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ON THE CLASSIFICATION

OF THE REAL FLEXIBLE DIVISION ALGEBRAS
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Abstract. We investigate the class of finite-dimensional real flexible division alge-
bras.

We classify the commutative division algebras, completing an approach by Althoen
and Kugler. We solve the isomorphism problem for scalar isotopes of quadratic division
algebras, and classify the generalised pseudo-octonion algebras. In view of earlier results
by Benkart, Britten and Osborn and Cuenca Mira et al., this reduces the problem of
classifying the real flexible division algebras to the normal form problem of the action of
the group G2 by conjugation on the set of positive definite symmetric linear endomorphisms
of R

7. A method leading to the solution of this problem is demonstrated.
In addition, the automorphism groups of the real flexible division algebras are de-

scribed.

1. Introduction. Let k be a field. A k-algebra is understood to be a
vector space A over k, endowed with a bilinear multiplication map A×A→
A, (x, y) 7→ xy. The algebra A is said to be a division algebra if A 6= {0}
and the linear endomorphisms La : A → A, x 7→ ax, and Ra : A → A,
x 7→ xa, are bijective for all a ∈ A r {0}. In case A is finite-dimensional,
this is equivalent to saying that A has no zero divisors, i.e. xy = 0 only if
x = 0 or y = 0. Finite-dimensional real division algebras are known to have
dimension either 1, 2, 4 or 8 (Hopf [10], Bott and Milnor [4], Kervaire [12]).
All algebras considered in this paper are assumed to be finite-dimensional.

We denote by A± the category of triples (X, •, [ , ]), where X is a vector
space over k, and • and [ , ] are commutative and anti-commutative algebra
structures on X respectively. Morphisms in A± are those linear maps that
respect both structures.

Given any k-algebra A, define [x, y] = xy− yx and x • y = xy+ yx. The
assignment A 7→ A± = (A, •, [ , ]) defines a functor ?± from the category of
k-algebras to A±, acting on morphisms identically. If char k 6= 2, then ?±

is an isomorphism of categories, with inverse (X, •, [ , ]) 7→ (X,µ), µ(x, y) =
1
2(x • y + [x, y]).
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Let K be a category, and X,Y ∈ K. Then [X] denotes the isomorphism
class of X, and Iso(X,Y ) denotes the set of isomorphisms from X to Y .
A cross-section for K/∼= is a set C ⊂ K with the property that for all X ∈ K
there exists a unique C ∈ C such that X ∼= C. A classification of K is an
explicit description of a cross-section for K/∼=.

Given a set X, I = IX denotes the identity map on X. We write In for
the identity matrix of size n×n. Given a linear operator T on a vector space
V over k, and λ ∈ k, we write Eλ = Eλ(T ) = ker(T − λIV ). If V is a Eu-
clidean vector space, Pds(V ) denotes the set of positive definite symmetric
endomorphisms of V .

An algebra is called flexible if x(yx) = (xy)x for all x and y. A class-
ification of the real flexible division algebras will in a natural way generalise
the famous theorems by Frobenius [9] and Zorn [17] stating that the asso-
ciative and alternative (1) real division algebras are classified by the sets
{R,C,H} and {R,C,H,O} respectively.

Recall that an algebra A is quadratic if it has an identity element 1 6= 0,
and the set {1, x, x2} is linearly dependent for all x ∈ A. It is known that
a real division algebra is quadratic if and only if it is power associative (2)
(Dieterich [6]). Hence, in particular every real alternative division algebra is
also quadratic.

From now on, unless otherwise stated, all algebras and vector spaces are
assumed to be real.

In any quadratic algebra B, the subset

ImB = {b ∈ B r R1 | b2 ∈ R1} ∪ {0} ⊂ B

of purely imaginary elements is a linear subspace of B, and B = R1⊕ ImB
(Frobenius [13]). We shall write α + v instead of α1 + v when referring to
elements in this decomposition.

