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BLOW-UP FOR THE FOCUSING ENERGY CRITICAL
NONLINEAR SCHRODINGER EQUATION WITH
CONFINING HARMONIC POTENTIAL

BY

XING CHENG (Hefei) and YANFANG GAO (Fuzhou)

Abstract. The focusing nonlinear Schrédinger equation (NLS) with confining har-
monic potential

0 + 1 Au — L z|Pu = —Ju|* Dy, oz e RY
is considered. By modifying a variational technique, we shall give a sufficient condition
under which the corresponding solution blows up.

1. Introduction. The NLS with confining harmonic potential

(1.1) 0 + 3 Au — 3|z|Pu = pluffPu, z € RY,
has been used to model the Bose-Einstein condensation (see for example
[2, B]). The most physically relevant case is p = 2, d = 3. Here u is a
complex-valued function defined on some spatial-time slab I x R, d > 3,
4/d < p < 4/(d—2), p = £1, with g = 1 being the defocusing case and
u = —1 the focusing case. There are many mathematical works on the

Cauchy problem for this equation (see, e.g., [1I, 16, 10, 1T}, T2, [13]).
Set the initial datum

(1.2) u(0,x) = up(z).
The natural choice of the initial space is
Y.={pecH 2pe L?}
endowed with the norm
ol = 19l + llall3
It is easily seen that X < L? by the standard uncertainty principle

2
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For ug € X, the solution u obeys two conservation laws, i.e.,

(1.3)  Mass conservation: M (u(t)) := S lu(t, z)|? dz = M (uyp),

Rd
(1.4)  Energy conservation:
1 1 2
E(u(t)) := de(Q\VuF + §\m|2\u|2 - p+2|u]p+2) dr = E(ug).

By saying that u : [0,7) x R? — C is a solution of 7, we mean
u € Cy([0,T); X) where T is the maximal existence time, and u satisfies the
Duhamel formula

t

u(t) = e 3tA 1y 4 i (3D AP () dr, vee [0,T).

0
If T = oo, we say u globally exists. We say that u blows up in finite time if
T < oo. For 4/d < p < 4/(d — 2), global existence of the solution for the
Cauchy problem of with ¢ = 1is a consequence of energy conservation,
while blow-up occurs for the focusing case (u = —1). The latter case has been
proven in [12], where the sufficient condition for blow-up is M (ug)+ F(ug) <
M(p) + E(p), W&O < 0 and the virial quantity less than 0. Here
© is the solution to the elliptic equation

(1.5) —34p+glele+o=plp, 4/d<p<4/(d-2).

Concerning p = 4/(d — 2), the energy-critical case, it has been shown in
[6,13] that the problem (L.1))—(L.2) for radial solutions with 1 = 1 is globally
well-posed.

We call the energy-critical NLS when p = 4/(d — 2), since if we
abandon the harmonic potential for a moment, then and the H'-norm
of the initial data are both preserved by the scaling

ux(t, 2) = N2 X2 ).
Later, we shall use the transform
ax(t,z) = A2 (8, Ax).

Blow-up for the energy-critical case with p = —1 is expected to exist
similarly to the focusing energy-critical NLS without harmonic potential
([7,[4]) and the focusing subcritical case. Recall that from [7], 4] finite time
blow-up occurs provided the initial datum wug satisfies E(ug) < E(W) and
IVuo||r2 > ||[VW||12. Here E is the corresponding energy functional, and
W is the solution to the elliptic equation

(1.6) — AW = |[W Y2y,
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Note that there is no non-trivial solution to the equation
—1AD + Lz = |9 (T,

So the energy constraint in our case cannot be given by the correspond-
ing energy of the ground state. In this paper, by employing the variational
idea of [5] (see also [9]), we shall prove that the energy constraint can be
represented by ||[VWW|| 2 and derive a sufficient condition for the solution of
f to blow up in finite time. The key ingredient is to reduce the min-
imization problem for the non-coercive energy functional to minimization of
a positive functional. Inspiration comes from an interesting observation. For
ease of exposition, we define some functionals:
2*> dx,

_ 1 2, L o 2_3
H(0) = | (2|V¢r + 5l ol = ol

Rd
K(¢) = | (IVe]* + |2*|¢]* — 2/¢|*) da,
(1.7) Re )
Q(¢) = | (2/Ve|* — 2z |¢|* — 4]¢|*") da,
]Rd
Ko(¢) = | (IVo|* —2/¢|*") da.
]Rd
Define
(1.8) me = inf{H($); 0 # ¢ € X, K(¢) = 0}.

Observe that Q(u) is the second derivative of the virial quantity ||zul|3.
Moreover,

Q(u) = 2K (u) — 4l|zull3,
which implies that if £(u) < 0, so does Q(u). This key observation allows
us to consider blow-up in the set
K={¢ e X; H(p) < me, K(¢p) < 0}.

Otherwise, one should add the constraint

{¢ € X H(g) <me, K(¢) <0, Q(¢) <0}

as in [12] for subcritical powers. We shall prove that m. > 0 and exactly
o 217(1/2

me = 2| VW[5
We now present our main result.

THEOREM 1. Let ug € X,p = 4/(d — 2) and let u be the corresponding
solution to (1.1)—(1.2]). Assume uy € K. Then u blows up in finite time.

In Section 2, we shall find the value of m,, derive some properties of u
in K, and then prove Theorem
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Notation. Throughout, we always denote 2* = dQ_—dQ; H' is the Sobolev

space with norm defined by |- || 71 = [|F~!|¢|F || 2, where F is the Fourier
transform and F~! is its inverse.

2. The value of m. and proof of Theorem In this section, we in-
vestigate the minimization problem , show properties of solutions in K,
and finally prove Theorem

To find the value of m. in , we define

1 2 .
J(9) = H(9) — ;K (9) = dRSd [ dax.
LEMMA 1. m, =inf{J(¢); 0 # ¢ € X, K(¢) < 0}.
Proof. Denote the above infimum by m/. We first prove m. < m/. Denote
A={g:0#£90€ X, K(¢)=0}, B={¢;0#¢ecX K(¢) <0}
For each ¢ € B, K(¢) < 0. Thus, H(¢) < T (¢). Set
0M(@) = A 26 (A).
Since limy o K(¢") = oo, there exists a \g € (0,1] such that K(¢*) = 0,
that is, ¢ € A. Therefore, we get
me < J($) = H(¢™°) < H(9) < T(9).

Thus, m. < m’.
Conversely, given ¢ € A, we have ¢ € B and H(¢) = J(¢). Thus,
m' < me. m

The next lemma says that the infimum of J(¢) on the set {K(¢) < 0}
is the same as that on the set {[Co(¢) < 0}.

LEMMA 2. m. = inf{TJ(¢); 0 # ¢ € X, Ko(¢) < 0}.

Proof. Denote the above infimum by m. By the definition, ICo(¢) < K(¢)
for all ¢ # 0. Hence, m < me.
On the other hand, for all ¢ with Ky(¢) < 0, we have

Jim (%) = Ko(¢) <0.

Thus, there exists a A € (1,00) such that /C(d):\) <0.S0, me<m. =
From Lemmas 1 and 2, one can derive the value of m..

PROPOSITION 1. Let m. be defined as in (1.8). Then
21—d/2
Me = —

dt2
where W satisfies the equation — AW = W=z,

VW3,
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Proof. Let m be as in the proof of Lemma 2. It is obvious that

" da) [2§Rd o] T

Next, we shall show by homogeneity and scaling ¢ — pu¢ that m < m
Indeed, for all 0 < € (< 1), there exists 0 # ¢ € X such that

fgo |V¢12]232
2 (0 02

> —
m o;gqslgzd( S

(21) e~ (§|¢12* )[

23(8 2dx)[w(“¢)r*2’ Y > 0.
g 2
Taking
1 SRd|v¢|2 1/(2*-2)
P m) {25Rd|¢>2*] ’
we then have
J \V(/«b)z} 2 e
R e =1-—, K 0
b e o)<

Thus, by (2.1) and Lemma 2, we obtain

2 "
mte>S(1—e/m) | luol” >m—e
Rd
This implies that m > m. Hence

2755
= ( S 62 d >[§Rd|V¢V r -2
076(1562 d 2 \pa [0
21—d/2 B d  9l-d/2
= inf [ ] = e
0£¢ex  d | |l2 d
where Cy is the sharp constant in the Sobolev inequality
1912 < Cal V|l L2,
which is attained at W that is the solution of the equation

d+2
_A(P ('0 d—
By a direct calculation, we obtain
21 dj2
me = VW3- =
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Proof of Theorem To prove the theorem, we first establish some
properties of the solution for ug € K. The argument for the theorem uses
the standard convexity method (see [§]).

LEMMA 3. Let ug € X and let u be the corresponding solution to (|1.1)—
(1.2) with mazimal life-span I. If ug € K, then u(t) € K for allt € I.

Proof. Suppose for contradiction that there exists t; € I such that
K(u(t1)) > 0. Then by the continuity of the flow, there exists 0 < to < 1
such that /C(u(t2)) = 0. Hence by the definition of m., E(u(t2)) > m.. But
the energy of the solution is conserved, which is a contradiction. =

LEMMA 4 (Coercivity). Assume ug € K. Then K(u(t)) < 2(E(u) — me)
forallt e 1.

Proof. By Lemma u(t) € K for all t € I. Set u(t, z) = A4=2/2u(t, \x).
Note that

. AN
(2.2) )l\li%lC(u ) = o0.

Since K(u) < 0, it follows from (2.2) that there exists A € (0,1) such that
K(u*) = 0. This implies E(u*) > m,. Thus,

K(u) = K(u) - K(u?) = 2(E(u) — (")) < 2(E(u) —m,). a
Proof of Theorem [ Suppose for contradiction that u is global. Define
the virial quantity
V(w)(t) = | |ePlu(t,z)|? dz.
Rd
By a direct computation, we have

d _
dtV( ) =2Im S ux - Vudz,
Rd
d? .
o2 —V(t) = S 2|Vul? = 2|z2|u(t, z)|? — 4lu(t, z)|*) dz = 2K (u) — 4V.

Rd

By an ODE technique and Lemma 4] for 0 < ¢ < 7/2 we obtain
t
V(t) = V(0) cos(2t) + 3V (0) sin(2t) + | K(u(s)) sin[2(t — s)] ds
0
(

< V(0) cos(2t) + 2V (0) sin(2t) + (me — E)(cos(2t) — 1)
< V(0) cos(2t) + %V( ) sin(2t).

It is easily seen that V() becomes negative after ¢+ = 7/4 in both cases
V(0) < 0 and V(0) > 0. But this is impossible. Thus, u must blow up in
finite time. m



ENERGY-CRITICAL NLS 149

REFERENCES

[1] R. Carles, Remarks on nonlinear Schrodinger equations with harmonic potential,
Ann. Henri Poincaré 3 (2002), 757-772.

[2] C. Cohen-Tannoudji, Condensation de Bose—Finstein des gaz atomiques ultra froids;
effets des interactions, Cours au College de France, Année 1998-1999, http://www.
lkb.ens.fr/ cct/.

[3] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose—Einstein
condensation in trapped gases, Rev. Modern Phys. 71 (1999), 463-512.

[4] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the
energy-critical, focusing NLS in the radial case, Invent. Math. 166 (2006), 645-675.

[5] S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing
nonlinear Klein—-Gordon equation, Anal. PDE 4 (2011), 405-460.

[6] R. Killip, M. Visan and X. Zhang, Energy-critical NLS with quadratic potentials,
Comm. Partial Differential Equations 134 (2009), 1531-1565.

[7]  R.Killip and M. Visan, Focusing NLS in dimensions five and higher, Amer. J. Math.
132 (2010), 361-424.

[8] T. Ogawa and Y. Tsutsumi, Blow-up of H'-solution for the nonlinear Schridinger
equation, J. Differential Equations 92 (1991), 317-330.

[9] L. E.Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic
equations, Israel J. Math. 22 (1975), 273-303.

[10]] P. H. Rabinowitz, On a class of nonlinear Schrédinger equations, Z. Angew. Math.
Phys. 43 (1992), 270-291.

[11] T. Tao, A pseudoconformal compactification of the nonlinear Schrodinger equation
and applications, arXiv:math/0606254v4.

[12]| J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrédinger
equations under a harmonic potential, Comm. Partial Differential Equations 30
(2005), 1429-1443.

[13] X. Zhang, Global well-posedness and scattering for 3D Schrédinger equations with
harmonic potential, Forum Math. 19 (2007), 633-675.

Xing Cheng Yanfang Gao (corresponding author)

Department of Mathematics School of Mathematics

University of Science and Technology of China and Computer Science

Hefei 230026, China Fujian Normal University

E-mail: chengx@mail.ustc.edu.cn Fuzhou, China, 350117

E-mail: gaoyanfang236@Qgmail.com

Received 9 November 2013;
revised 28 November 2013 (6070)


http://dx.doi.org/10.1007/s00023-002-8635-4
http://www.lkb.ens.fr/~cct/
http://www.lkb.ens.fr/~cct/
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1007/s00222-006-0011-4
http://dx.doi.org/10.2140/apde.2011.4.405
http://dx.doi.org/10.1353/ajm.0.0107
http://dx.doi.org/10.1016/0022-0396(91)90052-B
http://dx.doi.org/10.1007/BF02761595
http://dx.doi.org/10.1007/BF00946631
http://arxiv.org/pdf/math/0606254
http://dx.doi.org/10.1080/03605300500299539




	1 Introduction
	2 The value of mc and proof of Theorem 1
	REFERENCES

