we introduce the notations to be used in the proofs of the main
results. Proofs of the main results are given in Sections In Section
we prove some bounds for the LP norm of the increments of the process
(Xk)k>1, and finally, in Section |§| we collect some auxiliary assertions and
general facts.

We conclude this introduction by setting some notations to be used all
over the paper. For any z € R?, denote by ||2||oc = Sup;<;<q |;| the supre-
mum norm. For any p > 0, the LP norm of a random variable X is denoted
by || X|/z». The equality in distribution of two stochastic processes (Z!);>1
and (Z!");>1, possibly defined on two different probability spaces (£2/, 7', ')

7
and (£, F" P"), will be denoted £((Z))i>1|P') £ L((Z");>1|P"). The gener-
alized inverse of a distribution function F on a real line is denoted by F~!,
ie. F71(y) = inf{x : F(x) > y}. By ¢,c,c",..., possibly supplied with
indices 1,2, ..., we denote absolute constants whose values may vary from
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line to line. The notations cq, . c .. will be used to stress that

Q) e,
the constants depend only on the parameters indicated in their indices: for
instance ¢, ; denotes a constant depending only on the constants c, 3. All
other constants will be specifically indicated. As usual, a “standard normal

r.v.” is a normal random variable of mean 0 and variance 1.

2. Main result. Assume that on the probability space (2, F,P) we are
given a sequence (X;);>1 of dependent r.v.’s with values on the real line R.
The expectation with respect to P is denoted by [E.

The following condition will be used to ensure that the process (X;)i>1
has almost independent increments. Given natural numbers kgap, M1, Mo

€ N and a sequence jg < --- < jar4m, denote Xpyjy = Zlejm Xkt
where J, = [Jm—1,Jm), m = 1,..., My + My and k > 0. Consider the
vectors X1 = (X, ... ,XJMI) and Xy = (ngap+JMl+17 . ,X]CgapiJMl+]\/12).

Let ¢(t1,ts) = Ret1X14i2X2 ) (1)) = Ee?'X1 and ¢o(ts) = Ee2%2 be the
characteristic functions of (Yl,YQ), X, and X, respectively. We require
that the dependence between the two vectors X7 (the past) and X5 (the
future) decreases exponentially as a function of the size of the gap kgap in
the following sense.

CoNDITION C1. There exist positive constants ¢g < 1, Ag, A1, A2 such
that for any kg.p, M, M2 € N, any sequence jo < --- < jr,4+Mm, and any
t1 € RMi ty € RM2 gsatisfying ||(t1,%2) s < €0,

|p(t1,t2) — P1(t1)p2(t2)]

§)\oexp(—)\1kgap)(l+ max  card(Jp)

)AQ(M1+M2)
m=1,...,M1+Ms '

All over the paper we suppose that the following moment condition holds
true.

CoNDITION C2. There exist two constants § > 0 and ps > 0 such that
sup HXZ‘||L2+25 < us < oo.
i>1
We also suppose that the sequence (X;);>1 has the following asymptotic
homogeneity property.

CoNDITION C3. There exist constants 7 > 0 and ¢ > 0 such that, for
any v > 0 and any n > 1,

k+n
sup|n~! Varp< Z X¢> - 02‘ < rn .
k=0 i=k+1

The main result of the paper is the following theorem. Denote p; = EX;
for ¢ > 1.



WEAK INVARIANCE PRINCIPLE 5

THEOREM 2.1. Assume Conditions C1-C3 hold. Let 0 < a < 0. Then
on some probability space (2, F,P) there exist a sequence of random vari-
ables (X;)i>1 such that L£((X;)i>1|P) 4 L((Xi)i>1|P) and a sequence of
independent standard normal random variables (W;)i>1 such that for any
0<p<m and N > 1,

LCRT ST

k<N

S 6N~ p) < CON7Q%+,O(2+2())’

where Co = ¢\ 20,60 (1 + Ao + s + V1) and Ca o060 depends only
on the constants indicated in its indices.

Letting p = 575 11:2%7 from Theorem we get

(2.1) ~( —1/2 sup‘z — pi —oW;)

k<N

a 1+
> 6N‘mm)
< CONiﬁfiTng

where Co = ¢y, na.00(1 + Ao + s + /7)*T and ¢, ry,a,0,0 depends only
on the constants indicated in its indices. Compared with the optimal rate of
convergence N~/(3+29) fo1 independent r.v.’s, the loss in the power is within
the factor 111201 As a — oo we obtain the limiting power 1/4 which is twice
worse than the optimal power 1/2 in the independent case. In particular,
if & = 1/2 (which corresponds to p = 2+ 2a = 3) we obtain the rate of
convergence N~ T e = N~ 32, while in the 1ndependent case we have

N—1/8_ which represents a loss of the power of order 5~ 332 = 312.

Observe that in Theorem we figure out the explicit dependence
of the constant Cy on the constants Ay, us and 7 involved in Conditions
C1-C3. In the next section we show that Theorem can be applied
to Markov walks under spectral gap type assumptions on the associated
Markov chain. It is important to stress that our result is the first one to
figure out the dependence of the constants involved in the bounds on the
initial state of the Markov chain. The results of the paper can also be ap-
plied to a large class of dynamical systems, however this stays beyond the
scope of the present article. For a discussion of such applications we refer
o [15].

For the proof of Theorem without loss of generality, we shall assume
that u; = 0,7 > 1 and o = 1, since the general case can be reduced to this
one by centering and renormalizing the variables X, i.e. by replacing X; by
X! = (X; — pi)/o. It is easy to see that Conditions C1-C3 are satisfied for
the new random variables X with the same g and with us, 7 replaced by

2us/0, T/0>.
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3. Applications to Markov walks. Consider a Markov chain (Xj)z>0
with values in the measurable state space (X, X') with the transition proba-
bility P(z,-), z € X. For every = € X denote by P, and E, the probability
measure and expectation generated by the finite-dimensional distributions

P,(Xo € By, ..., X, € Bp) = 1p,(z) S S P(x,dxry) ... P(zp_1,dz,)
Bi By,
for any B, € X, k=1,...,n, n = 1,2,..., on the space of trajectories
(X, X)N. In particular P,(Xo = 2) = 1.

Let f be a real valued function defined on the state space X of the
Markov chain (Xj)r>0. Let B be a Banach space of real valued functions
on X endowed with the norm || - ||z and let || - || be the operator norm
on B. Denote by B’ = L(B,C) the topological dual of B equipped with the
norm || - [|g. The unit function on X is written e: e(z) = 1 for x € X. The
Dirac measure at = € X is denoted by d,: d,(g9) = g(z) for any g € 5.

We introduce the following hypotheses.

HypoTHESIS M1 (Banach space).

(a) The unit function e belongs to B.

(b) For every z € X the Dirac measure 6, belongs to B'.

(c) BC LY (P(z,-)) for every z € X.

(d) There exists a constant g9 € (0,1) such that for any g € B the
function e/ g is in B for any ¢ satisfying [t| < &.

Note that, for any z € X and g € L*(P(x,)), the quantity Pg(z) :=
$x 9(y) P(z,dy) is well defined. In particular, under Hypothesis M1(c),
Pg(x) exists when g € B. We thus consider the following hypothesis:

HypOTHESIS M2 (Spectral gap).

(a) The map g — Pg is a bounded operator on B.
(b) There exist constants Cg > 0 and x € (0, 1) such that

(3.1) P=1+Q,

where II is a one-dimensional projector and @ is an operator on B
satisfying I1Q = QII = 0 and ||Q" |8 < Cor".

Notice that, since the image of II is generated by the unit function e,
there exists a linear form v € B’ such that, for any g € B,

(3.2) IIg =v(g)e.

When Hypotheses M1 and M2 hold, we set P;g = P(e*/g) for any g € B
and t € [—¢q, £0]. Notice that P = Py.
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HypPOTHESIS M3 (Perturbed transition operator).

(a) For any |t| < g9 the map B 5 g — P,g € B is a bounded operator
on B.
(b) There exists a constant Cp > 0 such that, for all n > 1 and |¢| < e,

(3-3) IP¢lls-5 < Cp.

HypOTHESIS M4 (Moment condition). There exists 6 > 0 such that for
any x € X,

s(x) = sup(BEy | F(X3) [P 2) 75 = sup((P*|£2+29)(2)) 55 < oo,
E>1 E>1

We show first that under Hypotheses M1-M4, Conditions C1-C3 are
satisfied. As in the previous section let kgap, M1, M> € N and jo < --- <
Jay+0, be natural numbers. Denote Yiyjm = > 1y f(Xk11), where Jp, =
[im—1,Jm), m = 1,..., My + My and k > 0. Consider the vectors Y| =
(Y, .. ,YJMl) and Yy = (YkgaerJMlJrl, e 7Ykgap+JMl+MQ)‘ Denote by
Gz (b1, t2) = Ee'tY1Hi02Y2 g (1)) = Epe™! and ¢g9(t2) = Epe'2Y2 the
characteristic functions of (Y1,Y5), Y1 and Y respectively.

PROPOSITION 3.1. Assume that the Markov chain (X,)n>1 and the func-
tion f satisfy Hypotheses M1-M4. Then Condition C1 is satisfied, i.e.
there exists a positive constant eg < 1 such that for any kgap, M1, Mo € N,
any sequence jo < -+ < janinm, and any t; € RMity € RM2 satisfying
(1, t2)[loo < €0,

|z (t1,t2) — Pu,1(t1)Pu2(t2)|

< Xo(x) exp(—Aikgap) (1 + max card(Jp,)

)/\2(M1+M2)
m=1,...,M1+Ma

9

where

Ao(z) = 2Cq(|[v[ls + [|9(15)lell,
A1 =|lnk|, A2 =max{l,log, Cp}.

PROPOSITION 3.2. Assume that the Markov chain (X;,)n>1 and the func-
tion f satisfy Hypotheses M1-M4. Then:

(a) There exists a constant p such that for any v € X and k > 1,
(3.4) . f(X5) — pl < csdy(a)sh /47!
for any positive constant vy satisfying 0 < v < min{1,2d}, where Ai(z) =
1+ ps(z)1 + 1625 |lel 8CpCoq. Moreover

(3.5) D B f(Xk) — pl < () = cs A (2).
k=0
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(b) There exists a constant ¢ > 0 such that for any v € X,

m-+n

(3.6) sup Varpz( Z f(XZ)> - naQ‘ < 7(x) = cspyA2(T),

m=0 i=m+1

where

As(w) = 1+ o)

+ (1418215 lell5(CBCo(1 + Cq) + CpCo(1 + |5 Cp)).

Note that the constants p and o do not depend on the initial state z.

The main result of this section is the following theorem. Let §2 =
R> x R*. For any w = (w1,w2) € {2 denote by Y; = wi; and W; = wa,
1 > 1, the coordinate processes in (2.

THEOREM 3.3. Assume that the Markov chain (Xy,)n>0 and the function
[ satisfy Hypotheses M1-M4, with o > 0. Let 0 < a < 9. Then there erists
a Markov transition kernel x w— Py(-) from (X, X)) to (£2,B(12)) such that
E((Ni)i>1|ﬁ’ ) 4 L((f(Xi))i=1|Pz), the W;, i = 1, are independent standard

normal r.v.’s under Pw, and for any 0 < p < 2(1+2oc)

(3.7) ~x( —1/2 sup)z Yi—p—oW;)| >

k<N

6N*P)

< O() NP2 120)

with
Ca) = Ci(1 + ps(x) + 180 ll5)* >,
where Cy is a constant depending only on §, o, k,Cp, Cq, |le||s and ||v| s .

Note that only the probability ]?’x depends on the initial state x while
the processes (Yi)r>0 and (W})r>0 do not.

As in the previous section, letting p =
of Theorem [3.3] we obtain

a 14+«
3+2a 14+2a?

under the conditions

> —1/2 B
(3.8) IP’J;(N EER‘ZY - oW;)

> 6N~ Toa 1+2a>
@ 1+«
< C(z)N ™ 3+2a 142a,
Compared to the rate N ~5i% , which is optimal in the independent case, the
__a lta | . _a o

rate of convergence N~ 3+2a 1+2a in 1’ is slower by the factor N 3+2a T+2a,
As o — oo we obtain N~/4, which is the best rate in the invariance principle
that is known for dependent random variables.

In Theorem we do not suppose the existence of the stationary mea-
sure. Assume that there exists a stationary probability measure v on X; it
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thus coincides with the linear form v introduced in . Let P, and E, be
the probability measure and expectation generated by the finite-dimensional
distributions of the chain under the stationary measure v. Note that the
means E, X and the covariances Covp, (f(X;), f(X;1x)) with respect to v
may not exist, under Hypotheses M1-M4. To ensure their existence, we
require the following additional condition (where generally |f|? ¢ B).

HypPOTHESIS M5 (Stationary measure). On the state space X there ex-
ists a stationary probability measure v with v(sup;q P*(| f|?)) < oo.

Under Hypothesis M5 for ;o and o we find the usual expressions of the
means and of the variance in the central limit theorem for dependent r.v.’s.

THEOREM 3.4. Assume that the Markov chain (X,)n>0 and the func-
tion f satisfy Hypotheses M[1-M5. Assume also that o, > 0. Then Propo-
sition holds true with u = v(f) and o = o,, where

v(f) =\ f(x)v(dz)

and

oy = Varg, (f(X0)) +2_ Cove, (f(Xo), f(Xx))-
k=1
Moreover, if o, > 0 the assertions of Theorem and (3.8)) hold true with
w=v(f) and o = oy,.

From Theorem [3.4] one can derive a bound when the Markov chain
(Xn)n>0 is in the stationary regime. If we assume v(supg Pk (| £|2129))
< ¢,5 < 0o and SHJQCH?;,'% v(dr) < e 5 < 00, then integrating (3.7) with

respect to v we obtain

k
P (N_1/2 su ‘ Y, — 4 — oW,
y sup ;( P — i)

> 6N—p> < CN*OL%+/)(2+2&)’

where C is a constant depending on 6, o, &, Cp, Cq, ||€||s, |[¥||p and ¢, 5, cpr 5.

Hypotheses M1-M5 formulated above can be easily verified by stan-
dard methods. As to M3 it can be verified using two approaches. The first
approach is based on the assumption that the family of operators (Pt)mggo
is continuous in t at ¢ = 0. In this case, M3 is satisfied by classical per-
turbation theory (see, for instance, Dunford and Schwartz [9]). The second
approach is based on a weaker form of continuity of the family (P;)j <., as
developed in Keller and Liverani [21].

We end this section by giving three examples where these hypotheses are
satisfied.

ExaMPLE 1 (Markov chains with finite state spaces). Suppose that
(Xn)n>0 is an irreducible ergodic aperiodic Markov chain with finite state



10 I. GRAMA ET AL.

space. It is easy to verify that Hypotheses M1-M5 are satisfied and that
there exists a unique invariant probability measure v. Then the conclusions
of Theorem [3.4] hold true.

EXAMPLE 2 (Autoregressive random walk with Bernoulli noise). Con-
sider the autoregressive model z,4+1 = ax, + b,, n > 0, where « is a
constant satisfying o € (—1,1), and (by,)n>0 are i.i.d. Bernoulli r.v.’s with
P(b=1)=P(b=—1)=1/2 and xy = z. Consider the Banach space B = L

of continuous functions f on R such that || f|| = |f| + [f] < oo, where
|f (@) [f(z) = f(v)]
= su , = su :
S Se A (R
T#Y

Since a € (—1, 1), the invariant measure v exists and coincides with the law
of the random variable Z = 37, a'~1b;. Tt is easy to verify that Hypotheses
M1-M5 are satisfied for the function f(z) = x. For the mean v(f) we have
Eb,

1-—a

(e.9]
v(f) = qu(d:c) =EZ = Zo/—lEbl -

i=1
Since Eb; = 0, one gets v(f) = 0 and the variance is computed as follows:

2 1)\ - 2(i—1) 1752 1
— 1 i-1p V" _ s i —
7= I B( o) = Jim 3ot VRN =
1= 1=

Thus the conclusions of Theorem[3.4|hold true with v(f) = 0 and 02 = L

1—a?"
EXAMPLE 3 (Stochastic recursion). On the probability space ({2, F,P)
consider the stochastic recursion

Tyl = Ap1Tn + bpyt, n >0,

where (ap,bp)n>0 are iid. r.v.’s with values in (0,00) x R of the same
distribution zz and zp = x. Following Guivarc’h and Le Page [17], we assume
the conditions:

H1. There exists a > 2 such that
(o) :=\|a* fi(da,db) < 1 and ||b* fi(da, db) < co.

H2. ({(a,b) : azg +b=x0}) <1 for any zo € R.
H3. The set {In]a| : (a,b) € supp i} generates a dense subgroup of R.

Let ¢ € (0,1), 6 and ¢ be positive such that a—1 < c+e < 0 < 2¢c < a—¢.
Consider the Banach space B = L. ¢ of continuous functions f on R such
that | f|| = [f] + [f] < oo, where

1 =sup Ly

|f(x) — f(y)]
web 1+ |27

p .
zyek |7 = y[*(1+ |2[) (1 + |y[)
xFy
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The transition probability P(z, -) of the Markov chain (z,),>0 is defined by
{1(y) P(x, dy) = | h(az + b) i(da, db)

for any bounded Borel measurable function h : R — R and x € R. For
any ¢ € R denote by P, and E, the corresponding probability measure
and expectation generated by the finite-dimensional distributions on the
space of trajectories. It is proved in [I7, Proposition 1] that the series
Yoi2ial...ai—1b; is P-a.s. convergent and the Markov chain (z,,)n>0 has
a unique invariant probability measure v which coincides with the law of
Z =% a1...a;_1b;. Moreover, {|z|' v(dz) < oo for any ¢ € [0, a).

We now verify that Hypotheses M1-M5 are satisfied for f(z) = =z.
Hypothesis M1 is obvious and M2 and M3 follow from [I7, Theorem 1 and
Proposition 4]. If § > 0 is such that 2 + 26 < «, by simple calculations we
obtain

1b1[]2+25

(Bo |z |7 2) 5% < (2 + 20) 5% || + —
1— (2 +20)zF%

Taking the sup over n > 1, we get

1 1 b
5(x) = sup(Ea| f () 72) 5 < (2 4 26) s [o] 4 —onllev2s
n>1 1— (24 25)2+2

which proves that M4 is satisfied. Finally, M5 holds since

)% v(dx ﬁla 22 uldr ”b1”2+25 2 o
bt (d)§2<¢(2+25) S (d)+<1—so(2+25)2+125>)< '

The mean is given by v(f) = EZ = Y32 (Ea;)" 'Eb; = 113%21. Without

loss of generality we can assume that v(f) = 0, i.e. that Eb; = 0; then the
variance is

02 = Varp(Z) = nlgn(;E(Zn: ay - - 'ai—lbi>2
i—1

g : Eb?
=l 3 (el B =
Therefore the conclusions of Theorem hold true with = v(f) =0 and
o=0,= 13%1’;"

A multivariate version of the stochastic recursion has been considered in
Guivarc’h and Le Page [18], [19] and can be treated in the same manner.

4. Partition of the set N and notations. In what follows, ¢, 5 € (0, 1)
will be such that e+ 3 < 1 (all over the paper ¢ is supposed to be very small,
while 8 will be optimized). Denote for simplicity [a,b) = {l € N:a <[ < b}.
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Let kg > 1 be a natural number. We start by splitting the set N into subsets
(2, 2K+ 1) | = ko, ko+1,. .., called blocks. Consider the kth block [2F, 2k+1),
We leave a large gap Jj 1 of length ekl +BE] at the left end of the kth block.
Then, following a triadic Cantor-like scheme, we split the remaining part
[2F + 2[5’“]“'[5"7},2’““) into subsets I, ; and Jj; called islands and gaps as
explained below. At resolution level 0 a gap of size 2[€kI+(5¥] /2 is put in the
middle of the interval [2¥ + 2lekl+BK] 2F+1) . This yields two intervals of equal
length. At resolution level 1 two additional gaps of length 2[€kI+[5%] /22 are
put in the middle of each interval obtained, which yields four intervals of
equal length. Continuing, at resolution level [Sk] we obtain 2[Bk] intervals
I, J = 1,...,208 called islands, and the same number of gaps Ji j,
j=1,...,20% which we index from left to right (recall that Ji; = Jjs 20
denotes the large gap at the left end of the kth block). It is obvious that
(2%, 2k+1) is the union of the constructed islands and gaps, so that

(4.1) [2k, 2k+1) = Jk71 U Ik71 U---uU Jk72[[-3k] U Ik.72[ﬁk].

Note that in block k there are one gap of length 2lEFITBk and 2! gaps of
length 2[ERI+BF~1=1 where [ = 0, ..., [Bk] — 1. The length of the finest gap
(for example J, os1) is 2[ek] The total length of the gaps in block k is
[BK]—-1
L5 = ollekl+[BR] Z olol[ek])+[Bk] -1 = (2 + [BK])2 ollek]]+[Bk] -1
=0
Recall that, by construction, the islands of the kth block have the same
length
gl = (2441 — 2% — (2-+ [H])2FHIF 1) polo¥
— 2k=IBk] _ (1 4 [gR]2lErl=1y,
An obvious upper bound is |1 j| < 2¢718*. Since e < 1 — 8 we have |I; ;| >
ok—[8k] _gllekll—ch  nk ~ 52F0=P) with some c. 5 € (0,3). Since the length
of the kth block is 2, the total length of the islands in this block equals
Lt = ok _ olEkI+IBKI=1 (2 4 [BE]).

Note that, for some constant cg > 0,
(4.2) cg2h < LB < 2P,

Denote by K the set of double indices (k,j), with £ =1,2,... the index
of the block and j = 1,. .., 2/%¥ the index of the island in block k. The set K
will be endowed with the lexicographical order <. Then the sets I, ; and Jj ;,
(k,j) € K, will also be endowed with the lexicographical order. Let N € N.
From (4.1)), there exists a unique (n,m) € K such that 2" < N < 2"+ and

N € J,mUI, m, where the dependence of n and m on N is suppressed from
the notation; let Ky = {(k,7) : (k,7) = (n,m)}.



WEAK INVARIANCE PRINCIPLE 13

For ease of reading we recall the notations and properties that will be
used throughout the paper:
P1. £ and B are positive numbers such that ¢ + 5 < 1. Later on, the
constant € will be chosen small enough.
P2. K={(k,j):k=1,2,..., j=1,..., 26K}
P3. For any N € N the unique couple (n,m) € K is such that N €
Jn,m U In,m-
Pd. K = (k) : (k,j) < (n,m)}.
P5. I ;,7=1,.. ., 2[BK " are the islands and Jrj, J=1,.. ., 218K are
the gaps in the kth block.
P6. The number of islands and the number of gaps in the kth block
are both equal to my = 2[BK] Set, Mpy = Mg+ -+ + My
P7. The islands in the kth block have the same length |I, ;| = 2#~ %k —
(1 + [BE]2[=MI=1) < 2k=IBK This implies |Ij ;| > c. 5215 for
some constant c. g € (0, %)
P8. The length of the finest gap in the kth block is | J; ;| = 2[=¥)l. This
implies | Jy ;| > 2l
P9. The length |Ji 1| of the gap at the left end of the kth block is
olek]+[Bk]
P10. For each pair (k,j) € K, we denote X ;) = Zielk,j X; and
Wik.j) = Eie[;w- Wi.
P11. Lx,,  x, denotes the probability law of the vector (X1,..., Xy4).

5. Auxiliary result. Without loss of generality we assume that on
the initial probability space there is a sequence of independent r.v.’s
(Y(k,5)) (k.j)ex such that Y(y ;) 4 Xkj) (k,j) € K. Let ko € Ny and n > ko.
Suppose that on the same probability space there is an i.i.d. sequence of R!-
valued r.v.’s (Vis ) (k,j)ex With mean 0 whose characteristic function has
support [—€g, 0] and E[V(;, ;[ < oo for any rg > 0. We suppose that the
sequence (V(x j))(k,j)ex is independent of (X (4 j))k.jex and (Y(xj)) k.j)ek-
Denote X(k) = (X(k,l)a cee X(kﬁﬂk))’ Yv(k) = (Yv(kl), e 7Y(k,mk)) and V(k) =
(Vik,1)s - -5 Vikymy))- Let m denote the Prokhorov distance (for details see
Section of the Appendix).

Assume Conditions C1 and C2 hold. The main result of this section is
the following proposition, which is of independent interest.

PROPOSITION 5.1. There exists a constant c. g, x, such that, for any
ko=1,2,... and n > ko,

W(ﬁX(ko)+Wko)""’X(n)+‘/v(n) ) EWa)“”(ko)wY(n)JrV(n))

A
S Csvﬁ)AIJQ(]‘ + )\0 + ,LL(S) eXp(—41 . 2€k0/2) .
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Proof. Without loss of generality we assume that there exists a sequence
of independent random vectors Ry), k = 1,...,n, such that R, 4 Xy +
V(k) and (R(k))kzl,...,n is independent of (X(k) + V(k))k:l,...,n, (Yv(k,j))(k,j)elC
and (Vi j)) (k.5 ek

The further proof is split into Parts (a) and (b). In Part (a) we give a
bound for the Prokhorov distance between (X 4,y + Vigg)s- -+ X(n) + Vin))
and (R(z,) - - -, R(n)), while in Part (b) we give a bound for the Prokhorov
distance between (R, - - -, Rny) and (Y(x) +Vikg)s - - -5 Yin) + Vin))- Propo-
sition follows from and by the triangle inequality.

PART (a). We show that there exists a constant c. g, x, such that, for
any kg = 1,2,... and n > ko,

(5.1) F(['X(ko)""v(ko)""’X(n)""v(n)"CR(ko)""R(n))

A
< e (1 + Ao + 1) exp<—41 . 25’40/2).

For k = ko,...,n, define Zgy = (Xpg) + Vikg)---» Xx) + Viry) and
Z(k) = (Z(kfl)aR(k))‘ By Lernrna

n

(52) W(EZ(n) 9 ‘CR(ko)y--'vR(n)) S Z F(EZ(k) b ‘CZ(k) )

k=ko
Let ¢ (resp. 5(;6)) be the characteristic function of the vector Z, (resp.
Z(k)) and let my, 1, = my, +--- + my. Then by Lemma for any T' > 0,

(53) Ly Lz,) < @/mmas( | Jow(® - o)

teR™kok

—I—P( max max |Xq | > T).
ko<I<k 1<j<my ’

Denote by @) and vy the characteristic functions of the vectors Xy,
and (X(x), - -, X(x))) respectively. Since Vi), ..., V(i) are independent of
X(ko)a ces 7X(k) and Yv(ko), oo ,Yv(k), we have

(5.4) S (k) (t) — o) () dt
teRmko,k
= | Iem ke tk) — 0y (g - o) P g - dty
tleRka tkERmk
<h= | b Wk tk) = Va1 (ks - - tre1) o) (B

t1 ERka tr ER™E
dty, ... dty.
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To bound the right-hand side of (5.4), note that my, , = (21%*0l ... 1 28]
< 2[BK+1 and, by construction, the length of the gap between the vectors
Xk—1) and X(p) is kgap = 2[EFI+IPk] . Note also that |I ;| < 2F718% and
leo] < 1. Recall that the characteristic functions of the r.v.’s V{; ;) have
support [—eg, €] and the sequence (V(;;))kjjex is independent of
(X(k,5)) (k,j)ex; this readily implies that the integrals above are in fact over
[—€0, €0) ™ 0-*. Using Condition C1 with M; = my, -1 and My = my, one
may thus write

(5.5) I < XMo(1 +l<l~crn?§m |Il7j|)/\2(M1+M2)eXP(—)\lkgap)ggnkOYk

< )\0(1 + 2k5 [ﬁk]))\22 [BF]+1 p(_Alkgap)
< X eXp(_>q2[ek]+[5k] + )\22[616]-’-1 111(1 + 2k—[ﬂk}))
A
S C€,6,>\1,)\2)\0 exp (-21 . 2[5k}+[ﬁk}> .
Putting together (5.3)—(5.5)), we get

(5.6) 7T(£Z(k>’£2<k)) Ce, a0 A0 (/) o, w2 exp( ); ' Q[Ek]ﬂﬁk})

+ > Y P(Xgyl > D).

ko<I<k 1<j<my
Since [[( ;)| < 2! by Markov’s inequality and Condition C2,
P(|Xq ) >T) < T7'E[Xq ;) < T7'2' max B[ X;| < psT 12",
(2

Choosing T' = exp(2¥¥)/2), one gets

(5.7) S P( Xyl >T) <uT DY m2!

ko<I<k 1<j<my ko<I<k

< pus exp(—2EF1/2) Z 28l < CBHs exp(—21H1/2/2).
ko<I<k

Since My, < 26k one gets
(5.8) (T /7)o k/2 < exp(é . 2[5k1/2+ﬂk).
From (5.6)—(5.8]), we deduce
A1
F(LzLz,) < Ceprrno eXp< Q[ek}/zﬂﬁk]) exp (_2 . 2[5k1+[5k]>
+ cpps exp(—20K172 /2)

A
< (14 Ao+ H6)Ce 8,000, €XP (—41 : 2€k/2> :
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Using (5.2) leads to

n A
W(ﬁZ(n),E(R(%)_“’R(n))) < (14 X+ u5)65757)\17)\2 Z exp <—4 . 2[%]/2)
k=ko

AL Hlek]o/2
< (1 4+ Ao+ 16)Ce gay o exp<—4 - oleklo/2)

This concludes the proof of Part (a).

PART (b). We show that there exists a constant c. g x, x, such that, for
any kg = 1,2,... and n > ko,

(5:9) T(LRGg Ry L) HVing) o Y H Vi)
A
< Ce g e (14 Ao+ 1s) exp<—81 . Q[Ek}o/2> _

By Lemma since Ryy), - -, Ry and Yigoy + Viggys - - -, Yiny + Vi) are
independent r.v.’s, one may write

n

(5:20)  (LE(g) By LX)+ Vo) Yy HVimy ) = Z (LR L0y +Vir)
k=ko

and it suffices to prove that, for any k =1,2,...,
A
(5.11)  T(LRgys Lypy+Viy) < (L+ Xo + 5)cz g o, 2, €XP <_8 2[5’“]/2> .

For this, recall that, according to the construction in Section [4] at res-
olutlon level 0, a gap of length 2llekl+[8k] /2 in the mlddle of the block
R( B = = R splits it into two vectors R(k) and R?k) let R( A and R(() " be

independent versions of R(k) and R(k) respectively. Next, at level 1, for any
j € {1,2}, a gap of length 2(e*Akl /4 in the middle of the block R(k) splits
it into two vectors R(’)J L and Rz 2)J let Rz 2)’ L and Ré 7 be their indepen-

dent versions. Assuming that at level I € {1,...,[8k]} the independent r.v.’s
R(k je{l,...,2", are already constructed, we shall perform the construc-
tion at resolution level [ + 1. Note that, at level [, for any je{l,...,21},
a gap of length 2[(e+Ak /9141 in the middle of the block R(’J) splits it into two
vectors RI(JF)1 271 and Rl(']g)l 2], it is enough to let Rl(z)l 21 and Réz)l 2 pe
their independent versions. It is easy to see that at the final level [}, = [Bk]

we have Rl(’“’)] 2y, Yikj) + Vik,y) for j=1,. — 2[PK]

Let [ € {0,...,[Bk]}. For j € {1 2l} denote by Qj)l 271 and wl 27
the characterlstlc functions of R(k) d R( e Using Lemma and the
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independence of f?l(;)] ! and ﬁé;)] , we get

(5.12) TF(,CRl,j ’CRHl’Qj_l,RH'l’Qj)

(k)’ (k) (k)
. . . . 1/2
<(@@mEme§ ) = T O () deds)
(t,5)eR2 ™ 'mp
+ > P Xy + Vil > 1)
1<j<2tmy,

By Condition C1 with N = M = 27! and kyg,, = 2[K+0F =1 we obtain

(5.13) Vot s) — w7 et (s) | dt ds
(t,5)ER™K2 "
= | [ (8, 5) — A ) ()] dt ds

—1
(£,5)ER™%? " |[t]| oo <eo, ||5]loc <c0

< Agexp <)\2mk2_l ]n(l + Qk_[ﬁk]) _ )\12[5k}+[5k]—1—l> (250)mk2*l
A _
S )\OC,E/757)\17/\2 eXp<—41 . 2[61{;}+[/8k] l) .

We thus take T = exp(\;2[E#/2) so that
(T/W)Tlmk < exp(A127tmy, 2R 2) < exp (A 2lERI/2H BRI

In order to control the terms P(|X ;) + Vi ;)| > T), we use Markov’s
inequality, Condition C2 and the fact that |1}, ;| < 2k it readily follows that

P(1X k) + Vil > T) < T EX )| + ElVie))
<771 <2k max E|X;| + 02’“)
< (14 ps)e2” exp(—n 27 [EF/2),

Therefore

(5.14) Yo P Xy + Vil > T)
1<j<2-Im
<5< k < 27Uy (1 + pg)e2® eXp(—2[[€kH/2)

< (1 + pg) exp(—\; 21EF/2) 9= 1o2[Bk]+k

A
< (1 + Hé)caﬁ)\l,m exXp (_212[[616“/2) .
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From (5.12)-(5.19), we get

5.15 Lo L i— j
(5:15) R RGy I’REZ)I’QJ)

< (]' + >\0 + /‘65)6875,)\1)\2
% exp()\12_12[[ekﬂ/z+[ﬁk])exp <)‘21 . 2—12[sk]+[ﬂk]> +cexp<>\21 ) 2[[514]/2)}

A
< (14 Ao + 116)Ce,8,0,25 €XP (—41 : 2“‘%”/2)

Since Ré’kj), j=1,...,2! areindependent r.v.’s, by the triangle inequality
one gets

(5.16) T(LRyy s Lyuy+Viay) = W(ﬁR?,;‘;’EY(k)JrV(k))

IN

7T(£ 0,0, L 0,1 0,2)+7T(£ 0,1
Ry 7By iy Ry

7T([, 0,0, L 0,1 0,2)+7T(£ 0.1 50,2, L 1,1 1,4)
Ry " Ry B Ry By ™ Ry By

+ (L

R3S LY +Viwy)

IN

Rkl BV +Vi)

IA
=X
=

1,1 l,QIv‘C I4+1,1 z+1,21+1)-
P Ry By By oo By

By Lemma and ((5.15)),

(5~17) 77([' 11 1at, £ 14+1,1 1+1 2l+1)
By By B

2l
< Z W(ﬁ iy L1251 l+1,2j)
A CHEE ORI

A
< 65757,\17)\221(1 + Ao + 1s) exp <—41 . 2[5k1/2)_

From (5.16]) and ((5.17)), it follows that

(Bk]—1
A
W(ﬁR(k)aEY(k)—i—V(k)) < Z 25(1 + Mo + M5)087B,A17A2 exp<—4 . 2[519}/2)
=0

< Q[Bk](l + Ao + Mé)ce,ﬂ)\h)@ exp ();11 : 2[€k]/2>

Mok
< (L4 Ao+ f15)CL g 3y 2p OXD <_8 -2l WQ)-

Finally, using (5.11)) finishes the proof of Part (b). m
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6. Proof of Theorem The proof is divided into several steps.
We first construct the coupling with independent r.v.’s. (Section and
then with independent normal r.v.’s. (Section [6.2)). In Section we give

an explicit construction of the sequences (X;)1<i<ny and (W;)1<i<n and in
Sections we put together and optimize the bounds.

6.1. Coupling with independent r.v.’s. Assume Conditions C1 and
C2 hold. The proposition below shows that the partial sums Z(lﬂ-)j(k’j) X149
can be coupled with high probability with the partial sums (L) =(k.5) Y0

PROPOSITION 6.1. Let o« < 9, B > 1/2 and 0 < p < (1 —3)/2. Then,
for any N € N, on some extension of the initial probability space there is a
version (Xék,j)>(k,j)€/CN of (Xkj))(kj)ekcn and a version (Y(/k,j))(k,j)eiCN of
(Y(k,j))(k,j)eICN S’LLCh that

P<(2”)*1/2 sup ‘ > Xy - Y(/lﬂ?))‘ = (Qn)ip)
(kDERN" (1)< (k,5)
< Ol(zn)f1fa+(s+/))(2+2a),

where € € (0,1/2) is arbitrary and C1 = ¢z g  Mo,a,p(1 + Ao + )22 for
some positive constant Cz g x; As,a,p-

Proof. It is convenient to set ko = [en], Xiyn = (X(ko),...iX(n)),
Yign = (Y(ko)’ .. .,X(n)) and Vi n = (V(ko), ey V(n)); the variables Xy, ,, =
Xkon + Vign and Yy, = Yo + Vi are the smoothed versions of Xy, ,

and Yy, . By Proposition with kg = [en], there exists a constant
Ce 8,01\, Such that

Yko,n

A
(6.1) (ﬁp}ko Ly )<A= (14 Ao+ 15)Ce,800 0 exp<—41 : 252”/2)

Using Strassen—Dudley’s theorem (see Lemma , we conclude that on

some extension of the initial probability space there are random vectors
d

Skom = (S(ko),.. ,Sty) and Tyon = (T(hg)s ---» T(my) such that Sy, =
Xko ns Tko n — Yko n and
(6'2) (Hgkom - fl~co7n||oo 2 A) <A

We shall remove the smoothing from the vectors gko n and Tvko n. With-
out loss of generality we may assume that there is a random vector U with
uniform distribution on [0,1]™* " and independent of (Sko T T, n)- We
thus consider the transition kernels Gi(x|y) := P(Xgyn < | Xko,n = y)
and Ga(z|y) = P(Yyn < :c\?ko’n = y) and set X . = G (U|§k0, ),

ko,n
Vk/o,n = Skon — X/IQ0 "o Ykon =Gy (U\Tko n) and Vk” n = Tkon Y/

ko,m®
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/ ’al _
k’o n + Vk‘o n’ TkO,” -

Yk:(),n + Vk‘o,n and Xk‘o,n : Xk()v”’ Yk‘o,n : YkO:”’ Vk:o,n : k‘o n Vko n- The
coordinates of the vectors X,  and Y,  are denoted by X/, ., and Y/, .,
ko,n ko,m (k,5) (k.5)

The sequences X ko.n and Yk n are such that Sko n =X

(k,7) € K. Since g(k,j) = Xék’j) + V(’k,j) and f(k’j) = Y('k’j) + V(kj) we have,
for any = > 1,

R=P( s ST (Xf - Y(’M))‘ >2z) < By + Ry,
Fo sk, (LSRN (1) < (k)

where

Ry = sup Z Sy — Tv(z,i))‘ > 9€>,

<k;0<k, (k.J)ELN (L)) =(k.j)

— I .
Ry = P<k0<k7s(1k171])')€’CN’(M)jz(k’j)(v(l,z) i, z))‘ > a:)

First, we shall control R;. Note that card Ky < ¢2°". For any sequence
(a(kd))(k,j)e,c of positive numbers such that Z(k’j)e,c Q) <1,

{kogk sup ‘ Z (g(lvi) - T(l,i))‘ > :U}

P (BDERN ko<1, (1) = (k.5)

= {‘ Z (St — T(l,i))‘ > x}

ko<k, (k.j)eXN ko<, (1,))=(k.j)

< U U {|§(l,i) - T(z,z‘)| > o)}

= USws) = Tyl = wag s
ko<k, (k.j)eXN
which implies that
Ry < > Py — Tyl = may)-
ko<k, (k‘,j)G]CN
Let p =2+ 2a < 2 4+ 20. By Chebyshev’s inequality,
Ri<a™ Y gl ElSu) — Tl
ko<k, (k.j)eKN
By a truncation argument, with A from (6.1)) and ( .,

< g7PAP or
ko<k, (k.j)EXN

+a P Y agl Bl — T P10 — Tkl = A).
kOSkz (k,_])EICN
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Let n € (0,6 —a), p = p+ 2n and v = pi—gn < 7. Applying Holder’s
inequality one may write
15,3 = T 1S k) = Tiway| = A 1o
<1805 = Tkl o BUS(h ) — Ty | > )77,
By Condition C2, for some constant ¢ > 0, we get
1Stkg) = Tty | oo < 20X iy o + 20V jyll o < €1+ o) 1k 515
consequently, (6.2)) leads to
- —p
Risa A ), e
kOSkv (kvj)e’CN

Fetusle? Y ag? P (P(S ) — Tipl = 4))7
kOSka (kvj)EICN

—P AP -p

<z ’A Y. ol
ko<k, (k,j)EXN
+ (1 + ps)PaPAY Z a(*}fj)g(k—[ﬂk])p
ko<k, (k.j)eKn
A1 _ _
< Ce g ra(LHN0+pus)P Y eXP( Zlaoe n/2> P Z Z a(kz,)] 2k,
ko<k<nj<2 Bk]

Now, choosing a;, j) = 27kj=2 we obtain

Z ZaPQkp< Z ZQQkp2p<22an Z]

ko<k<n j<2l8k] ko<k<n j<alBk] ko<k<n j<alBk]
< 92np Z 2(2PH1)[BK] < 92npo(2p+1)[Bnl ), < gnca s
ko<k<n

which implies that
1
Ry < e panm(1+ Ao+ )" exp (47)‘1 ' 262n/2) S

Since v = 2—"277 <n <pnand x > 1, we conclude that

P+
’ 1 n\e2/2
(6.3) Ry < A'exp —ZW\l(Q )

for some A’ = Cle,ﬂ,)\l,)\g, (14 Xo + M(S)p(H")-

/
@,



22 I. GRAMA ET AL.

Now, we shall control Rs. Using Doob’s inequality, for any A > 2,

(6.4) Ry < QIP’( sup ‘ Z V(’“) > :n)
Rosk, (BJERN ko<1, (1) (k)

<uw( Y W)

ko<, (I,i)eELN

By Rosenthal’s inequality

65 B X ) el X EWLP)

ko<l, (Li)eK N ko<l, (1i)eK N
PN 1/
+ C,\( Z E(H/(lz)’ ))
ko<, (Li)eX N
< Cl)\(2ﬂn)1/2.

1/2

From (6.3)—(6.5) we obtain
P sup ’ (X{,, —Y’”))Z2x
<k50<k7 (kvj)eKN (l,i);k‘,j) ( ’ ) ( ’ ) )
1
S AI eXp<—4’y)\1(2n)€2/2> + C/\(QBH)A/Qxf)\.

Choosing = = 3(2")1/27, we find

©6) B(E)2  sup > Ky~ Vi) = @07)
ko<k, (kJ)EKXN" 1 )< (k)

S A/exp<_i,y)\l(2n)€2/2) +C>\(2n)—%>\(1—6—2p)'

So far we performed the construction for £ > kg. It remains to construct
the sequences Xék i and Y(’k 7 for (k,7) = (ko — 1,mg,—1). This construc-
tion can be performed by any method such that the sequences (X fk j)) and

. . d
(Y(’k’j)), where (k,j) < (ko — 1,my,—1), are independent and Y(,k’,j) = X5
for the same (k,j). Indeed, let Fx|y, .y, (®|y1,...,yx) be the conditional
distribution of X given [Y1 = y1,..., Y} = yi] and let (U} ;)) be a sequence
of independent r.v.’s uniformly distributed on (0, 1). Denote for brevity the
constructed part by Xj == (Xék,j))koék, (k,j)ekcy - Define Xéko—l,l) as the
conditional quantile transform

/ _ -1 /
Kwo-1,1) = Fxy -y %y Utko-1.0)|Xiko )

where Xy, = (X(k,j))ko<k, (k,j)ekcn- We continue setting

/ _ -1 / / /
Xiko—14) = FX(,W.)\X%(U(k0—1,j—1)|X(k0_1,1)a o X k1.1 Xko)
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for j = 2,...,my,—1. In the same way we extend the construction to all
Xék ;) with 1 < k < ko — 1. The construction of the sequence (Y(k )) for
(k,j) < (ko — 1,mp,—1) is similar.

Since the sequence (Xj)x>1 satisfies Condition C1, so does (X7, (, )) Us-
ing the maximal inequality stated in Proposition [8.1] below and notmg that
the cardinality of the set {(k,j) : (k,j) < (ko — 1,mp,—1)} is less than or

equal to 270 < 25" we obtain, for any 7’ € (0, (2;5;7?‘5)2)7

E X/.p <A//25nlp
((k]) (kiull)mko 1)‘(1 z)z(:k,j) (l,z)’ ) = ( )2

(1 + Ao + ps)?1+7) . By Chebyshev’s

Zx)

<z PE sup Z Xélz)
(k,7)=(ko— 1mpgy— 1) (1,1)=(k,)

for come constant A” = ¢! BALA
1,12,
inequality, for any x > 0 we get

P<(k,j) (Sup ‘ Z X“

2(ko—1,mpy—1) (1,8)=(k,5)

d,04,m

A// —p (28’!1)

Substituting = = (2")/277 yields

p((2n)1/2 sup X,
( (k,5) =2 (ko—1,mp—1) (l,i)<z(k,j) o

> (2)7) < AV(n)TERIe),

A similar inequality can be proved with Y(’l 0 instead of X El 0 Combining
this with , we obtain

(6.7) IP’((2”)*1/2 sup ’ Z (Xfl,z)_Y(/l:i))‘ZQ(Qn)ip)
(BDELN" 1.5 (k,5)

< A" <exp <—411’y)\1(2")52/2> + (2”)_%>‘(1—5—20) + (2“)—§+p(p+§€)>

for some A" = 5y ) 55021+ Ao+ ps)PA+1+7) | Recall that p = 2+ 2a,
a<d,f>1/2and p < (1—p)/2. Taking A = 13‘52_05[) > p, the right-hand
side of (6.7) does not exceed A”(2")~1-a+(2+20)(p+e) It remains to choose
a sufficiently small n + 7" such that p(1 4+ n + ') <2+ 24, which implies

A" < Ci/-?,jﬁ,)\ly/\zya,l)ﬂ + Ao + M5)2+26'

The assertion of Proposition 6.1 follows. =

6.2. Coupling with independent normal r.v.’s. Assume Conditions
C1-C3 hold. Without loss of generality we can consider that u; =0, ¢ > 1,
and ¢ = 1. The following proposition shows that with high probability the
partial sums Z(Li)j(k,j) X(1,4) can be coupled with the partial sums of some
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normal r.v.’s. Note the presence of two terms in the upper bound below.
One of them, called the dependence error, comes from replacing dependent
blocks by independent ones; the second one, called Sakhanenko’s error, is

due to the use of Sakhanenko’s strong approximation result for independent
blocks.

PROPOSITION 6.2. Let a« < 9, B > 1/2 and 0 < p < (1 —3)/2. Then
for any N € N, on some extension of the initial probability space there
exists a sequence of independent standard normal r.v.’s (W(/k,j))(k,j)EICN and

a version (Xék,j))(k,j)elCN of the sequence (X (1 j))(k,j)cky Such that

©68) P() s | 30 (X - W] = 2020 7)
(RN (16) 2 (k)
< Cy(2M) Lot G0 EH29)  (dependence error)
+ Cy(2m)~Pate(2+20) (Sakhanenko’s error)

where UlQ,i = Var(X(M)) and Ca = ¢z 83 ro,a,p(1 4+ Ao + M6)2+25-

Proof. Let p = 2 + 2a. Since |l j| < 2571M, using Proposition [8.2| we
obtain
E|X ([P < AL, P2 < A(2K-BHp/2)

where A = ¢y, ay600(1+ Ao + 115?04 and > 0 is arbitrary. Taking into
account that my, = 2195 < 28k we have

n my n
(6.9) > ElXppl =D Y ElXuyl" <Y mpA@R )2
(k,g)ECN k=1 j=1 k=1
n
< A2P/2 Z ok(B+5(1-5)) < CQ,BA(Q”)%'%(I_B).
k=1

By (9.2) in the Appendix, on some probability space (2", F" ,P"), there
exist a version (Y(’,:: j))(k,j)GICN of (Y(kj))(k,j)eky and independent standard
normal r.v.’s (W(’k j))(k,j)eICN such that

C
IPW( sup ‘ Z (Y(/l,,i) _ Ul,iW(/m))‘ > a) < a—i Z E]X(k’jﬂp.
(RDERN (1,0)2 (k) (k) EXY

Choosing a = (207)1/2=F and taking into account we obtain
]P)l/((2n)—1/2 ksup . ‘ Z (}/(/l,ﬂ) — O’l,ZW(/l/L))‘ Z (277‘)_,0)
(I ERN (1,6) = (k)
< Cp(Qn)—p/Z-&-ppCa BA(Qn)B-i—%(l—,B) < C,a ﬂA(Qn)—Ba—i-p@—l—?a)‘
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By Berkes—Philipp’s lemma [I], Lemma 2.1] we can reconstruct the sequences
(X(/k,j))(kd)G’CN’ (Y(Ik,j))(k,j)elCNa (Y(/Ig,j))(k,j)elcN and (W(/k,j))(k,j)GICN on some
new probability space in such a way that Y(’k 5= Y(’l; ;) a-s. forany (k,j)inKn.
Without loss of generality we shall consider this new probability space as an
extension of the initial one. Using Proposition [6.1] we obtain

IE”(Q*”/2 sup Z (X{
(RN 1,02 (k)
< Oy ()t (et (2420) (dependence error)
+ CS7BA(2")_BO‘+”(2+2C“) (Sakhanenko’s error)

with Cy defined by Proposition [6.1} Taking into account that p = 2 + 2a,
a < ¢ and choosing n sufficiently small we get p(1 + n) < 2 + 24, which
implies ¢, ;A < ¢, L+ X+ ps)* .

)= W) 2 22") )

L

/\2,01777(

6.3. Construction of (X;)i<i<ny and (W;)i<;<n. As before, we sup-
pose that y; = 0,7 > 1 and 0% = 1. Let (X)) ey and (Wi o) g gyexy
be as in Proposition [6.2

First we shall construct (W;)i<i<n. Note that, by Condition C3, the
variances 0,%71- = Var(X(y ;)) can be approximated by o?|I, ;| = |I1;|, but in
general do not coincide with |, ;|. Therefore to perform our construction we
have to replace each of the non-identically-distributed normal random vari-
ables a,%’ jW(/k’j) by some sums of independent identically distributed stan-
dard normal random variables. Let (W;)1<;<n be a sequence of independent
standard normal r.v.’s; let £ ; be an extra standard normal random variable.

Set I, ; = {i1,... ,i‘lk’j‘} with 43 < --+ <47, | and let 7} ; be the mgximal
index j € {i1,...,4|, |} for which the variance of the partial sum >7_; W;

does not exceed Ul%,j’ Le. if i = imy , where mj ; = min{|l ;/, [az’j]}.

=11

It is easy to check that W(/;aj) = Y5 Wi + & fr; where fl?,j =
o2 j —1iy j| is a normal random variable with mean 0 and variance o ;3 more-

over, we may consider VV(’;€ ;) as anew version of oy ; W(’ .j)- The random vari-
I, 9.

able > ey (Wi — W(’,;J)), which is equal to Zi27j+1§k§‘fk,j|(wk — &k i frg),
also has a normal random variable of mean 0 and variance (|Ix;| — i ;)
+ fl?,j = ’o'z’j - |Ik7j|’. By Berkes—Philipp’s lemma, without loss of general-
ity, we can reconstruct the sequences (Xék,j))(k,j)EKN7 (O-kij(/k,j))(k,j)eKN’
(W(’;,j))(k,j)eicN and (W(lff,j))(k,j)eicN on the same probability space in such
way that a.s. (Uk,jW(/k,j))(k,j)eICN = (W&,j))(k,j)elclv- We shall assume that
this probability space is an extension of the initial on. Thus we have con-
structed the W;’s when ¢ belongs to the union of all islands, I = U(k,j)elCN Ii. ;,
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with the property that the ng; = > .. I, Wi — ak,jW(’k y are independent

normal and centered random variables with variances v} j ‘ak = Mk H
T|Ik;|” for any v > 0. Therefore the sum - ;)< (, ) M is normal with

mean 0 and variance Z(lﬂ <(n,m)
with p = 2 4+ 2q, it follows tTlat

(610) P(@07 sw | > my

(k.J)ELN (1,9)<(k.5)
< (Qn)fp/%ppE(‘ Z M i p)
(1,i)<(n,m)

(2n)P/2Hop (2B P2

U;%J- < epT 2(5+7) ; by Doob’s inequality,

> (2)77)

IN

CQMB

= CaﬁTHa(2”)_(1_5)(1+a)+(p+v/2)(2+2a)

where v > 0 is arbitrary. When i belongs to the union of the gaps, J =
U(k, Jekn Jk,j, the variables W; can be taken as any independent standard
normal random variables independent of the sequence (Wy)ker-

So far we have constructed the variables (Xék,j))(k,j)elCN correspond-
ing to sums over the islands. Now we proceed to construct the compo-
nents of the sequence (X;)i<i<n. First, we proceed with the components
belonging to all islands. For each (k,j) € Ky, we construct a sequence
(Xi)ie[kyj such that Zielk,j X; = Xék,j) and (X;)i=1,. N 4 (Xi)i=1,..~N- De-
note by Fx|v;,.v,(%|y1,...,yx) the conditional distribution of X given
Y1 =9y1,...,Yr = yr]. Without loss of generality, on the initial probability
space, there exists a sequence Uy,...,Uy of independent r.v.’s uniformly
distributed on (0,1). Let 41, . .. +41,,;| be the indices in the set I ;. The re-

quired construction is performed in the standard way by defining first )Zil
as the conditional quantile transform

-1 /
Fxixp WUhin [ X1 5)
and then by setting, for [ = 2,..., |l |,

1 v v !
Xiv = Feh iy X Ui Ko Ky Xy )

Thus we have constructed the vector X; = ()?i)ie[, where I = U(k,j)EICN I

k,j

is the union of all islands, such that )?1 4 X7 = (Xi)ier. In the same

way we construct the X when i belongs to the union of the gaps, J =
1

U( Sekn Tk = {1 g set Xy, = FX |X,(U’wl \X] ) and subse-

quently

X, =F;t

KXy, o Uil X, X

11 X1 Ji—17

X;) forl=2,...,]J]

1o
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6.4. Putting together the bounds. Denote by ry ; the right end of
the island Iy, ; and let Ly = {1} U {ry; : (k,j) € Ky} be the set of ry ;’s
equipped with the lexicographical order <. For any r = ri,; € Ly let 7"t
be the next element in the set Ly, i.e. 7% =inf{r' : v’ € Ly, r < 7'},

Let ()zi)lgigN and (W;)i<i<y be the sequences constructed in Sec-
tion Recall that by construction, for any r = r;; € Ly, we have
{1, = 20 =(g) J1.g Y k,;- First we replace, in the statement of The-
orem the sup over the set {j : 1 < j < N} by the sup over the grid
Ly and the sup of the oscillation term: in other words, the random variable
SUP) << N | Zigj (X; — W,)| is bounded by

(6.11)  sup ’Z:(XZ — W;)| + sup sup ’ Z (X; —Wi)l.
reln ', reLy r<r'<min{rret—1,N} ' =,
(sup over the grid L) (oscillation term)

For any r = 1y, j, we have

(6.12) S X= Y (Z X+ Y X’)

1<i<r (L,h)=(k,j) i€lp =
= (X + X1,m));
(L.h)=(k.j)
where X ) =2 e, X; and Xan = dicdn X;. In the same way
(6.13) Swi= Y (X w > w)
1<i<r (Lh)2(k,g) €lin 1€Jdn

= Z (W(l,h)+W(l,h))
(I,h)=(k,5)

where W, 1,y = Zieh,h W; and W(l,h) = Zz’eJl,h W;. From l’{) we

obtain
6.14 su )}Z — Wl
(6.14) S ;( )
< sup ’ Z (Xan — W(l,h))’ (sup over islands)
(RSN (1) <(k)
+ sup ‘ > Xaw - W(l,h))‘ (sup over gaps)
(BN (1,0) < (h,5)
+ sup sup ‘ Z (X; —W;i)| (oscillation term)

rely r<r’<min{rnext—1,N} 1<i<r!
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where the term “sup over islands” is bounded by the sum

(6.15) sup ‘ Z (l(l,h)_al,hw(/l,h))‘ (normal approximation)
(RN (1)< (k)

+ sup ‘ Z (Ul,hW(/z,h)_E(l,h))’ (variance homogenization).

The term “normal approximation” has already been controlled in Proposi-
tion where it is bounded by two terms, “dependence error” and “Sakha-
nenko’s error”. The “variance homogenization” term is controlled by .
As to “sup over gaps” and “oscillation term”, they will be considered in

(6.17) and (6.18]) below.

6.5. Bound for the partial sums over gaps. Let p = 2 4 2, where
«a < 9. Since the blocks are indexed by [ = kg, ...,n and the total length of
the gaps in block [ is less than (2 + [51])2l#0+E1=1 the total length L& of
all gaps satisfies

L8P = Z [Tl < Z (2 4 [B1)) 2P0+ =1 < ¢ po(Belk,

(1,3)=(n,m) ko<I<n

By Proposition we have, for any n > 0,

w | Y X
Lp

(kDZ00m) 1)< (k.)
< C)\1,>\2704,5777(1 + Ao + Ma)l-{—n(Lgap)l/Q
1+17(2(B+€)n)1/2.

< Ce g aans (1 + Ao + f1s)

Using Chebyshev’s inequality with z = (27)Y/27°, we get

> z)

(6.16) ((sup ’ Z X

k‘])E’CN ])

) _ p
S —E sup X(lvi)

P <(k,j)<(n m) ‘ (l,i)gz(k,j) )
< A(2") /2+pp(2(ﬂ+€)n)19/2
< A(2)(mPmIw/er,

where A = ¢. g ho a6 (1 + Ao + u(;)p(“r”). A similar bound can be estab-
lished with W ;) instead of X (;;. From this bound and |) it follows
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that, for any 0 < p < 1/4,
(617) P(2)7V2 sup |3 (Rap - Wag)| = 2977)
(RN (10)< (k)
< A'(2m)~(=A=e)p/2+pp
SA/(Qn)—(1—6)(1+o¢)+(p+8/2)(2+2o¢)
where A" = ¢ 5, 1, 45(1+ X0+ pis) 2.
6.6. Bound for the oscillation term. Denote r* = min{r"**—1 N}

for brevity. First note that

rt—r < max (il + [ Jkyl) < g2 42070,

Let p = 2 + 2a where a < §. By Proposition for any n > 0,

< A( sup (rt — r))p/2

reln

sup sup ‘ Z )N(Z
rely r<I<r+ r<i<l Lp
< 0575A(2(B+5)” + 2(1—5)71)17/2’

where A = ¢\ xp,0,6,(14+ Ao + 115)P(+M) | Therefore, by Chebyshev’s inequal-
ity, with = = (2")1/27* and p > 0,

> 2)

< x_pE< sup sup Z X,

+
rely r<I<r r<i<l

< 0275A2p+npp((Qn)—(1+a)(1—ﬁ—6) + (2”)_(1""0‘)5)'

P( sup sup Z X;

relLy r<I<r+ r<i<l

)p < CEVﬁA:E_p(Q(B"_E)n + 2(1=F)myp/2

Choosing 7 small enough we have p(1 4 1) < 2+ 2§ and therefore
C‘f’ﬂ2pA < A= céﬁ:)q,)\%a,é(l + Ao+ M5)2+26'
Since a similar bound can be established with W; instead of X;, we obtain

the following bound for the oscillation term:

(Xi — W)
r<i<l
< 2A’(2”)(2+2a)(P+5/2)((2”)*(1+0‘)(1*5) + (2")*(1+a)5)'

(6.18) ]P’((2")*1/2 sup  sup

rely r<I<rt

> 2(2"))

6.7. Optimizing the bounds. Let a« < §, § > 1/2 and 0 < p <
(1 —p)/2. Using (/6.14]), we may decompose the quantity
J
]P’( 212 sup ‘ X, — W,
(2") S ;( i— Wi)

> 6(2”)*9)



30 I. GRAMA ET AL.

into three terms, the first one “sup over islands” being itself decomposed in
two terms (see (6.15))); consequently, this quantity is decomposed into four
terms listed below:

e the first term “normal approximation” is controlled with Proposition
it is bounded by two terms named “dependence error” and “Sakha-
nenko’s error”,

e the second term “variance homogenization” is controlled in with
v =g,

e the term “sup over gaps” is controlled in ,

e the term “oscillation term” is controlled in (6.18]).

Putting these bounds together, we obtain

J

ny—1/2 ny—
P((Z )Y S ’ 20@- —W;)| > 6(2") ”)
< A(2n) () +(p+e)(2420) (dependence error)
+ A(2n)Pate(2t2a) (Sakhanenko’s error)
+ A(2M)~(1=A(Fe)+(pte/2)(2+2q) (variance homogenization error)
+ A(2™)~ (=B (Fa)+(p+e/2)(2420) (gaps error)
+ A((2m)~U=AFa) o (gn)=B+a)ygn)(p+e/2)(2420)  (ogcillation error)

where A = ¢ ga aga(1+ 77+ (14 Ao + p5)3T22).

For the moment let us ignore the factors containing €, which have a small
contribution to the bound. The term “dependence error” is negligible with
respect to all other terms; equating the powers of the term “Sakhanenko’s
error” and the term “gaps error” (or equivalently “variance homogenization
error”) we get fa = (1 — B)(1 + ) ie. = 11:'20;. Implementing 8 = 11;"2‘2
in the above inequality yields

P((2")? su (X; — Wi)| > 6(2"
<( ) 1<l<pN)Z ) @ )
< A(2M) 10 (pHe)(2420) (dependence error)

a(l+a)
+6A(2") Trza 429 (gakhanenko’s error
+ variance homogenization error

+ gaps error + oscillation error).

Taking into account that o < ¢ and 2" < N < 2"*! we obtain

~1/2
(6.19) IP’(N IE?SN‘ZX W;)

> 6N~ P) < A NS+ (pre)(2420)
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where A’ = c. ), ap.a6(1+ Ao + s +/7)2T20 and p satisfies 0 < p < % =

__«
2(14-2a) "

Note that the function g(«a) = O‘ffgg) — p(2 4 2a) is strictly increasing
on R* when p < 1/4. Therefore we can get rid of the constant ¢ in the
bound by choosing o < «. If we let A = g(a) — g(a¢’) > 0 and choose
e sufficiently small, we obtain (27)-9(@)+e(2+20) — (gn)—gla’)-Ate(2+20) <
(2“)*9(0‘/). Since a and o/ are arbitrary satisfying o < a < 4, the assertion
of Theorem follows with o’ replacing a.

We have performed the construction of the sequences XN) = (X Ji<i<N
and W) = (W),<;<n for each fixed N > 1, where for each N the con-
structed sequences are in general different. Below we show how to obtain a
construction of the entire sequences (X);>1 and (W);>1.

Let V) = RN+ x RN+L Without loss of generality, for any w =
(wi,wa) € W) the sequences XN and W®) can be reconstructed on
QW) g0 that )NQ = w1, Wi = wo; and their joint distribution, say IP’(N), is
preserved. Each measure P(Y) can be extended (arbitrarily) onto the space
R* x R*°. From the bound it follows that the sequence of measures
P(V) is tight. Therefore there is a weak limit which satisfies and thus
provides the desired construction.

7. Proof of the results of Section [3|. Throughout this section we as-
sume that the Markov chain (X,,),>0 and the function f satisfy Hypotheses
M1-M4.

7.1. Proof of Proposition First, we establish the following bound
for the characteristic functions ¢, 1, ¢, 2 and ¢, involved in Proposition

LEMMA 7.1. For any kgap, My, My € N, any sequence jo < -+ < Jy,+M,
and any t = (t;); € RM1, s = (s;); € RM2 satisfying ||(t, 5)]|eo < €0,

[02(t, 8) = du1 (1)022(5)] < 200" (vl + 1162 ]15) [ 1l| "<

Set for brevity ¢1 = ¢z1, ¢2 = ¢g2 and ¢ = ¢,. The characteristic
function ¢ can be rewritten in the following form:

¢<t S) _ (PjOPLJll P|J1\/11|PkgapP\JM1+1\ P|JMl+MQ|e>(x)
, L - .. .

b SMq+1 - sy 40y
Since P = IT + Q we get P¥ = IT + QF, and thus
(71) ¢(t7 S) = ¢H(t7 5) + ¢Q(ta S)
with
79 — pjopldl Iay | kegap ol Iy 411 [J 0ty 4 Mo |
(7.2) or(t,s) = (P Py ...PtM1 II7sr P ...P e)(z),

SMy+1 s LSMy My
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(7.3) ot s) = (POP Pyl grsepl il plininlo) gy

tary
. . ke |Targ +1] [Inrg+0pl [ Ity +1] [Jnry + Mo |
First, since TPy 1. Py, V% e = v(Ps, V. Py 0 e)e, we
. . [Jary 41l | Tnay + M5 |
may write, setting ¥o(s) 1= v(Psy Ly -+ Poy > €),

b1r(t5) = va(s)(PPPLL P e) () = ha(s)on ().

. ; J, J .
Notice that ¢o(s) = (Pkeartitn PLAI}?:II' . .PLA]XE:’NZQ‘e)(a:); using the equal-
. . J J .
ity vP = v, one gets ia(s) = v(PFertizg P‘Shﬁlﬂl‘...PLJ?ij'e), which

allows us to control the difference between 12 and ¢o, namely

Ua(s) = 6a(s) = (v — o) (PRt PP le)

SMy+1 SMq+Mq
= (v — ) (ITPL Pl
(v — b, (@QUrpin Pl piieel)
= (=) (ewPory L POl
- 5I)(ngappjhﬁPL{\fX1—$1| N .P‘s{xﬁf‘e)

with (v — d;)(e) = 0; consequently,

; J J
[a(s) = da(s)| = |(v = 8:) (QUer i P Ll
1+ Mz _kga
< COp ke (|[v]|p + (|02 5) e 5.
On the other hand, one easily gets
(7.4) |60 (t,5)] < CoCp 2Rk |e| 5|6, 5

Writing ¢(t, s) = ¢1(t)d2(s) + ¢1(t) (¥2(s) — ¢p2(s)) + é¢(t, s) and using the
previous inequalities, one finally gets
[6(t, 5) = o1(1)a(s)| < 20CE 2 (|[vlls + [10z]|5 )" lel|5. m

To prove Proposition set kg = max{1,log, Cp} so that Cp < 2ko,
Since maxX;,—1... a4+, card(Jp,) > 1, one gets

-----

ko(My+M2)
CyﬁM? < oko(M1+Mz) < (1 + 1m%/>[< u card(Jm)) e .
m=1,..., M1+ M2

Now, Proposition follows from Lemma
7.2. Proof of Proposition We need two auxiliary lemmas.
LEMMA 7.2. Foranyl,k=0,1,...,
(7.5) |Cov, (f(X0), f(Xi1))| < A(w)s™74,
for any positive constant v satisfying 0 < v < min{1, 20}, where
A(x) = es(1+ CoCo([Vll5 + 10215 llells + g ().
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Proof. We give a proof involving Lemma Let V and V' be two
independent identically distributed r.v.’s of mean 0, independent of X; and
Xi+m and whose common characteristic function is supported in the interval
[—€0, €0] for some g9 > 0. Set Y = f(X;) +V and Y/, = f(Xjqx) + V.

Let 51 (resp. 52, g(t,u)) be the characteristic function of ¥; (vesp. Y/,

(Y5, Y/\1). Set gr(z) = #l(zj<r) and hr(z,y) = gr(z)gr(y) for z,y € R.

Let gr (resp. hr) be the Fourier transform of the function gy (resp. hr)
defined by

gr(t) =" gr(z) da,
he(t,u) = Dy (2, y) de dy = Gr(8)gr(u).

For any T'> 0 and [ > 1, k > 0, one gets

(7.6) Eo f (X)) f(Xi4x) = B V1Y, = Eohr (Y1, Y, }) + Ro
with
(7.7) | Rol < Eo|ViY/ 41 wiy>m) + Eal ViV ikl vy, 157)-

By the inverse Fourier transform, one may write

E.f(X0)f (Xik) = (2;)25 [ Bor(t, w) 3(t, ) dt s + R,

Analogously

(78)  Eef(Xi) = BoYi = Eagr(¥) + Ri = o | r(0) da(1) dt + Ry

and
Eof (Xis) = By = Eagr(¥p) + Fo = 5| §r0) a(u) du + Ro,
where
(7.9) Ry :=E.Y1ly>7) and Rp:= Exyll-i-kl(\Yl’Jrkay
This gives

(7.10)  Covp, (f(X1), f(Xigr)) = Eo f(X0) f(Xigx) — Bo f (X)) Ee f (Xi4k)

1 N -~ ~ ~
= gz B (6 0) (@) = Gu()a(w) it du + B,
where
(7.11) R = Ry + RiE.gr (Y )) + RoEygr (Y1) + RiRa.
Note that

1 Bt )@t w) = d1(8)d2(w) dt du| < x| 216 — G112
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Since V, V' are independent of X;, X, we have
+
g(t, u) = o(t, u)EmeitvEIeiuvl
and B ' B '
P1(t) = d1(H)Ege™,  do(u) = ¢o(u)Ege™",

where

QS(t, u) = Exeitf(Xl)+iuf(Xl+k) — (Pl—lPth—IPue) (x)7

P1(t) = Epe™ X0 = (PI71Pe) (2),

pa(u) == Ezei“f(XHk) = (PlilPte)(x).

Since the support of the characteristic functions of V' and V” is the interval
[—¢0, €0] the function ¢ — ¢1¢o vanishes outside the square [—¢q, £9]?. Then,
by Lemma [7.1]

(7.12) 16— G10allz2 <2e0  sup [t u) — Gi(t)da(u)]

[t|<eo, |ul<eo
< 4eCCBr" (v lls + [162ll5) e 5-
Using the inequality
~ 2 4
(718)  hrlg = §{#3(ey) dedy = (§o7(e) da) < 5T°,

one obtains

(7.14)  |Cove, (f(X1), f(Xiyx))|

2
< ST CCRR* (Wil + 13: ) el + |R.

Now we shall give a bound for |R|. By Hoélder’s inequality, with g5 =
1>,
1 1 1
E\ Vil Y/ il gwisty < BalYiT20) 555 (By Y], |*F2) 55 Py (|Yi] > T) % .
Using Hypothesis M4, we have

_1
(B [Vi[*+2) 7555 < (Bal £(X0) [ 20)55 + (Bl V)™ < ¢5A0(a),

with Ag(z) = ps(z) + 1. Similarly (Em\)ﬁﬁrk\2+26)ﬁ < ¢sAp(z). On the
other hand, for any v € (0, 2J], one gets

1 Ccs
P.(1Y| >T) < T’Y%EHYIW% < Wqu5($)~
Putting together these bounds gives
(7.15) Ea| Vil Y/ 1gwiis1) < 6T VA5 ().

In the same way we obtain, for any v € (0, 20],
(7.16) Eo|Vi| [V 1Y 4] > T) < esT 7 A7 ().



WEAK INVARIANCE PRINCIPLE 35

From (7.7), (7.15)), , it follows that
(7.17) |Ro| < es TV AT ().
From (7.16)), taking & = 0 we get, for any v € (0, 2],
(7.18)  max{Ry, R} < slgg(ExYﬁl(\Y}\ > TNV < ;T2 AN ().
Since )
Exgr(Yi)| < (Bu(|Yi*2)) 5% < c540(2)

and

[Begr (Yl < csAo(x),
from (7.17)), (7.18)) it follows that
(7.19) |R| < es 245 ()

for any v € (0,20], where we assume without loss of generality that Ay(x)
> 1. The inequalities (7.14) and (7.19) yield, for any v € (0, 24],

2
|Cove, (f(X0), f(Xi4k))| < @T?’soCQC%H’“(IIvIIB/ + [162][5)lells
+esT2AZ (1),

Choosing T = x~*/* and taking into account Ag+7(:v) <ecs(1+ ,u?w(:c)), it
follows that

|Cove, (f(X0), f(Xisr))| < Alw)csr® ™71,
which finishes the proof of Lemma .
LEMMA 7.3. Let 0 < v <min{1,26}. Then:

(a) There exists a real number p not depending on x such that, for any
k>1,
B f(Xi) — il < csA(x)s™/4

where A1(z) = 1+ ps(x)'™ + ||6,]|5 ||e]| sCpCq. Moreover
Z By f(Xk) — pl < H(z) = ¢y p,641(2).
k=0

(b) There exists a sequence of (possibly complex) numbers (s;)g>0 not
depending on x such that

(7.20) |Cove, (f(X1), f(Xit#)) = skl < csAa()s/*7
where
Ag(x) = 14 ps(x)*™7
+ 1621l llells (CaCo(llvl llells + Cq) + CpCq(1 + [Iv]5 Cp)).
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Moreover, for k >0,
5| < Ag(m)rF1/41
and
oo
[s0| +2  Isk| < ¢y 542().
k=1

Proof. To avoid repetitions we first prove (b).~We keep the notations
from the proof of Lemma Denote ¢g(t,u) = ¢(t,u) — ¢1(t)p2(u). By
(7.10), for any I =0,1,...,

1 ~— ~
— W\ hr(tu) do(t, w) dt du + R,

Covp, (f(X1), f(Xiyk)) = @)

with R defined by (7.11)). Since V, V' are independent of X, X;,

(7.21) g(t, u) = (Exeio Z;_:ll X+t Xp 410 2211;111 Xj+iuXyg )ExeitVExemvl

= (PP PP P e) (2)Epe™ Eye™V .
Note that, for k,1 > 2,
(PP PP e) () = 6, (PP, PF 1P e)
= 8,(ITPP*1P,e) + 8, (Q" 1P, P 1P e)
= (P P*1Pe)
+8:(Q T PIPe) + v(QTPQ T Pye).
Since
102(Q' T PIIPe)| = [6,(Q" "Pre)v(Pye)| < w7 CoCh|8uls |15 llellE
and
102(Q' P Q  Pye)| < K FT2CEHCR 105 el
we obtain
(7.22)  [6(t,u) — ¥(t,us k)| < &' CBCo VIl llells + Co) |18zl llells,
where N
Ut u k) = v(PPF TP e)Epe™ By
Note that J(t, u; k) does not depend on the initial state x since V and V'
are independent of the Markov chain. In the same way
¢1(t) = (PTIPe) (2)Eee™,  Go(u) = (PHFIPe) (2)Epe™”,
where, for m > 2,
(P Pre)(z) = 6,(P" 'Pre) = 6,(IIPse) + 6,(Q™ 'Pye)
= v(Pie) + 0,(Q™ ' Pye).
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Since |6I(Qm_1Pte)| < mm_lHéxHB/HeHBCPCQ, we get

(7.23) 161(t) — U1 ()] < K704 ]|m ||el 5CP Co.
(7.24) |f2(u) — 1 ()] < K18, 5]lel 5CPCo,
where

(7.25) D1 (t) = v(Pre)Ege™ = v(Pre)Eye™””

does not depend on the initial state x of the Markov chain.

Denote Jg(t,u; k) = J(t,u; k) — Jl(t)zzl(u) From and it
follows that
(7.26)  |do(t,u) — o(t, u; k)|
< [b(t,u) — Y(t,us k)| + 1 () P2 () — ¥ ()1 (u)]
< [(t,u) = h(t,us k)| + [d1(t) — ¥a ()] + [(Pre)| [(G2(w) — by (w))]
< &7 8. llellsCBCa(llv 5 llells + Cq)
+ 1705 CrCq(L + |v(Pre))
< &6l s llells(CRCalllvlmllells + Cq) + CpCo(1 + ||v|5Cr))
< Cla)s' ™,
where
C(x) = 8.l lells(CECoIlmllels + Co) + CpCa(l + ¥ Cp)).

Denote by si 7 the complex number defined by

Sk, T = (27102“ /f;T(t, U)Jo(t,u; k) dt du.

Note that s; 7 does not depend on the initial state x of the Markov chain
since neither does 1g(t, u; k). With this notation we have

Covp, (f(X1), f(X14%)) — ser = R+ R,

where

R (27102“ R (t,u)(Go(t, u) — do(t, us k) dt du.

Since E,e™VE e has support in the square [—&g,£o]?, using l) and
(7.26) it follows that
(121) BRI el - Follis < mpebClan’ ™

From (7.27)) and (7.19), for any v € (0,26] and any I,k =0,1,...,

T3
(728 |Cove, (F(X0), f(Xt#)) = shr| < Cla)g5eBnl™! + ¢T3 (a)
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From (7.28)), for any [,I’ = 2,3,... one obtains
|Cove, (f(Xi), f(Xi4k)) — Cove, (f(Xv), f(Xv4x))]
— 2T3 min{l,l’}—
< ;T 7 Ag(z)*+7 + C(m)ﬁt?%fi 3=,
Taking T = g min{ll} e get, for any v < min{1, 240},

(7.29)  [Cove, (f(X1), f(Xi4x)) — Cove, (f(Xr), f(Xvyr))]
< CéA(x)Klmin{l,l’}'y/4fl7

where A(z) = ASJW(Q;) + C(x). The sequence Covp, (f(X7), f(Xi+x)), | =

1,2,..., is thus Cauchy; denote by si(z) its limit as | — oo. Taking the
limit as [ — oo in ([7.28]), we get

T3
(7.30) [sk(2) = sr| < Cla)g—epn ™ + T VA ().

Letting T = T; = x~/* this implies that lim;_,« sk, = Sk(z). Since s,
does not depend on z, we conclude that si(x) is also a constant not depend-
ing on x, say sg. Taking the limit as I’ — oo in we obtain ([7.20]).
The second assertion of (b) follows from and Lemma upon
setting [ = k.
The third assertion of (b) follows immediately from the second one.
Let us now prove (a). From (7.8), we have

B (X0) —mer| < 5§ G0 191(6) — a(6) de + |Ral,

where

mr = 5 G0 (1) di

Ry is defined by 1’ and 1;1 is defined by 1} Note that mqp is inde-
pendent of x since so is 1 (t). Taking into account the bounds in 1} and

[T23). we get
_ I = .
B (X)) = mr| < 678 lelsCoCay | (Dl dt + T es Al (@),

Recalling that gr(z) = z1(|z| < T), to bound {|gr(t)| dt we use the usual
isometry relation

(Var@lar)” <GP e =g (x) de = 1.

This implies, for any v < min{1, 26},
[Eof (X0) = mr| < e5(|[8z]|s e sCpCQT?s' ™ + TV AT ().



WEAK INVARIANCE PRINCIPLE 39

Taking T = /4, we have

(7.31) o f (X)) — mp| < csAy(z)sl/471,

where A;(z) = 1+ A(1)+7(x) + |16z |5 |le]|sBCpCq. From this inequality it
follows that

(7.32) [Eo f(X1) = Eof (Xi)| < s As () w741,

which proves that the sequence (E; f(X}));>1 is Cauchy and therefore has a
limit denoted p(x). Since mr does not depend on z, letting { — oo in (7.31))
we conclude that p(z) = u does not depend on z. Letting k — oo in (7.32)),

we get |
Eo (X)) — p| < c5Aq ()t mindlat/a=1,

which proves the first assertion of (a). The second follows from the first. m

The bound (3.5)) of Proposition follows from part (a) of Lemma 7.3.
It remains to prove the bound (3.6]).
Let 0 < v < min{1,26}. First note that, from Lemmas and we
obtain, for k =0,1,...,
|Cove, (f(X1), f(Xisr)) = sk| < Az(x)cs orn ™AL
where As(x) is defined in Proposition Then, for any £k =0,1,...,
m+n—1m+n—I

> Z | Cove, (f(X1), f(Xisk)) — skl
l=m

m+n—1m+n—I

< Ag 65,{ Z Z —Cyon max{lk} < Az(x)cgﬁﬁ.
l=m

Since
m+n—1 m+n—1
Varg, (Y (X)) = Y Vare, (F(X0)
l=m l=m
m+n—1m+n—I
+2 ) Z Cove, (f(X1), f(Xi11))
l=m
we get

m—+n—1 m+n—1m+n—I

‘Var]pz ( Z f(Xl)) — (nso + Z Z (sk +SZ)>‘ < Ag(x)cgmm.
l=m l=m k=1

Taking into account that, by Lemma the s are independent of x and
that |si| < As(z)kF1/*~1 we obtain
m+n—1

(7.33) ‘Varpz ( Z f(X; ) - n(so + Z (sk + %) )’ < As(x)cs, .-
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Dividing by n and taking the limit as n — oo in , we deduce that
S0+ peqi(sk+s k) converges to a non—negatlve number not depending on z,

say 02 > 0. Now ) follows from

7.3. Proof of Theorem [3.3l First note that Conditions C1 and C3
are satisfied by Propositions [3.I] and [3.2] Condition C2 is satisfied by Hypo-
thesis M4. Let p;(z) = E, f(X;). Let a < § and & = 3(a+4). Since a < &',
from with ¢’ replacing ¢, it follows that for any x € X there exists
a probability space (£2, F,P,), a sequence of independent standard normal
r.v.’s (W/);>1 and a sequence of r.v.’s (Y;);>1 such that (Y);>1 4 (f(X3))i>1
and, for any 0 < p < %ﬁ,

—1/2 _
(7.34) P, (N :g};\){ ’ Z oW)

> N‘p>

<, (x)N—afj—;jﬁp(Hm)

9

where Co(z) = C(1 4 Xo(z) + py (z) + /7(2))*+2 and N\o(z), ps(x), 7(2),
1

A1, A2 and o2 are defined in Propositions (3 and If a(z) < N277 (with

fi(x) from Proposition [3.2]) then using ([7.34) we have

(7.35) IP’;E( -1/2 ]SE]E\)[ ’ Z —pu—oW))

> 2N"’)

<Py sup| fj(y; — pilw) = oW))| > 2NV — (@) )
=1

< Co(a) N5 o420,
If 7i(x) > N'/277 it is obvious that
(7.36) 1< (AN < )Nt
From (7.35)) and ([7.36) we get

IP’z(Nfl/ZSER‘Z ! —p—oW))

>2N"~ p)

1+o¢ @
< (Co(x) + ma(z) ) N~ Trea tr(2H20),

Taking into account the expressions for A\g(z), us(z), 7(x), A1, A2, Ti(z) and
choosing v small we obtain

Co(x) + a(2)** < O(x) = Cr(1 + ||l + pa(x))* 2,

where C is a constant depending only on 4, o, k, Cp, Cq, |le||5, ||V| 5 -
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Generally the measure P, and the constructed sequence (Y;);>1 both
depend on the initial state x. It is easy to reconstruct (Y;);>1 independently
of x. Indeed, on the canonical space 2 = R®xR*® there is a probabil-
ity measure P, which coincides with the joint distribution of the sequence
(Y/,W);>1. It is enough to redefine Y/ = w;; and W; = wq; as the coor-
dinate processes, where w = (w1, ws) € 2. With this construction only the
measure ?w depends on the initial state x. The measurability of the map
xz€ X+ P, () follows from the construction.

7.4. Proof of Theorem [3.4. In addition to conditions of Theorem [3.3]
assume Hypothesis M5 holds. First we note that M5 ensures the existence
of the mean v(f) = E, X, = {(E;Xj)v(dz) and of the mixed moment
E,(X;X;1) = VEo(X;X;4%) v(dz) with respect to the invariant measure.
By Proposition [3.2] we have limy_,oo E; X = u, v-a.s. on X. Then by the
Lebesgue dominated convergence theorem

v(f) = By Xy = lim | (BoXp) v(dz) = | (Jim By X) v(dz) = p.

Without loss of generality we can assume that v(f) = 0. Using Hypothesis
M5 and v(f) = 0, we have

| Cove, (X1, Xiup) v(da) = \Eo (X, Xy 4k) v(dz) — | Eo (X)) Ea(Xiip) v(de)
=B, (X Xi) — | B (X0) B (Xi41) v(de)
= Covp, (X0, Xp) — | B (X)) Ee(Xr4p) v(da).

By Proposition lim;, oo Covp, (X7, Xi4x) = sk and lim;,o E,(X;) = 0
for any =z € X. As before, integrating with respect to the stationary measure
and using the Lebesgue dominated convergence theorem, it follows that
s = Covp, (Xo, Xj). Thus the conclusions of Theorem hold true with
p = v(f) and 02 = 02, which proves Theorem 3.4

8. Maximal inequalities. In this section we state two bounds which
are used repeatedly in the paper. The first one gives control on the L,-norm
of the maxima of the partial sums of a sequence of dependent r.v.’s. This
proposition is a consequence of the second one which gives control on the
L,-norm of the partial sums of a sequence of dependent r.v.’s. It is assumed
that Conditions C1 and C2 hold true.

PROPOSITION 8.1. Let & < § and € > 0. Then there is a constant
CA\1,00,6,80 e such that for any m,n > 1,
m+k—1

Xi < exy s (1+ Ao+ ps)Hent/2,

24268’

sup
1<k<n

i=m
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Proof. Denote for brevity Sy, , = Z;f{:fl X;. Let 6” be such that §' <
§" < 6. By Proposition[8.2] below (which we assume for the moment), for any
m,n > 1 and € > 0 we have || Sy | f2+20n < Anl/2, where A = ¢y, 57.e(1+
Ao + ps)'te. Letting S}, , = Smn/A, we get ||Sh, |l j242sr < n'/? for any
m,n > 1. By Theorem A in Serfling [35] (see also Billingsley [3, p. 102]), we
see follows that | supi<j<, Sppllp2resr < n'/21og,(4n) for any m,n > 1.
Since ¢’ < §”, it follows that
24207 1/2

1,2+28" < (n1/2 10g2 (47’L)) 228" < Cs, /M7,

sup S;,

!
sup S,
H 2, Tl paens = H1<k<n

N
1<k<n

‘L2+25/ < AC6,6’n1/2- u

from which we deduce ||sup;<j<, Sm.n

The following assertion is an adaptation of Proposition 4.1 in Gouézel
[15]. In order to derive an explicit dependence of the constant involved in
the bound on some of the constants in Conditions C1 and C2 we give an
independent proof. Tracking this explicit dependence plays a crucial role in
the proof of Theorem to work out the dependence of the bound on the
initial state of the Markov chain Xy = .

PROPOSITION 8.2. Let 0 < &' < § and € > 0. Then there is a constant
Ch1 0,6, Such that, for any m,n > 1,
m—+n—1

| X x

i=m

< c,\l,/\275/76(1 + o + M6)1+6n1/2.

[2+28 —

The proof of this proposition is given below. First we state several aux-
iliary assertions.

8.1. Auxiliary assertions

PROPOSITION 8.3. There is a constant cx, x, . such that, for any e > 0,

m+n—1

(8.1) H > x|,

i=m

2 < c)\l,Az,e(l + Ao + M6)1+6n1/2'

The proof is based on the following two lemmas.

LEMMA 8.4. Let u, = max,,> || 7"t Xi|[22, n > 1. Then, for any

=m

natural numbers a, b > 1 and any o € (0,1/2), v € (0,9),
Uarh < A+ uq + up + (cps)* (@ + b>)
+ cps(a® + b*) (A + uq + up) /% + cult/? + cui/z,
where ¢ > 1 and A = ¢y, ayy.a(l+ Ao+ ps)> ™.
Proof. Let m € N. Assume that a < b (the case a > b is treated in

the same manner). Denote Y, = Z;’iﬁffl X, Y, = Zgﬁ:ﬁ;éa] X; and
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Yy = Smtett=l xwhere oo € (0,1/2). Note that Yy = Yi + Ya 4 Yaap,

i=m
be]—
where Ygap = Zﬁtﬁg -1 X;. Therefore
(8.2) IYollZ2 < Y1 + Yall72 + [Yaapll72 + 211Y3 + Yal 2 [ Yaap |l 22-

We shall bound each of the terms on the right-hand side of .

Let V4 and V3 be two independent identically distributed r.v.’s of mean 0,
independent of Y7 and Y5 with a common characteristic function supported
in the interval [—e,e0] for some gy € (0,1), and such that ||[V;||;2+25 < c.
Denote }71 =Y+ Vi and 172 = Yo+ V5. Let Z1 and Z5 be independent copies

of Y7 and Ys. Since Eei"1 is supported in [—¢€0,€0], by Lemma for any
T >0,

(T T2, (21 2) < T § I6(t) — ()Pt du)

[—€0,€0]?
+ Plmax{[Tal, 7} > 7).

where ¢ is the characteristic function of the vector (Y7,Y2) and 1, and v
are the characteristic functions of Y7 and Ys. Condition C1 implies that

(6, 1) — r(8)a(w)] < Ao(L +0)*2 exp(—A1 b))
< Aoy, (14 b)P2 exp(—Ab%).

Let T = *b"/2 Taking into account that
P(max{|V1],|Yal} > T) < T'Emax{|V1, [Ya[}
< T71(||Y1 + Vil p2ves + ||Ya + Va|f2426)

Ao
< (e (a-+ by e | 200

_ Mg
<cse 27 b(1+ ps)
we obtain

Al

v 1 g —2Lbe —2Lpe
7T((Y1,Y2),(Z1722))S;Ao(ler) 2e7 27 +csbem 27 (14 p5)

M o
< A= csa(14b)2e7 25 (14 Ao + p5).
By Lemma [9.1] there is a coupling of (Yi,Y2) and (Zy, Z3) such that
P(|(Y1,Y2) = (Z1, Z2)[lc > A) < A.

Let S = Y; 4+ Ys — (Z1 + Z5). Taking into account that ||Vj|| 2125 < ¢, we
have

(8.3)  ||S||p2res = |[Y1 + Yo — (Z1 + Zs)| 2125 < 2||Y1 + Ya|f2r2s
< ¢(a +b) (1 + max HX;||L2+25> < eb(1 + pg).
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Then, for any v € (0, 9),

(84) |87 <44% +E|SPL(|S| > 24)
< AA? 4 ||S|200n B(IS] > 24) T
<A4A% 4 b (1 + ,u(;)QAﬁ
<A1+ 0)P2 (1 + N + ps)?e MY

A

b (e
4 AD2(1+ pg)2e 7 (14 b)Y 2T e 2 T (14 Ao + p1g) T

< A
where A’ = c’)\h)\2’%a(1 + Ao + ps)*7. From || and 1’ it follows that
(8:5) Y2+ Yal72 < 15172 + 1Z1]172 + 1 22122

<A+ HﬁH%z + ||5~/2”%2
Since ||Vi||z2 < ¢, we have
(8.6) IV + Y2l 12 < |[V3 + Yal| 2 + 2.
Taking into account (8.5) and , one gets
(8.7) Vi +Yal[72 < A"+ [[Vill72 + [[Yall72 + del|Yill2 + de]| Yol 2 + 4%,
Since ||YVi|lz2 < ||Yillz2 + ¢, we see that
(8:8) Vi +Yalf2 < A+ (|Yillz2 +¢)® + ([[Y2] 12 + ¢)?

+4de(|| Y2 + ¢) + 4e(||Ya|| 2 + ¢) + 42
< A+ I1ll72 + Yall7z + 6c(|Yall 2 + [[Yallz2) + 142

Since the gap is of size [b%],

(8.9) sup || Ygapllz2 < [b%] max [ X[ 225 < 0% pus.
m>1 i>1

From (8.2)), (8.8) and we obtain
(8.10) IYollZz2 < A"+ IVallZ2 + Y272 + ™4
+26% s (Y1l 22 + [[Yall£2)
+6e(|Y1|L2 + [[Ya] £2) + 14¢”.
Now recall that u, = sup,,>1 [[Y1l|32, up = sup,,>; [Y2]|7: and uqqy =
2 . N /2, 1 1/2 | 1a
sup,,>1 ||Yoll7.. Using we have || Ya|[r2 < up' ™ +[|Yapll 2 < up’ ™40 5.
From this and (8.10|) we deduce that
gy < A+ ug +up + bQO‘ug + 2ba,u5u;/2 + 2b0‘,u5(ucl/2 + u;/Q + b%us)
+ 6e(ul/? + u;/2 + b%us) + 1462
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Rearranging the terms and taking into account that A’ > 1, we obtain
Ugpp < A+ 1462 + ug + up + 3b2au§
+ 0% s (6c + ul/? + u1/2) + 6cul/? + 6cu;/2. ]
LEMMA 8.5. Assume that the sequence (up)n>1 is such that u, >0 and
Ugry < (ug +up + A) + (a** + %) B?
+ (0 4 0)Bua +up + AV + cul/? + cu,’”
for all a, b>1 and some A, B >0, a € (0,1/2). Then
Uy < co(l +up + A+ B?)n.

Proof. Note that zy < 3(ez? + e 'y?) for any z,y,e > 0. Using the
assumption of the lemma, we have

g < (Ua +up + A) + (1 4+~ 1)(a® + b**) B?
€ 12, € 2
+§(ua+ub+A)+€ C+§Ua+§Ub
< (1 + 6)(ua + up + A) + e 12 4 (1 + 571)((1204 + b2a)Bz.
Denote vy = max; <, <ok Un, k > 0. From the above inequality it follows that
Upr1 < (14 6)(2up 4+ A) + e 1 + (1 + )220k g2,
D1V1d1ng by (2 —+ 25)k+1 we get

Va1 20y, + A _1 22ak+1 ) )
1 ———(B
Broo) S apr2ar T Vg B )
20k+1
Vk -1 2 2 2
< 1 ———(B .
S Ggor Topraer TS g B )
Taking into account that < 1/2, by induction, we obtain
o 920
1
(2+2 vty Z 2+2g +2Al+e ;2—&—25”1
A 2 —|— 2e _ 1+¢
vo + 5 +2(1+e (B + ) —

2 14 2¢ €
§U0+C€(A+B2—|—CQ),

where ¢, depends only on e. This implies that

vp = max u, < Co(2+ 2¢)F,
1<n<2k

where Cy = vg + c.(A + B2 + ¢?). Once again using the assumption of the
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lemma it follows that
Vps1 < (2up + A) 4 220F 1 B2
+ 2% B(2C(2 + 26)F + A)V2 4 2¢Cy 2 (2 + 26)M/?
< (2up, + A) + 2%+ g2
+ 290 B(20y /(2 + 26)M2 4 AV?) 4 200,77 (2 + 26)M2.
Dividing by 25! and choosing & = () so small that 2 + 2 < 21+(1/2-a)
one gets

Ul Uy 20U B2 g glem D ol aE G ) 4 4V?)
+27keC)/ 225tz )
A

< 12)7]; + ST + 2(2a—l)k+1BQ + 4303/22(61—%)

+cCy/P2m 3Gt

k
2

4 9(a=Dk+1p 41/2

Using induction, this implies
v/2F < ca(A + Co + B?),

since £ depends only on a. From this we get uyr < D2 for any k > 1, where
D = c,(1+ vy + A+ B?). Therefore, for any 28=1 < n < 2¥ we conclude
that u, < D2F < 2D2F1 < 2Dn. u

Let a = 1/4. In the notations of Lemma w1 < maXp,>1 ||Xm||%2+2(S

< p2. From Lemmas and with B = cus it follows, for any € € (0,46),
that

m+n—1

2
maxH E X;
m>1 .

=m

= Unp < colu; + A+ 02pg)n

< C(CM,)Q,G(l + /\0 + M5)2+m + 2”%)”
< Ay a1+ Ao+ 115)*Tn,

which proves Proposition [8.3

8.2. Proof of Proposition Let m,n € N and a = [n'*] and
b = [n**P], where o > 0 and p > 0 are such that 2« + p < 1. Note that
a > b and ba < n'~". Consider the intervals I = [m + (k— 1)a, m + ka —b),
Jp = [m+ka —b,m+ ka) for k =1,...,[n%], and Is, = [m + ba,m + n),
such that [m,m +n) = Lnﬂ(lk U Jk) U Ig,. Here a — b > 0 and b > 0
are interpreted as the length of an island I and the length of a gap Jg
respectively.

Denote Yy = Zz’efk Xi, k=1,...,[n%. Let V1,..., Vjpa) be independent
identically distributed r.v.’s of mean 0, independent of Yi,...,Y¥[,a) with
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a common characteristic function supported in [—eg, 9] for some gy > 0,

and such that |Vi|[z2+2s < ¢, k = 1,...,[n%]. Denote Y, = Y; + V. Let
Z1, ..., Z[pe) be independent copies of Y1,...,¥[,). By Lemma

(8.11)  w((Vi,.... Vo)), (Z1, - Zjpe))

“]

n
<> (Y, Y1, Vi), (Y1, - Ye 1, , Zi))-
1

>
Il

Since EeV* is supported in [—eg, o], by Lemma for any 7' > 0 and
kE < [n%],

(812) W((}A}l,...,?k_l,i;k),(?l,...,?k_l,,Zk))
T
T

|16t — v (a(a) P dedu)

[—e0.€0]*

+P(|(Y1, ..., Vi1, V) loo > T),

<

where ¢ is the characteristic function of (171, e ,lek_l,lN/k), and 1 and s
are the characteristic functions of the r.v.’s (Y1,...,Y;_1) and Y;. Condition
C1 implies that

(8.13)  [(t,u) — ¥ (t)a(u)| < Xo(1 + a)* exp(—A1b)

< ex do(1 4+ 27" exp(—An®tr).
Let T = e%”aﬂ). By Chebyshev’s inequality, taking into account that k& <
[n?], we have

(8.14)  P(|(Y1,.. ., Yer1, Yi)|loo > T)
k k

ST Y+ Vil T (1Yl pses +0)
=1 =1

A o A a

< e T ([0t s + €) < ene” T (14 ).
From (8.12))—(8.14]) we obtain
W((?l, ey ?k—lu ?k)v (}717 cee 7}7]{:—17 ) Zk))

T «@ «@ )\ «

< “hoep (1 plmo)ntemhn 4 cqne™ 3 +p(l + ps)
T
« >\ [e%

<celn(l+nl")""e 2" +p(

Inserting this bound in (8.11]) we get

L+ Ao+ ps)-
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(Y1, .., Yiga)s (Z1s - -+ Zpnay))

AL patp
(

< et (14 nlm)"%em 3 1+ Xo+ ps)

Moo
< A= Ca,)\le_Tln Jrp(l + Xo + 15)-

According to Strassen—Dudley’s theorem (see Lemma there is a coupling
of (Y1,...,Y}) and (Zy,..., Zp) such that

P(|(Y1,. .., Yipa) = (Z1,- -+, Zppa))lloe > A) < A.

Let § = Vi + -+ }N/[n"] — (Z1 + -+ + Zjpe)). Taking into account that
|Vill 2426 < ¢, we have

(815)  Sllgasas = [T+ + Ty = (Za -+ Ziap) 252
< cnaa(l + max HX1HL2+25> < n(1+ ).

Let n € (0,0 —0"),p=2+2,p =p+2n<2+20 and vy =~(n) = P(p2ﬁ277)'
By Holder’s inequality,
1S%#27°1(S] = n® A) || p2sasr < |18l (B(IS| = n*A))7
< (151l p2+2s (B(IS| = n*A))7.
Using the bound [S| < n®||(Y1,.. .’i\}[na]) —(Z1, -+, Zpe)) oo, We have

HSHL2+25’ < n*A + HS2+26/1(‘S’ > naA)”L2+25/
<nYA+ ||S]| f2+25 (P(]S| > n*A))7
< 0O A+ (1Sl asas BT, Vi) = (Z1s s Zieglow = A))
<n®A+cen(14 ps)A7.

Taking into account the definition of A, we get

A1 patp

(816) (ISl asas < nocanie T (14 Do + pis)

Moo
+en(l+ pg)(cane” (14 X+ 1g))
<A = c/>\1,>\2ma,p<1 + Ao+ N6)1+7‘
From (8.15) and (8.16)), it follows that
(817)  Vi+ - + Yol orasr 1Sl pavos + 121+ -+ + Zpell o2
< A+ HZ1 + -+ Z[na]”L2+25/-

Since the r.v.’s Z1,..., Z},a] are independent, by Rosenthal’s inequality
(Theorem 3 in [30]), there exists some constant cg such that

(8.18) Z1+ -+ Z[na] HL2+25/

n

[n®] 1 1
/2 N 57
< c5,( ) ]EZZ.Q) n c(;,( N E|Zi[* ) =
=1

=1

°]
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Taking into account that Y; = )
Proposition [8.3| we have

(819)  EZ} = |[Vilf2 < (c+ ¥ill2)” < by npy (14 Ao+ 115)* ',

jEI; X] and that |IZ| S a—0b S nl—a’ by

Note also that || Z;| ;54250 < va—p+c, Where v, =sup,,>, HZ:ZL':_I Xill 226 -

Therefore, from (8.18) and (8.19)), it follows that
||Zl + -+ ZbHL2+25/

[n?] 1
< A" 4 exy npmaps' (14 Xo + p5) 72012 4 ¢ ( > (vab+ c)2+25') e

i=1
< g damanps (1 4+ Ao+ u5)1+7nl/2 + ca/va,bnﬁ.
Using (8.17)), we get
||371 4+ 37[71&]||L2+26’ <A+ Z1 4+ Zine)ll pavost
< namaps (L Ao+ 1s) 02 4 cyv,_yn e
Since Y; = Yy, + Vi, and ||Vi|| 2125 < ¢, we see that
Y1+ 4 Yineyll p2var
<+ V4 + 17[71&]|’L2+26’
< en® 4 exy poyaps (14 Xo + u5)1+7n1/2 + c(grva_bnﬁ
< e amanps (14 Ao + M6)1+7n1/2 + c(;/va,bnﬁ,

where for the last line we use the fact that a < % < % Filling up the gaps
in the final interval Ig,, we get

m+n—1
H Z Xi 1,2+26 < HYI +o Tt Y["O‘]HL“%'
- ne] mtn
Y Wil + | > X
k=1icJy i=m+a[n®]

< e aayaps (14 Ao + ps) It 4 c(;rva_bnﬁ
+ n2TPps + Vp—[n1—o][ne]-
From this, we deduce the inequality
(8.20) On < Ex g yaps (14 Xo + pig) H 0t/
+ 2P s + C(S/U[nlfa]_[nfﬂrp}nﬁ + Vp_[p1-o][e]-

Denote 7, = WW. Then from 1) it follows that

— 1/2 2 — ST | =
Un < Cxp day,000,6' 1 S €5 Vlni=a]—[no+e] V212" + Uy _[p1-a][ne]-
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Fixing @ = 1/6 and p = 1/6, we get
11
(821) T < exyramarn! o CoTps /e g1/ T+ Ty /oo

We start with the inequality 7,, < n%, where gy = 1. Since n— [n!~%][n%]
< en'™®, we have Up—[nl—a]ne] < ent® and Vfpi—a]—[pats] < en s, Imple-

menting this in (8.21)) gives,
5ol 1 1
Tp < ey pans /2 +coms®Tomm2 < ¢y g™z 0)

where ¢1 = %qo + %ﬁ. Continuing in the same way, at iteration k + 1, we
obtain

- max{1/2,
Up < Chpy 1,6/ w/ qk+1}7

where qx4+1 = %qk + %ﬁ. Since limg_oo g = ﬁ, there exists a constant
ko < oo such that g 1 < 1/2. With this ko, we get

= 1/2
Un < Chohr,Aa,y,6'M 2.

Since v = ~(n) = p(p%:gn) < 12)—727, for any m > 1 we have

m-+n
H Z Xi [2+26 < e (14 Ao+ u5)1+7n1/2
i=m

1+
) 1/2

2n
p2nt/e,

< st (1 Ao + ps

Since 7 is arbitrary we obtain the assertion of Proposition [8.2)

9. Appendix

9.1. Some general bounds for the Prokhorov distance. Let (E,d)
be a metric space endowed with the metric d, and £ be the Borel o-algebra on
E. For any B € £ denote by B¢ its e-extension: B* = {zx € E : d(z, E) < ¢}.
Let 7(P, Q) be the Prokhorov distance between two probability measures
P and Q defined by

(P,Q) = inf{g :sup |[P(B) — Q(B%)| < 5}.
Be&

The following assertion is known as the Strassen—Dudley theorem and is
a consequence of the results in Strassen [36] (see also Dudley [§]). Let
Pr(P, Q) be the set of probability measures on E x E with given marginals
P and Q. Denote by Dg 4(¢) the e-extension of the diagonal in E x E, i.e.
Dg.a(e) = {(s,8') € Ex E:d(s,s') <e}, and by D 4(¢) its complement.

LEMMA 9.1 (Strassen-Dudley). If (E,d) is a complete separable metric
space, then

7(P,Q) = min{e : 3P € Pg(P, Q) such that P(Dg 4(c)) < e}.
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Let (E1,d;) and (Eq,d2) be two complete separable metric spaces en-
dowed with Borel o-algebras £ and & respectively. Endow the product
space £ = E; x Ey with the metric d(z,y) = max{di(z1,y1),d2(z2,y2)},
where © = (21,22), y = (y1,y2) € E. Let £ be the Borel o-algebra on E.

LEMMA 9.2. Consider r.v.’s X,Y € E1 and Z € Ey such that Z and
(X,Y) are independent. Then

1(Lx,z,Ly,z) =m(Lx,Ly).

PTOOf. Let Pl S 'PEl(ﬁx,ﬁy) and PQ € PEQ(Ez,Ez). If PQ is con-
cenﬁtrated on the 7diag0nal of Fy x E5, then with P = Py x Py we have
P(Dg.a(e)) = Pi(DEg, 4, (€)). This means that

A= {6 Py € 'PE(E)(,ﬁy) such that Pl(ﬁEl,dl (6)) < 6}
={e:3P € Pr(Lx z, Ly z) such that P(Dg 4(c)) < e} = B.

By Lemma m(Lx,Ly)=infA=inf B=n(Lx 7z, Lyz) u

Let (Ey,d1),...,(Ey,d,) be complete separable metric spaces. On E =
Ey x -+ x B, consider the metric d(z,y) = max{di(z1,y1), ..., dn(Tn,yn)},
where x = (z1,...,2,), y = (y1,...,Yn) € E.

LEMMA 9.3. Consider r.v.’s X=(X1,...,X,) € EandY=(Y1,...,Y,)
e E. If X and Y are independent and Y1, ...,Y, are independent, then

n

W(Lleszn? [’Ylp--,Yn) < Z TF('CXl,m,kath ) £X1»~~~7Xk71:Yk)'
k=1

Proof. The assertion of the lemma is obtained using the telescope rule
and Lemma [0.2 =

LEMMA 9.4. Consider r.v.’s X=(X1,...,X,) € EandY=(Y1,...,Y,)
€ E. If(X1,Y1)...,(Xn,Ys) are independent, then

7T(EXL..-,XM £Y17~--7Yn) < Z 71'(EXIC ) £Yk)‘
k=1

Proof. Use Lemmas [0.3] and 0.2 =
The following is taken from [I5].

LEMMA 9.5. Let P and Q be two probability measures on (RN, BN).
Assume that the characteristic functions p(t) and q(t) pertaining to P and
Q are square integrable with respect to the Lebesgque measure in RN . Then

01 w®.Q) < @/m( | b - anla)" Pl > 1).
RN
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Proof. Assume first that P, Q have square integrable densities p and
q respectively. Denote Cr = {x € RY : ||z|looc < T} and By = RN \ Cr.
Assume that A € BY and let € > 0. Then
[P(A) — Q(A%)| = [P(A* N Cr) + P(A° N Br) — Q(A%)]
< \P(AE NCr) — Q(A* N Cr)| + P(Br)

_ ) (p(z) — q(z)) dz| + P(Br)
AsnNCr
< | Ip(@) = a(@)[10, (@) do + P(||z]loc > T).
RN
Using Holder’s inequality, we get

7(P.Q) < [P(4) - Q(A%)
1/2 1/2
< (] Io@) ~ at@)Pdz) " ( § 10, @) dx) " 4+ P(lall > 1)

RN RN
Since, by Plancherel’s identity

V Ip(x) = q(@)]? d = 2m)~N | p(t) — (1) dt,
RN RN
we obtain for P and Q having square integrable densities.

If P and Q do not have densities, denote by P, = PxG, and Q, = QxG,
the smoothed versions of P and Q, Where G, is the normal distribution of
mean 0 and variance v2. Using (9.1)) and the obvious inequality |p,(t) —

Gu(1)] < [B(t) — 1), we obtain

B R R 1/2
7Py, Qu) < (27) V2DV ( | 5() —at)P dt) "+ Polllalle > T).
RN
Since 7(P,,P) — 0 and 7(Q,, Q) — 0 it follows that 7(P,, Q,) — 7(P, Q)
as v — 0. Note also that limsup,_,oPy(|z|lcc > T) < P(||z]|ec > T).
Inequality (9.1) follows for arbitrary P, Q. =

9.2. Coupling independent and Gaussian r.v.’s. The following re-
sult is proved in Theorem 5 of Sakhanenko [32] (see also [31], [33], [34] for
related results). Let X1, ..., X, be a sequence of independent r.v.’s satisfy-
ing EX; =0 and E|X;|P < co for some p > 2 and all 1 <i <n.

THEOREM 9.6. On some probability space (£2', F',P') there is a sequence
of independent normal r.v.’s Y1, ..., Yy, satisfying E'Y; = 0 and E'Y? = EX?2,
1 <i<n, and a sequence of independent r.v.’s X1,..., X, satisfying X| 4
X;, 1 <i<mn, such that

/< max
1<k<n

ZX’ ZY )p < cpzn:E]Xi|p.
; =1
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In particular, by Chebyshev’s inequality, for the same construction and
any a > 0,

(9.2) ’( max

1<k<n

ZX’ >a)< PZJE|X|P
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