Let V = (V, 〈 〉) be a finite-dimensional Euclidean space. A dissident

map on V is a linear map η : V ∧ V → V with the property that the set
{v, w, η(v∧w)} is linearly independent whenever {v, w} is. A dissident map
η on V is called flexible if 〈η(x ∧ y), x〉 = 0 for all x, y ∈ V . Note that this
is equivalent to 〈η(x ∧ y), z〉 = 〈x, η(y ∧ z)〉 for all x, y, z ∈ V .

A dissident triple (V, ξ, η) consists of a finite-dimensional Euclidean space
V , a linear form ξ : V ∧ V → R and a dissident map η : V ∧ V → V . The
class of dissident triples is given the structure of a category, denoted D,
by declaring as morphisms (V, ξ, η) → (V ′, ξ′, η′) those isometric (3) linear
maps σ : V → V ′ which satisfy both ξ = ξ′(σ ∧ σ) and ση = η′(σ ∧ σ).

(1) An algebra is alternative if any subalgebra generated by two elements is associative.

(2) That is, every subalgebra generated by a single element is associative.

(3) That is, satisfying 〈x, y〉 = 〈σ(x), σ(y)〉 for all x and y.
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Each dissident triple (V, ξ, η) ∈ D determines a quadratic division alge-
bra H(V, ξ, η) = R × V with multiplication

(α, v)(β,w) = (αβ − 〈v, w〉 + ξ(v ∧ w), αw + βv + η(v ∧ w)).

Defining (Hσ)(α, v) = (α, σ(v)) for morphisms σ : (V, ξ, η) → (V, ξ′, η′)
makes H a functor from D to the category Q of quadratic division alge-
bras (4).

Conversely, given a quadratic division algebra B = R1 ⊕ ImB, define
linear maps ̺ : B → R and ι : B → ImB such that b = ̺(b)1 + ι(b)
for any b ∈ B. Given x, y ∈ ImB, set 〈x, y〉 = −1

2̺(xy + yx), ξ(x ∧ y) =
1
2̺(xy−yx) and η(x∧y) = ι(xy). Now Osborn’s theorem [14, p. 204] asserts
that V = (ImB, 〈 〉) is a Euclidean space, and that η is a dissident map
on V . Therefore, the assignments I(B) = (V, ξ, η) and Iϕ : ImB → ImC,
(Iϕ)(x) = ϕ(x) for ϕ : B → C define a functor I : Q → D.

The following proposition summarises the main results by Osborn ([14],
cf. also [7]) in the language of categories.

Proposition 1.1. (i) The functor H : D → Q is an equivalence of cate-

gories, with quasi-inverse I : Q → D.

(ii) The quadratic division algebra H(V, ξ, η) is flexible if and only if

ξ = 0 and the dissident map η is flexible.

The categories of flexible quadratic division algebras and the correspond-
ing dissident triples will be denoted by Qfl and Dfl respectively. We shall
write only η as an abbreviation for (V, 0, η) ∈ Dfl, and refer to Dfl as the
category of flexible dissident maps.

A vector product π on a Euclidean space V is a flexible dissident map on
V with the additional property that if u, v ∈ V is an orthonormal pair, then
‖π(u∧ v)‖ = 1. Vector products correspond to alternative division algebras
under the functor H. Hence there exist unique (up to isomorphism) vector
products in dimensions 0, 1, 3 and 7 respectively. The automorphism group
of the 7-dimensional vector product is the exceptional Lie group G2.

Let B be a quadratic algebra, and λ a nonzero real number. Then the
scalar isotope of B determined by λ, denoted λB = (B, ⋆), is defined by

(α+ v) ⋆ (β + w) = (α+ λv)(β + λw), α, β ∈ R, v, w ∈ ImB.

Now λB is flexible if B is flexible [2], and it is obviously a division algebra
whenever B is.

Next, recall that sunC denotes the simple real Lie algebra of n × n
complex anti-hermitean matrices of trace zero, equipped with the anti-
commutative algebra structure [ , ]. For each δ ∈ R r {0}, the vector space

(4) Morphisms of quadratic algebras are assumed to preserve the identity element.
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su3C with the multiplication

(1) x ∗ y = δ[x, y] +
i

2

(

xy + yx− 2

3
tr(xy)I3

)

is a flexible division algebra [3] of dimension 8, which we denote by Oδ.
Benkart and Osborn call these algebras generalised pseudo-octonions, or
GP-algebras.

We now recall the main theorem in [2] by Benkart, Britten and Osborn.

Theorem 1.2 ([2, Theorem 1,4]). If A is a finite-dimensional real al-

gebra, then A is a flexible division algebra if and only if A has one of the

following forms:

(i) A is a commutative division algebra of dimension 1 or 2,
(ii) A is isomorphic to a scalar isotope λB of some quadratic real divi-

sion algebra B which is flexible,
(iii) A is a generalised pseudo-octonion algebra.

Although not explicitly stated in the theorem, it is proved in [2] that no
algebra could meet more than one of the above conditions (i)–(iii).

A classification of all two-dimensional division algebras, and hence in
particular of all commutative ones, is given in [11]. In Section 2 we give an
alternative solution, based on the approach of Althoen and Kugler [1].

It is easily shown, using Proposition 1.1, that the set {H(λπ3)}λ>0, i.e.
R × R3 with the multiplication

(α, v)(β,w) = (αβ − 〈v, w〉, αw + βv + λπ3(v ∧ w)),

classifies the flexible quadratic division algebras of dimension 4. Here π3

denotes a chosen vector product on R3.

In [5], Cuenca Mira et al. introduce vectorial isotopy, a method by which
all flexible quadratic division algebras are constructed. Using the language
of dissident maps, their main result can be formulated as follows (5).

Proposition 1.3. Let π : R
7 ∧R

7 → R
7 be a vector product , and η any

flexible dissident map on a Euclidean space V of dimension 7. Then

(i) For any ε ∈ GL(V ), ε∗η(ε ∧ ε) is a flexible dissident map.

(ii) η ∼= δ∗π(δ ∧ δ) = δπ(δ ∧ δ) for some δ ∈ Pds(R7).
(iii) For δ1, δ2 ∈ Pds(R7), δ1π(δ1 ∧ δ1) ∼= δ2π(δ2 ∧ δ2) if and only if

δ1 = σ−1δ2σ for some σ ∈ Aut(π).

Hence, classifying the flexible dissident maps in 7-dimensional Euclidean
space, and thereby the flexible quadratic division algebras of dimension 8,

(5) By ∗ we denote the adjoint operator.
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completely and irredundantly, is equivalent to solving the normal form prob-
lem for the right group action

(2) Pds(R7) × G2 → Pds(R7), (δ, σ) 7→ δ · σ = σ−1δσ

The principal theorem of the present article, Theorem 1.4, classifies the cat-
egory of all flexible division algebras up to the above normal form problem.

We denote by e1 = (1, 0) and e2 = (0, 1) the standard basis vectors in R
2.

We define the algebra AE(a, b) as the vector space R2 with multiplication in
the standard basis given by Table 1, and AF (a, b) as R2 with multiplication
given by Table 2.

Table 1. AE(a, b)

· e1 e2

e1 e1 ae1 + be2

e2 ae1 + be2 −e1

Table 2. AF (a, b)

· e1 e2

e1 e1 ae1 + be2

e2 ae1 + be2 e2

Theorem 1.4. Let N ∈Pds(R7) be a cross-section for Pds(R7)/G2, the

orbit set of the group action (2). Then the set

{R} ∪̇ {AE(a, b) | a > 0, b > (a2 + 1)/2 or a = 0, b ≥ 1/2}
∪̇ {AF (a, b) | a ≥ 1/2; b ≥ a; (a, b) 6= (1/2, 1/2)}
∪̇ {AF (a, b) | a, b < 0; a ≤ b ≤ 1/2a− 1/2}
∪̇ {λH(µπ3) | (λ, µ) ∈ (R r {0}) × R>0}
∪̇ {λH(δπ7(δ ∧ δ)) | (λ, δ) ∈ (R r {0}) ×N}
∪̇ {Oδ}δ>0

classifies the finite-dimensional real flexible division algebras.

The proof of Theorem 1.4 is given in Sections 2–3. The commutative
division algebras are classified in Section 2. In Section 3, we show that λA ∼=
µB if and only if λ = µ and A ∼= B for quadratic division algebras A and B
of dimension greater than 2. We also solve the irredundancy problem for the
generalised pseudo-octonions by showing that Oγ

∼= Oδ if and only if γ = ±δ.
A method for finding a cross-section for Pds(R7)/G2 is demonstrated in
Section 5. The complete solution to this problem, which is rather technical,
is postponed to a forthcoming publication.

As an additional information, we describe in Section 4 the automorphism
groups of the flexible division algebras.

2. Commutative division algebras. In this section, we complete the
classification of the commutative division algebras, based on the approach
of Althoen and Kugler [1].

We shall use the following result by Segre.
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Proposition 2.1 ([16, Theorem 1]). Every finite-dimensional real or

complex algebra with the property that x2 = 0 implies x = 0 has at least one

idempotent (6).

The same result is proved in [1] for real division algebras of dimension 2.
Accordingly, if A is a real commutative division algebra of dimension 2,

then it has a basis (u, v) such that the multiplication is given by Table 3,
where a, b, c, d ∈ R.

Table 3. Commutative division algebras

· u v

u u au + bv

v au + bv cu + dv

Proposition 2.2 ([1, Theorem 3]). An algebra given by Table 3 is a

division algebra if and only if

d2 < 4b

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

.

First, we consider the case when A has exactly one idempotent.

Lemma 2.3. Let A be a commutative division algebra of dimension 2,
and u ∈ A an idempotent. Then there exists an element w ∈ A such that

w2 = −u.
Proof. Let (u, v) be a basis for A such that the multiplication is given

by Table 3. If d = 0, Proposition 2.2 implies that 4b2c < 0 and hence c < 0.
Set w = (1/

√−c)v. Now suppose d 6= 0. Then, for an arbitrary element
w = αu+ βv, β 6= 0, in Ar span{u} we have

w2 = (αu+βv)2 = α2u2+2αβuv+β2v2 = (α2+2αβa+β2c)u+(2αβb+β2d)v.

Hence w2 = −u if and only if
{

α2 + 2αβa+ β2c = −1,

2αβb+ β2d = 0.

Using Proposition 2.2, we see that

α =

√

1

4ab/d− 4b2c/d2 − 1
, β = −2αb/d

solves the system.

The problem of determining the number of idempotents in a two-dimen-
sional division algebra is considered in [1]. However, the proposition on page

(6) Idempotents are understood to be non-zero.



FLEXIBLE DIVISION ALGEBRAS 7

629 there is stated incorrectly. An accurate version is given in [8, Prop. 3,
p. 5], from which the following lemma is an immediate consequence.

Lemma 2.4. An algebra determined by Table 3 has exactly one idempo-

tent if and only if either (2a− d)2 < 4c(1 − 2b) or d = 2a, b = 1/2.

Taking into account Proposition 2.2, Lemma 2.3 and Lemma 2.4, we
conclude that the basis (u, v) can be chosen in such a way that c = −1, d = 0
and either a2 + 1 < 2b or a = 0, b = 1/2. Moreover, if an algebra has such
a basis, it is a commutative division algebra with exactly one idempotent.

Recall that AE(a, b) denotes R2 with multiplication given by Table 1.

Proposition 2.5. (i) The set E = {AE(a, b) | a > 0, b > (a2 + 1)/2 or

a = 0, b ≥ 1/2} classifies the two-dimensional commutative division

algebras having exactly one idempotent.

(ii) Let a, b ∈ R, and suppose that the algebra AE(a, b) has exactly one

idempotent. Then Aut(AE(a, b)) = {I, (e1, e2) 7→ (e1,−e2)} if a = 0,
and Aut(AE(a, b)) = {I} otherwise.

Proof. Suppose that A = AE(a, b) and B = AE(a′, b′) each have pre-
cisely one idempotent and let ϕ :A→B be an isomorphism. Then ϕ(e1) = e1.
We have

(ϕ(e2))
2 = ϕ(e22) = −ϕ(e1) = −e1 = e22,

so

0 = (ϕ(e2))
2 − e22 = (ϕ(e2) − e2)(ϕ(e2) + e2)

and hence ϕ(e2) = ±e2.
If ϕ(e2) = e2, then ϕ = I, and (a′, b′) = (a, b).
If ϕ(e2) = −e2, then because

ϕ(e1e2) = ϕ(ae1 + be2) = ae1 − be2,

ϕ(e1)ϕ(e2) = −e1e2 = −a′e1 − b′e2,

it follows that (a′, b′) = (−a, b). Conversely, it is clear that AE(a, b) →
AE(−a, b), (e1, e2) 7→ (e1,−e2), is an isomorphism. In particular, assum-
ing A and B to be division algebras, this yields the first statement of the
proposition.

From the above it is also clear that (e1, e2) 7→ (e1,−e2) is an auto-
morphism of AE(a, b) if and only if a = 0, which gives the second state-
ment.

Now, we consider the several idempotents case. Since all idempotents
must be pairwise non-proportional, every algebra with at least two idempo-
tents has a basis consisting of idempotents. Thus, in view of Proposition 2.2,
every commutative division algebra of this type is isomorphic to AF (a, b)
for some (a, b) ∈ K = {(a, b) ∈ R2 | ab > 1/4}.
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Lemma 2.6 (see also [1, pp. 629–630]). The algebra AF (a, b), (a, b) ∈ K,
has precisely two idempotents if a = 1/2 or b = 1/2, and precisely three

idempotents otherwise.

Proof. From Table 2 it is clear that the basis elements e1 and e2 are
idempotents. Let w = αe1 + βe2 be an arbitrary element in AF (a, b). We
want to find solutions of the equation w2 = w for which α, β 6= 0. Under
this assumption,

w2 = w ⇔
(

1 2a

2b 1

)(

α

β

)

=

(

1

1

)

.

As (a, b) ∈ K and therefore 1−4ab 6= 0, the equation has the unique solution

(α, β) =

(

2a− 1

4ab− 1
,

2b− 1

4ab− 1

)

where α, β 6= 0 precisely when a, b 6= 1/2.

Define Kn = {(a, b) ∈ K | AF (a, b) has n idempotents}. Any isomor-
phism of algebras A and B induces a bijection between their sets of idempo-
tents. Conversely, if AF (a, b) with (a, b) ∈ Kn has idempotents u1, . . . , un,
where (u1, u2) = (e1, e2), then every permutation σ ∈ Sn gives rise to a lin-
ear automorphism ϕσ : ui 7→ uσ(i), i ∈ {1, 2}, of AF (a, b). The assignment
σ 7→ ϕσ is injective. For n ∈ {2, 3}, we define a group action Kn ×Sn → Kn

by

(a, b) ·σ = (a′, b′) ⇔ ϕσ : AF (a, b) → AF (a′, b′) is an algebra isomorphism.

Now the category of this group action is equivalent to the category of
2-dimensional commutative division algebras with precisely n idempotents.
The equivalence is given by the maps (a, b) 7→ AF (a, b) and σ 7→ ϕσ.

This means that x, y ∈ Kn parametrise isomorphic algebras if and only
if they lie in the same orbit under Sn. Automorphisms of the algebra AF (x),
x ∈ Kn, are those ϕσ for which σ stabilises x. Classifying the commutative
division algebras having more than one idempotent is equivalent to finding
normal forms for K2 and K3 under the actions of S2 and S3 respectively.

It is easily seen that the orbits in K2 = {(a, b) ∈ K | a = 1/2 or b = 1/2}
are the pairs of the form {(a, b), (b, a)}.

S3 is generated by the the permutations (1, 2)(3) and (1)(2, 3). The first
one sends each (a, b) ∈ K3 = K rK2 to (b, a).

Consider the function

fy(x) =
x+ y − 1

4xy − 1
.
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We see that (a, b) 7→ (fb(a), b). Since

f ′y(x) = − (2y − 1)2

(4xy − 1)2
,

f is decreasing for y 6= 1/2. Moreover, fy(x) = x ⇔ x = (1 ± (2y − 1))/4y,
that is, x = 1/2 or x = (1 − y)/2y. This shows that the subset

{

(a, b) ∈ K3

∣

∣

∣

∣

a, b >
1

2
or a <

1 − b

2b
, b <

1

2

}

of K3 is mapped to
{

(a, b) ∈ K3

∣

∣

∣

∣

b >
1

2
> a or a >

1 − b

2b
, b <

1

2

}

and that {(a, b) ∈ K3 | a > (1 − b)/2b, b < 1/2} is fixed by the permutation
(1)(2, 3).

Using the fact that any other element in S3 can be written as a product
of these two permutations, it is straightforward to prove the following two
propositions.

Proposition 2.7. (i) The set {AF (1/2, b)}b>1/2 classifies the commu-

tative division algebras having two idempotents.

(ii) The set
{

AF (a, b)

∣

∣

∣

∣

a >
1

2
, b ≥ a

}

∪
{

AF (a, b)

∣

∣

∣

∣

a, b < 0, a ≤ b ≤ 1

2a
− 1

2

}

classifies the commutative division algebras having three idempo-

tents.

The first part of Proposition 2.7 can also be derived from Theorem 3
and 5 of [1].

Proposition 2.8. (i) If (a, b) ∈ K2, then Aut(AF (a, b)) = {I}.
(ii) If (a, b) ∈ K3, then Aut(AF (a, b)) = {ϕσ}σ∈S , where S ⊂ S3 is

given by

S =































{I, (1, 2)(3)} if a = b 6= −1,

{I, (1)(2, 3)} if a = (1 − b)/2b,

{I, (1, 3)(2)} if b = (1 − a)/2a,

S3 if a = b = −1,

{I} otherwise.

It is worthwhile to note that S3, the largest automorphism group oc-
curring, corresponds to the algebra AF (−1,−1), while C ∼= AE(0, 1) shares
its automorphism group of order two with infinitely many other pairwise
non-isomorphic algebras. This contrasts with the general experience from
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dimensions four and eight, where H and O seem to be the most symmetric
objects.

3. Division algebras of dimension 4 and 8. In order to prove The-
orem 1.4, we must consider the scalar isotopes of the flexible quadratic di-
vision algebras, and the generalised pseudo-octonions. Our result on scalar
isotopy actually holds for arbitrary quadratic division algebras.

Lemma 3.1. Let A ∈ Q, dimA > 2 and λ ∈ R r {0}. Then Z(λA) =
span{1A}.

Proof. Let x = α+ v ∈ R1⊕ ImA. Then x ∈ Z(λA) if and only if in the
algebra A, vw = wv for all w ∈ ImA. From Proposition 1.1, it follows that
vw = wv only if v and w are linearly dependent. As dim(ImA) > 1 we get
v = 0, and therefore Z(λA) = span{1A}.

Proposition 3.2. Let A and B be quadratic division algebras of dimen-

sion greater than 2, and let λ, µ 6= 0. Then λA ∼= µB if and only if λ = µ
and A ∼= B. Moreover , Iso(λA, λB) = Iso(A,B).

Proof. By Lemma 3.1, any isomorphism ϕ : λA → µB maps 1A to 1B.
We have (α + v) ⋆ (α + v) = α2 + 2λαv + λ2v2 for α + v ∈ R1 ⊕ ImA, so
(α+v)⋆(α+v) ∈ R1 if and only if either α = 0 or v = 0. The same obviously
holds in µB. Hence, for any x ∈ Ar R1 we have

ϕ(x) ∈ ImB ⇔ ϕ(x) ⋆ ϕ(x) ∈ R1B ⇔ x ⋆ x ∈ R1A ⇔ x ∈ ImA.

Now, let v, w ∈ ImAr{0}. We have λϕ(v) = ϕ(1A ⋆ v) = ϕ(1A) ⋆ ