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ANISOTROPIC PARABOLIC PROBLEMS WITH SLOWLY
OR RAPIDLY GROWING TERMS

BY

AGNIESZKA ŚWIERCZEWSKA-GWIAZDA (Warszawa)

Abstract. We consider an abstract parabolic problem in a framework of maximal
monotone graphs, possibly multi-valued, with growth conditions formulated with the help
of an x-dependent N -function. The main novelty of the paper consists in the lack of any
growth restrictions on the N -function combined with its anisotropic character, namely we
allow the dependence on all the directions of the gradient, not only on its absolute value.
This leads to using the notion of modular convergence and studying in detail the question
of density of compactly supported smooth functions with respect to modular convergence.

1. Introduction. We are interested in the phenomenon of anisotropic
behaviour in a parabolic problem. Our approach allows for embracing very
general growth conditions for the nonlinear term. We concentrate on an
abstract parabolic problem. Let Ω ⊂ Rd be an open, bounded set with
C2 boundary ∂Ω, (0, T ) be the time interval with T <∞, Q := (0, T )×Ω,
and A be a maximal monotone graph satisfying the assumptions (A1)–(A5)
below. Given f and u0 we want to find u : Q → R and A : Q → Rd such
that

ut − divA = f in Q,(1.1)

(∇u,A) ∈ A(t, x) in Q,(1.2)

u(0, x) = u0 in Ω,(1.3)

u(t, x) = 0 on (0, T )× ∂Ω.(1.4)

Our main objective is to obtain an existence result for the widest possible
class of maximal monotone graphs. Hence various nonstandard possibilities
are considered including anisotropic growth conditions, x-dependent growth
conditions and also relations given by a maximal monotone graph. The last
ones provide the possibility of generalizing discontinuous relations, namely
considering A as a discontinuous function of ∇u, where the jumps of A
are filled by intervals forming vertical parts of the graph A. Most of these
generalities arise in a function that will prescribe the growth/coercivity con-
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ditions. In contrast to the usual case of Leray–Lions type operators, where
polynomial growth is assumed, e.g. |A(ξ)| ≤ c(1+|ξ|)p−1, A(ξ)·ξ ≥ C|ξ|p for
some nonnegative constants c, C and p > 1, we shall work with N -functions.
By M being an N -function we mean that M : Ω̄ × Rd → R+, M(x, a) is
measurable with respect to x for all a ∈ Rd and continuous with respect to
a for a.a. x ∈ Ω̄, convex in a, has superlinear growth, M(x, a) = 0 iff a = 0
and

lim
|a|→∞

inf
x∈Ω

M(x, a)

|a|
=∞.

Moreover the conjugate function M∗ is defined as

M∗(x, b) = sup
a∈Rd

(b · a−M(x, a)).

The graph A is expected to satisfy for almost all (t, x) ∈ Q the following
assumptions:

(A1) A passes through the origin.
(A2) A is a monotone graph:

(A1 −A2) · (ξ1 − ξ2) ≥ 0 for all (ξ1, A1), (ξ2, A2) ∈ A(t, x).

(A3) A is a maximal monotone graph: If (ξ2, A2) ∈ Rd × Rd and

(A1 −A2) · (ξ1 − ξ2) ≥ 0 for all (ξ1, A1) ∈ A(t, x)

then (ξ2, A2) ∈ A(t, x).
(A4) A is an M -graph: There are nonnegative k ∈ L1(Q), c∗ > 0 and an

N -function M such that

A · ξ ≥ −k(t, x) + c∗(M(x, ξ) +M∗(x,A))

for all (ξ, A) ∈ A(t, x).
(A5) Existence of a measurable selection: Either there is Ã : Q×Rd→Rd

such that (ξ, Ã(t, x, ξ)) ∈ A(t, x) for all ξ ∈ Rd and Ã is measur-

able, or there is ξ̃ : Q×Rd → Rd such that (ξ̃(t, x,A), A) ∈ A(t, x)

for all A ∈ Rd and ξ̃ is measurable.

Let us briefly refer again to the classical Leray–Lions operators. Within
the setting presented above we would use the N -function M(a) = |a|p with
the conjugate function M∗(a) = |a|p′ , with 1/p+ 1/p′ = 1.

As we allow for x dependence, our framework covers also the variable
exponent case, namely M(a) = |a|p(x). A further generalization is the aniso-
tropic character and functions other than just polynomials, e.g. the following
function is acceptable:

M(x, a) = a
p1(x)
1 ln(|a|+ 1) + ea

p2(x)
2 − 1 for a = (a1, a2) ∈ R2.

All the functions having growth essentially different than polynomial
(e.g. close to linear or exponential) yield additional analytical difficulties
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and significantly restrict good properties of corresponding function spaces
(like separability, reflexivity, or density of compactly supported smooth func-
tions). We shall now discuss this issue in more detail.

Let us recall some definitions. By a generalized Musielak–Orlicz class
LM (Q) we mean the set of all measurable functions ξ : Q → Rd for which
the modular

ρM,Q(ξ) =
�

Q

M(x, ξ(t, x)) dx dt

is finite. By LM (Q) we denote the generalized Orlicz space which is the set
of all measurable functions ξ : Q → Rd for which ρM,Q(αξ) → 0 as α → 0.
This is a Banach space with the norm

‖ξ‖M = sup
{ �
Q

η · ξ dx dt : η ∈ LM∗(Q),
�

Q

M∗(x, η) dx dt ≤ 1
}
.

In the above definitions we used the notion of generalized Musielak–Orlicz
spaces. In contrast to the classical Orlicz spaces we cover the case of
x-dependent N -functions as well as functions that depend on the whole
vector, not only on its absolute value (i.e. anisotropic functions). Moreover,
by EM (Q) we denote the closure of the bounded functions in LM (Q). The
space LM∗(Q) is the dual space of EM (Q). A sequence zj is said to converge

modularly to z in LM (Q), written zj
M−→ z, if there exists λ > 0 such that

ρM,Q

(
zj − z
λ

)
→ 0.

The basic estimates which we will frequently use are the Hölder inequality

(1.5)
�

Q

ξη dx dt ≤ c‖ξ‖M‖η‖M∗

and the Fenchel–Young inequality

(1.6) |ξ · η| ≤M(x, ξ) +M∗(x, η).

The key feature of our considerations is the lack of the assumption of ∆2-con-
dition. We say that M satisfies the ∆2-condition if there exists a constant
c > 0 and a summable function h such that

(1.7) M(x, 2a) ≤ cM(x, a) + h(x)

for all a ∈ Rd. If M satisfies (1.7) then LM (Q) is separable, and compactly
supported smooth functions are dense in the strong topology. If addition-
ally M∗ satisfies (1.7) then LM (Q) is reflexive. Notice that none of these
assumptions is made in the present paper. For this reason the notion of
modular topology and the issue of density of compactly supported smooth
functions with respect to the modular topology are crucial. The basic prop-
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erties of anisotropic Musielak–Orlicz spaces mentioned above were discussed
and proved in [12].

As density arguments become an essential tool, the dependence of an
N -function on x becomes a significant constraint. The problem arises when
we try to estimate uniformly a convolution operator. To handle this, we need
some regularity with respect to the space variable. More precisely, we will
assume that the function M has the following properties:

(M) there exists a constant H > 0 such that for all x, y ∈ Ω with
|x− y| ≤ 1/2 and for all ξ ∈ Rd such that |ξ| ≥ 1,

(1.8)
M(x, ξ)

M(y, ξ)
≤ |ξ|

H

ln 1
|x−y| .

Moreover, for every bounded measurable set G and every z ∈ Rd,

(1.9)
�

G

M(x, z) <∞.

Below we formulate a definition and then state an existence theorem which is
the main result of the present paper. We shall use the following notation. By
C∞c (Ω) we denote the space of infinitely differentiable compactly supported
functions inΩ. For p ≤ 1 ≤ ∞ and k ∈ N, we denote by (Lp(Ω), ‖·‖Lp(Ω)) the

Lebesgue spaces and by (W k,p(Ω), ‖ ·‖Wk,p(Ω)) the Sobolev spaces. W k,p
0 (Ω)

denotes the closure of C∞c (Ω) with respect to the norm ‖ · ‖Wk,p(Ω), and

W−k,p
′
(Ω) with 1/p + 1/p′ = 1 denotes its dual space. Moreover, we write

Cweak(0, T ;L2(Ω)) for the space of all ϕ ∈ L∞(0, T ;L2(Ω)) which satisfy
(ϕ(t), v) ∈ C([0, T ]) for all v ∈ C(Ω̄).

Definition 1.1. Assume that u0 ∈ L2(Ω) and f ∈ L∞(Q). We say that
(u,A) is a weak solution to (1.1)–(1.4) if

u ∈ L∞(0, T ;L2(Ω)), ∇u ∈ LM (Q), A ∈ LM∗(Q),(1.10)

u ∈ Cweak(0, T ;L2(Ω)),(1.11)

the identity

(1.12)
�

Q

(−uϕt +A · ∇ϕ) dx dt+
�

Ω

u0(x)ϕ(0, x) dx =
�

Q

fϕ dx dt

is satisfied for all ϕ ∈ C∞c ((−∞, T )×Ω) and

(1.13) (∇u(t, x), A(t, x)) ∈ A(t, x) for a.a. (t, x) ∈ Q.
Theorem 1.2. Let M be an N -function satisfying (M) and let A satisfy

conditions (A1)–(A5). Given f ∈ L∞(Q) and u0 ∈ L2(Ω) there exists a
weak solution to (1.1)–(1.4).

The current paper complements [22]. Here we also consider the exis-
tence of weak solutions to the parabolic problem including multivalued
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terms. However, the essential differerence consists in the properties of the
N -function describing the growth of the graph A. In [22] we concentrated on
the case of a time-dependent N -function. This required a more delicate ap-
proximation theorem and excluded the possibility of anisotropic functions.
The present study does not extend the results of the previous paper, but
parallels them. We omit the dependence of an N -function on time, but add
the possibility of anisotropic behaviour.

Anisotropic parabolic problems were also considered in [16], but in a
much simpler situation of the equation and the N -function homogeneous
in space. Anisotropic and space-inhomogeneous problems, in the slightly
different case of systems describing the flow of non-Newtonian fluids, were
considered in [14, 15, 17, 23]. Those authors assumed the ∆2-condition on
the conjugate N -function. The simplified problem of the generalized Stokes
equation, without the ∆2-condition for the conjugate N -function, was con-
sidered in [18].

Maximal monotone graphs were also applied to problems arising in fluid
mechanics in [4, 11] in the Lp setting and in [3, 5] in the setting of Or-
licz spaces. The latter, however, were restricted to classical Orlicz spaces
satisfying the ∆2-condition.

Most of the earlier results on existence of solutions to parabolic problems
in nonstandard settings concern the case of classical Orlicz spaces: see e.g. [6]
and later studies of Benkirane, Elmahi and Meskine [2, 7, 8]. All of them
concern the case of an N -function depending only on |ξ| without dependence
on x.

The paper is organized as follows: Section 2 contains the proof of The-
orem 1.2, Section 3 is devoted to density of compactly supported smooth
functions with respect to modular convergence. In the appendix we include
some facts, used in the main body of the paper.

2. Existence of solutions. In this section we prove Theorem 1.2. The
construction of an approximate problem is in two steps. By (A5) there exists
a measurable selection Ã : Q × Rd → Rd of the graph A. Obviously, each
such selection defined on Rd is monotone and due to (A4) it satisfies

(2.1) Ã(t, x, ξ)·ξ≥−k(x, t)+c∗(M(x, ξ)+M∗(x, Ã(t, x, ξ)) for all ξ∈Rd.

We mollify Ã with a smoothing kernel and then construct a finite-dimen-
sional problem by the Galerkin method. Indeed, let

(2.2)

S ∈ C∞c (Rd),
�

Rd
S(y) dy = 1, S(y) = S(−y),

Sε(y) := (1/εd)S(y/ε),
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with suppS in the unit ball B(0, 1) ⊂ Rd and define

(2.3) Aε(t, x, ξ) := (Ã ∗ Sε)(t, x, ξ) =
�

Rd
Ã(t, x, ζ)Sε(ξ − ζ) dζ.

Using the convexity of M and M∗, and the Jensen inequality allows us to
conclude that the approximation Aε satisfies a condition analogous to (2.1):

(2.4) Aε · ∇u ≥ −k(t, x) + c∗(M(x,∇u) +M∗(x,Aε)).

For the proof of an analogous estimate for approximation in the case of
polynomial conditions see [11] and [19].

The assumption (A5) gives either the existence of a selection Ã as above,
or the existence of a selection ξ̃ : Q×Rd → Rd such that (ξ̃(t, x,A), A) is in
the graph A for all A ∈ Rd. In the second case we would define

(2.5) ξε(A) := (ξ̃ ∗ Sε)(t, x,A) + εA.

Then the function A 7→ ξε(A) is invertible. Note that since εA · A ≥ 0
one can show that for the pair (ξε(A), A) an analogue of (2.4) holds, and
consequently also for (ξ, (ξε)−1(ξ)). Thus we may define

(2.6) Aε := (ξ̃ ∗ Sε + ε Id)−1.

One then proceeds analogously to the previous situation. In the following,
we present the proof for the case when there exists a selection ξ̃, and Aε is
given by (2.3).

Consider now the basis {ωi} consisting of eigenvectors of the Laplace
operator with the Dirichlet boundary condition, and let uε,n be the solution
to the finite-dimensional problem with the function Aε, namely uε,n(t, x) :=∑n

i=1 c
ε,n
i (t)ωi(x) which solves the system

(uε,nt , ωi) + (Aε(t, x,∇uε,n),∇ωi) = 〈f, ωi〉, i = 1, . . . , n,

uε,n(0) = Pnu0,
(2.7)

where Pn is the orthogonal projection of L2(Ω) on span {ω1, . . . , ωn}. Let
Qs := (0, s)×Ω with 0 < s < T . From (2.4) we conclude that

(2.8) sup
s∈(0,T )

‖uε,n(s)‖2L2(Ω)+c∗
�

Q

[M(x,∇uε,n)+M∗(x,Aε(t, x,∇uε,n))] dx dt

≤ c
(
‖u0‖2L2(Ω) + ‖f‖L∞(Q) +

�

Q

k dx dt
)
.

As a consequence of (2.8) there exists a subsequence (not relabelled) such
that

(2.9)
∇uε,n ∗

⇀ ∇un weakly∗ in LM (Q),

Aε(·, ·,∇uε,n)
∗
⇀ An weakly∗ in LM∗(Q).
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Moreover, from (2.7) we deduce the boundedness of the sequence uε,nt in
LM∗(Q) and hence up to a subsequence we have

(2.10) uε,nt
∗
⇀ unt weakly∗ in LM∗(Q).

Further we observe that (2.7) implies that d
dtc

ε,n
i (t) is bounded in the

space LM∗([0, T ]), which implies uniform integrability in L1([0, T ]). Conse-
quently, there exists a monotone, continuous L : R+ → R+ with L(0) = 0
such that for all s1, s2 ∈ (0, T ),∣∣∣∣ s2�

s1

d

dt
cε,ni (t) dt

∣∣∣∣ ≤ L(|s1 − s2|),

and thus the sequence cε,ni is uniformly equicontinuous,

|cε,ni (s1)− cε,ni (s2)| ≤ L(|s1 − s2|).
From (2.8) we infer that cε,ni (t) is bounded in L∞([0, T ]) and hence by
the Arzelà–Ascoli theorem there exists a uniformly convergent subsequence
{cεk,ni } in C([0, T ]); taking into account the regularity of the basis {ωi}ni=1

we conclude that

(2.11) uε,n → un strongly in C([0, T ]; C1(Ω)).

The limit passage ε → 0 is done at the level of finite-dimensional problem.
It follows the lines of [5], but we recall the main steps. Using (2.9)–(2.11)
we obtain the limit problem

(unt , ωi) + (An,∇ωi) = 〈f, ωi〉, i = 1, . . . , n,

un(0) = Pnu0.
(2.12)

To complete the limit passage we need to prove that

(2.13) (∇un, An) ∈ A.
Following [5] and [22], with simple algebraic tricks and estimates which are
not included in the present paper, we conclude that for all B ∈ Rd and for
a.a. (t, x) ∈ Q,

(2.14) (An − Ã(t, x,B)) · (∇un −B) ≥ 0.

Hence, using the equivalence of (i) and (ii) in Lemma A.8, we arrive at
(2.13).

Before passing to the limit as n→∞ we notice that in the same manner
as before we obtain estimates uniform with respect to n:

(2.15) sup
s∈(0,T )

‖un(s)‖2L2(Ω) +
�

Q

[M(x,∇un) +M∗(x,An)] dx dt

≤ c(‖u0‖2L2(Ω) + ‖f‖L∞(Q) + ‖k‖L1(Q)).
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Consequently, there exists a subsequence, labelled the same, such that

(2.16)

∇un ∗
⇀ ∇u weakly∗ in LM (Q),

un ⇀ u weakly in L1(0, T ;W 1,1(Ω)),

An
∗
⇀ A weakly∗ in LM∗(Q),

un
∗
⇀ u weakly∗ in L∞(0, T ;L2(Ω)),

unt
∗
⇀ ut weakly∗ in W−1,∞(0, T ;L2(Ω)).

Using (2.16) we let n→∞ and deduce from (2.12) that

(2.17) ut − divA = f

in the distributional sense. Again, to complete the limit passage, we need
to show that (∇u,A) ∈ A(t, x). It, however, requires more care, in contrast
to the previous passage at fixed n. The essence of the present step is to
use the maximal monotonicity of the graph A, in particular the property
in Lemma A.7. As the assumptions (A.1)–(A.3) are obviously satisfied, we
focus on (A.4). We need to establish a strong energy inequality. Since testing
(2.17) with a solution is not possible, we first approximate it with respect to
the space variable. By Theorem 3.1 there exists vj ∈ L∞(0, T ; C∞c (Ω)) such
that

(2.18) ∇vj M−→ ∇u modularly in LM (Q) and vj → u strongly in L2(Q).

Hence we shall test with a function of the form

(2.19) uj,ε = Kε ∗ (Kε ∗ vj1(s0,s))

with K ∈ C∞c (R), K(τ) = K(−τ),
	
RK(τ) dτ = 1 and defining Kε(t) =

(1/ε)K(t/ε), ε < min{s0, T − s}. Thus

(2.20)

s�

s0

�

Ω

(u ∗Kε) · ∂t(vj ∗Kε) dx dt =
�

Q

A · ∇uj,ε dx dt−
�

Q

fuj,ε dx dt.

By (2.18) we can easily let j →∞. Indeed, the left-hand side of (2.20) can
be handled since it is possible to rewrite it as

	
Q((∂tK

ε) ∗ Kε ∗ u)vj dx dt
and hence the limit passage is obvious. Note that for all 0 < s0 < s < T ,

(2.21)

s�

s0

�

Ω

(Kε ∗ u) · ∂t(Kε ∗ u) dx dt =

s�

s0

1

2

d

dt
‖Kε ∗ u‖2L2(Ω) dt

= 1
2‖K

ε ∗ u(s)‖2L2(Ω) −
1
2‖K

ε ∗ u(s0)‖2L2(Ω).

Letting ε → 0 yields for almost all s0, s, namely for all Lebesgue points of
the function u(t), the identity

(2.22) lim
ε→0

s�

s0

�

Ω

(u ∗Kε) · ∂t(u ∗Kε) = 1
2‖u(s)‖2L2(Ω) −

1
2‖u(s0)‖2L2(Ω).
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Consider now the term
T�

0

�

Ω

A · (Kε ∗ ((Kε ∗ ∇u)1(s0,s))) dx dt =

s�

s0

�

Ω

(Kε ∗A) · (Kε ∗ ∇u) dx dt.

Both the sequences {Kε ∗ A} and {Kε ∗ ∇u} converge in measure in Q by
Proposition A.5. Moreover�

Q

(M(x,∇u) +M∗(x,A)) dx dt <∞.

Hence by Proposition A.6 the sequences {M∗(x,Kε ∗ A)} and {M(x,Kε ∗
∇u)} are uniformly integrable and with the help of Lemma A.2 we have

Kε ∗ ∇u M−→ ∇u modularly in LM (Q),

Kε ∗A M∗−−→ A modularly in LM∗(Q).

Proposition A.4 allows us to conclude

(2.23) lim
ε→0

s�

s0

�

Ω

(Kε ∗A) · (Kε ∗ ∇u) dx dt =

s�

s0

�

Ω

A · ∇u dx dt.

Letting ε→ 0+ on the right-hand side is obvious. Hence we obtain

(2.24) 1
2‖u(s)‖22 − 1

2‖u(s0)‖22 +
�

Qs

A · ∇u dx dt =
�

Qs

fu dx dt

for almost all 0 < s0 < s < T . For further considerations we need to know
whether this holds for s0 = 0, hence let s0 → 0. Thus, we need to establish
(1.11).

We shall observe that using the approximate equation we can estimate
the sequence {dun/dt} uniformly (with respect to n) in the space L1(0, T ;

W−r,2(Ω)), where r > d/2 + 1. Consider ϕ ∈ L∞(0, T ;W r,2
0 (Ω)),

‖ϕ‖
L∞(0,T ;W r,2

0 )
≤ 1 and observe that〈

dun

dt
, ϕ

〉
=

〈
dun

dt
, Pnϕ

〉
= −

�

Ω

An · ∇(Pnϕ) dx+
�

Ω

f · Pnϕdx.

Since the orthogonal projection is continuous in W r,2
0 (Ω) and W r−1,2(Ω) ⊂

L∞(Ω), we estimate as follows:

(2.25)
∣∣∣ T�

0

�

Ω

An · ∇(Pnϕ) dx dt
∣∣∣ ≤ T�

0

‖An‖L1(Ω)‖∇(Pnϕ)‖L∞(Ω) dt

≤ c
T�

0

‖An‖L1(Ω)‖Pnϕ‖W r,2
0
dt ≤ c‖An‖L1(Q)‖ϕ‖L∞(0,T ;W r,2

0 )
.
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From (2.15) and Lemma A.3 we conclude that there exists a monotone, con-
tinuous function L : R+ → R+, with L(0) = 0, independent of n, such that

s2�

s1

‖An‖L1(Ω) ≤ L(|s1 − s2|)

for all s1, s2 ∈ [0, T ]. Consequently, (2.25) gives∣∣∣∣ s2�
s1

〈
dun

dt
, ϕ

〉
dt

∣∣∣∣ ≤ L(|s1 − s2|)

for all ϕ with suppϕ ⊂ (s1, s2) ⊂ [0, T ] and ‖ϕ‖
L∞(0,T ;W r,2

0 )
≤ 1. Since

(2.26) ‖un(s1)− un(s2)‖W−r,2 = sup
‖ψ‖

W
r,2
0
≤1

∣∣∣∣〈s2�
s1

dun(t)

dt
, ψ

〉∣∣∣∣
we have

(2.27) sup
n∈N
‖un(s1)− un(s2)‖W−r,2 ≤ L(|s1 − s2|),

so the family of functions un : [0, T ] → W−r,2(Ω) is equicontinuous. More-
over, it is uniformly bounded in L∞(0, T ;L2(Ω)) and hence {un} is rela-
tively compact in C([0, T ];W−r,2(Ω)) with limit u ∈ C([0, T ];W−r,2(Ω)).
Thus there exists a sequence {si0}i with si0 → 0+ as i→∞ such that

(2.28) u(si0)
i→∞−−−→ u(0) in W−r,2(Ω).

The limit above coincides with the weak limit of {u(si0)} in L2(Ω), which
yields

(2.29) lim inf
i→∞

‖u(s0)‖L2(Ω) ≥ ‖u0‖L2(Ω).

We infer from (2.12) that for any Lebesgue point s of u,

(2.30) lim sup
n→∞

�

Qs

An · ∇un dx dt

= 1
2‖u0‖22 − lim inf

k→∞
1
2‖u

n(s)‖22 + lim
n→∞

�

Qs

fun dx dt

≤ 1
2‖u0‖22 − 1

2‖u(s)‖22 +
�

Qs

fu dx dt

≤ lim inf
i→∞

(
1
2‖u(si0)‖22 − 1

2‖u(s)‖22
)

+
�

Qs

fu dx dt

= lim
i→∞

s�

si0

�

Ω

A · ∇u dx dt =

s�

0

�

Ω

A · ∇u dx dt,

which proves (A.4), and Lemma A.7 allows us to complete the proof.
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3. Approximation. In this section we focus on the density of com-
pactly supported smooth functions with respect to the modular topology.
Fundamental studies in this direction are due to Gossez for classical Or-
licz spaces and elliptic equations [9, 10]. Similar considerations for isotropic
x-dependent N -functions are due to Benkirane et al. [1]; see also [13] for the
anisotropic case with an application to elliptic problems. Note that the main
idea of the current approximation is analogous to [13]. However, Gwiazda
et al. approximate the truncated functions which are appropriate test func-
tions in the elliptic equation considered. This is not the case for parabolic
problems. Hence the approximation theorem below is under weaker assump-
tions and the dependence on time is taken into account. Since this result is
essential for proving existence of weak solutions, we include the details for
completeness.

Theorem 3.1. If u ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)) and if

∇u ∈ LM (Q) then there exists a sequence vj∈L∞(0, T ; C∞c (Ω)) satisfying

(3.1) ∇vj M−→ ∇u modularly in LM (Q) and vj → u strongly in L2(Q).

Proof. For the Lipschitz domain Ω there exists a finite family {Ωi} of
star-shaped Lipschitz domains such that

Ω =
⋃
i∈J

Ωi

(cf. [21]). We introduce a partition of unity θi with 0 ≤ θi ≤ 1, θi ∈ C∞c (Ωi),
supp θi = Ωi,

∑
i∈J θi(x) = 1 for x ∈ Ω and define the truncation operator

T`(u) as follows:

(3.2) T`(u) =


u if |u| ≤ `,
` if u > `,

−` if u < −`.
Define Qi := (0, T )×Ωi. Obviously

T`(u) ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)), ∇T`u ∈ LM (Q)

and for each i ∈ J ,

θi · T`(u) ∈ L∞(Qi) ∩ L1(0, T ;W 1,1
0 (Ωi)) ∩ L∞(0, T ;L2(Ωi)).

Introducing the truncation of u was necessary to have

∇T`(u) · θi + T`(u) · ∇θi = ∇(T`(u) · θi) ∈ LM (Qi).

Without loss of generality assume that all Ωi are star-shaped domains with
respect to the ball B(0, R). We define, for (t, x) ∈ (0, T )×Ω,

(3.3) Sδ(θiT`(u))(t, x) :=
1

1− δ/R

�

Q

Sδ(x− y)θiT`(u)(t, (1− δ/R)y) dy.
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Our aim is to show that there exists a constant λ > 0 such that

(3.4) lim
l→∞

lim
δ→0+

%M,Qi

(
∇u−∇Sδ(θiT`(u))

λ

)
= 0.

For this purpose we introduce a sequence of simple functions

ξn(t, x) :=
n∑
j=1

αnj 1Gj (t, x), αnj ∈ R,
n⋃
j=1

Gj = Q,

which converges to∇(θi·T`(u)) modularly in LM (Q). Moreover, let λ0, λ1, λ2

be some constants which we specify later such that

(3.5) %M,Qi

(
∇u−∇Sδ(θiT`(u))

λ

)
≤ λ0

λ
ρM,Qi

(
Sδ∇(θiT`(u))− Sδξn

λ0

)
+
λ0

λ
ρM,Qi

(
∇(θiT`(u))− ξn

λ0

)
+
λ1

λ
ρM,Qi

(
Sδξn − ξn

λ1

)
+
λ2

λ
%M,Qi

(
∇u−∇(T`(u)θi)

λ2

)
= I1 + I2 + I3 + I4.

Consider first I3. The existence of a sequence ξn is provided by Lemma A.1.
Let Bδ := {y ∈ Ω : |y| < δ}. Then

(3.6) Sδξn − ξn=
�

Bδ

Sδ(y)

n∑
j=1

(
αnj 1Gj (t, (1−δ/R)(x− y))−αnj 1Gj (t, x)

)
dy

and the Jensen inequality and Fubini theorem yield

(3.7) ρM,Qi

(
Sδξn(t, x)− ξn

λ1

)
=

�

Q

M

(
x,

1

λ1

�

B1

S(y)
n∑
j=1

(
αnj 1Gj (t, (1−δ/R)(x−δy))−αnj 1Gj (t, x)

)
dy

)
dt dx

≤
�

B1

S(y)

( �

Q

M

(
x,

1

λ1

n∑
j=1

αnj
(
1Gj (t, (1−δ/R)(x−δy))−1Gj (t, x)

))
dt dx

)
dy.

Note that
{

1
λ1

∑n
j=1 α

n
j

(
1Gj (t, (1 − δ/R)(x − δy)) − 1Gj (t, x)

)
dt dx

)}
δ>0

converges a.e. in Q to zero as δ → 0+ and

(3.8) M

(
x,

1

λ1

n∑
j=1

αnj
(
1Gj (t, (1− δ/R)(x− δy))− 1Gj (t, x)

))

≤ sup
|z|=1

M

(
x,

1

λ1

n∑
j=1

αnj z

)
.
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Assumption (1.9) implies that the right-hand side of (3.8) is integrable,
hence the Lebesgue dominated convergence theorem shows that I3 vanishes
as δ → 0+. Lemma 3.2 allows us to estimate I1 on each Ωi as follows:

(3.9) I1 =
λ0

λ
ρM,Qi

(
Sδ(∇(θiT`(u))− ξn)

λ0

)
≤ cρM,Qi

(
∇(θiT`(u))− ξn

λ0

)
and hence by Lemma A.1 there exists a constant λ0 such that

lim
n→∞

(I1 + I2) = 0.

Moreover, as `→∞ we observe that

T`(u)→ u strongly in L1(0, T ;W 1,1
0 (Ω))

and hence also, at least for a subsequence, almost everywhere. To find a
uniform estimate we observe that M(x,∇T`(u(t, x))) ≤ M(x,∇u(t, x)) a.e.
in Q. Indeed, T`(u) and u coincide for |u| ≤ ` and on the remaining two sets,

where T`(u) is equal to ` or −`, we have T`(u) ∈ L1(0, T ;W 1,1
0 (Ω)), then

∇T`(u) is almost everywhere equal to zero. Consequently,M(x,∇T`(u(t, x)))
is uniformly integrable, which combined with pointwise convergence yields

∇T`(u)→ ∇u modularly in LM (Q)

as `→∞, hence there exists a constant λ2 such that lim`→∞ I4 = 0. Finally,
choosing λ > max{3λ0, 3λ1, 3λ2}, letting first δ → 0+, then n → ∞ and
`→∞ we arrive at (3.4).

Strong convergence in L2 is straightforward, since an N -function M(x, a)
= |a|2 satisfies the ∆2-condition, and strong and modular convergence co-
incide.

Lemma 3.2. Let M be an N -function satisfying condition (M), let S
and Sδ be given by (2.2), and assume that Ω is a star-shaped domain with
respect to a ball B(0, R) for some R > 0. Define a family of operators by

(3.10) Sδz(t, x) := (1− δ/R)−1
�

Ω

Sδ(x− y)z(t, (1− δ/R)y) dy.

Then there exists a constant c > 0 (independent of δ) such that

(3.11)
�

Q

M(x,Sδz(t, x)) dx dt ≤ c
�

Q

M(x, z(t, x)) dx dt

for every z ∈ LM (Q) ∩ L∞(0, T ;L1(Ω)).

Proof. Since Ω is a star-shaped domain with respect to B(0, R), for each
λ ∈ (0, 1) we have

(1− λ)x+ λy ∈ Ω for each x ∈ Ω, y ∈ B(0, R).

Hence for δ < R we may choose λ = δ/R and conclude that

(1− δ/R)Ω + δB(0, 1) ⊂ Ω.
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Let Sδz(t, x) be defined by (3.10). Since (1− δ/R)Ω + δB(0, 1) ⊂ Ω,
we have Sδz ∈ L∞(0, T ; C∞c (Ω)). For every δ > 0 there exists N = N(δ)
such that a family {Dδ,k}Nk=1 of closed cubes with disjoint interiors and edge

length δ covers Ω, i.e. Ω ⊂
⋃N
k=1Dδ,k. Hence

(3.12)

T�

0

�

Ω

M(x,Sδz(t, x)) dx =
N∑
k=1

T�

0

�

Dδ,k∩Ω
M(x,Sδz(t, x)) dx dt.

For each δ, k we denote by Gδ,k a cube with edge length 2δ and concentric
with Dδ,k. Note that if x ∈ Dδ,k, then there exist 2d cubes Gδ,k such that
x ∈ Gδ,k. Define

(3.13) mδ
k(ξ) := inf

(t,x)∈((0,T )×Gδ,k)∩Q
M(x, ξ) ≤ inf

(t,x)∈((0,T )×Dδ,k)∩Q
M(x, ξ)

and

(3.14) αk(t, x, δ) :=
M(x,Sδz(t, x))

mδ
k(Sδz(t, x))

.

Then

(3.15)

T�

0

�

Ω

M(x,Sδz(t, x)) dx dt =

N∑
k=1

T�

0

�

Dδ,k∩Ω
αk(t, x, δ)m

δ
k(Sδz(t, x)) dx dt.

We aim to estimate αk(t, x, δ), and the main tool will be (1.8), the regularity
of M with respect to x. Let (tk, xk) be the point where the infimum of
M(x, ξ) in (0, T )×Gδ,k is attained. Then

(3.16) αk(t, x, δ) =
M(x,Sδz(t, x))

M(xk,Sδz(t, x))
≤ |Sδz(t, x)|

H

ln 1
|x−xk| .

Without loss of generality one can assume that ‖z‖L∞(0,T ;L1(Ω)) ≤ 1. By
Hölder’s inequality (1.5) we obtain, for δ < R,

|Sδz(t, x)| ≤
∣∣∣∣ 1

δd

(
1− δ

R

)−1

sup
B(0,1)

|S(y)|
�

Ω

1B(0,δ)(y)z

(
t,

(
1− δ

R

)
y

)
dy

∣∣∣∣
(3.17)

≤ 2

δd
sup
B(0,1)

|S(y)| ‖z‖L∞(0,T ;L1(Ω)) ≤
c

δd
.

Since x ∈ Dδ,k and xk ∈ Gδ,k we have |x − xk| ≤ δ
√
d and for sufficiently

small δ, e.g. δ < 1/(2
√
d) with the use of (3.17) we obtain

|Sδz(t, x)|
H

ln 1
δ
√
d ≤ (cδ−d)

H

ln 1
δ
√
d ≤ c

H
ln 2 · d

dH
ln 4 (eln δ

√
d)

dH

ln δ
√
d(3.18)

≤ d
dH
ln 4 c

H
ln 2 edH =: C.
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Consequently,

(3.19) |αk(t, x, δ)| ≤ C.
Define M̃(x, ξ) := maxkm

δ
k(ξ) where the maximum is taken with respect to

all the sets (0, T ) × Gδ,k. Obviously, M̃(x, ξ) ≤ M(x, ξ) for all (t, x) ∈ Q.
Using the uniform estimate (3.19) and the Jensen inequality we have

(3.20)
�

Q

M(x,Sδz(t, x)) dx dy ≤ C
N∑
k=1

T�

0

�

Dδ,k

mδ
k(Sδz(t, x)) dx dt

≤ C
N∑
k=1

�

B(0,δ)

|Sδ(y)| dy
T�

0

�

(1−δ/R)Gδ,k

mδ
k(z(t, x)) dx dt

≤ 2dC
�

Q

M̃(x, z(t, x)) dx dt ≤ 2dC
�

Q

M(x, z(t, x)) dx dt,

which completes the proof.

Appendix A. Auxiliary facts

Lemma A.1. Let S be the set of all simple, integrable functions on Q,
and let (1.9) hold. Then S is dense with respect to the modular topology in
LM (Q).

For the proof in the isotropic case see [20, Theorem 7.6]. The anisotropic
case follows exactly the same lines.

Below we formulate some facts concerning convergence in generalized
Musielak–Orlicz spaces. For the proofs see [14].

Lemma A.2. Let zj : Q → Rd be a measurable sequence. Then zj
M−→ z

in LM (Q) modularly if and only if zj → z in measure and there exists some
λ > 0 such that the sequence {M(x, λzj)} is uniformly integrable in L1(Q),
i.e.,

lim
R→∞

(
sup
j∈N

�

{(t,x): |M(x,λzj)|≥R}

M(x, λzj) dx dt
)

= 0.

Lemma A.3. Let M be an N -function with
	
QM(x, zj) dx dt ≤ c for all

j ∈ N. Then the sequence {zj} is uniformly integrable in L1(Q).

Proposition A.4. Let M be an N -function and M∗ its complementary
function. Suppose that the sequences ψj : Q → Rd and φj : Q → Rd are

uniformly bounded in LM (Q) and LM∗(Q) respectively. Moreover, ψj
M−→ ψ

modularly in LM (Q) and φj
M∗−−→ φ modularly in LM∗(Q). Then ψj ·φj → ψ·φ

strongly in L1(Q).
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Proposition A.5. Let Kj be a standard mollifier, i.e., K ∈ C∞(R), K
has a compact support and

	
RK(τ) dτ = 1, K(t) = K(−t). Define Kj(t) =

jK(jt). Moreover, let ∗ denote convolution in the variable t. Then for any
function ψ : Q→ Rd such that ψ ∈ L1(Q),

(%j ∗ ψ)(t, x)→ ψ(t, x) in measure.

Proposition A.6. Let Kj be defined as in Proposition A.5. Given an
N -function M and a function ψ : Q → Rd such that ψ ∈ LM (Q), the
sequence {M(%j ∗ ψ)} is uniformly integrable.

The next lemma is the main tool for showing that the limits of approx-
imate sequences are in the graph A provided that the graph is maximal
monotone. This lemma was formulated in [3] (see also [22]).

Lemma A.7. Let A be a maximal monotone M -graph. Assume that there
are sequences {An}∞n=1 and {∇un}∞n=1 defined on Q such that:

(∇un(t, x), An(t, x)) ∈ A(t, x) a.e. in Q,(A.1)

∇un ∗
⇀ ∇u weakly∗ in LM (Q),(A.2)

An
∗
⇀ A weakly∗ in LM∗(Q),(A.3)

(A.4) lim sup
n→∞

�

Q

An · ∇un dx dt ≤
�

Q

A · ∇u dx dt.

Then
(∇u(t, x), A(t, x)) ∈ A(t, x) a.e. in Q.

Finally we summarize some properties of selections.

Lemma A.8. Let A(t, x) be a maximal monotone M -graph satisfying
(A1)–(A5) with a measurable selection Ã : Q× Rd → Rd. Then:

(a1) Dom Ã(t, x, ·) = Rd a.e. in Q;
(a2) Ã is monotone, i.e. for every ξ1, ξ2 ∈ Rd and a.a. (t, x) ∈ Q,

(A.5) (Ã(t, x, ξ1)− Ã(t, x, ξ2)) · (ξ1 − ξ2) ≥ 0;

(a3) there are nonnegative k ∈ L1(Q), c∗ > 0 and an N -function M
such that for all ∇u ∈ Rd,

(A.6) Ã · ∇u ≥ −k(t, x) + c∗(M(x,∇u) +M∗(x, Ã)).

Moreover, let U be a dense set in Rd and (B, Ã(t, x,B)) ∈ A(t, x) for a.a.
(t, x) ∈ Q and for all B ∈ U . Let also (∇u,A) ∈ Rd×Rd. Then the following
conditions are equivalent:

(i) (A− Ã(t, x,B)) · (∇u−B) ≥ 0 for all (B, Ã(t, x,B)) ∈ A(t, x),

(ii) (∇u,A) ∈ A(t, x).
(A.7)

For the proof see [5].
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[16] P. Gwiazda and A. Świerczewska-Gwiazda, Parabolic equations in anisotropic Orlicz
spaces with general N-functions, in: Parabolic Problems. The Herbert Amann Fest-
schrift, Progr. Nonlinear Differential Equations Appl. 60, Birkhäuser, 2010, 301–311.
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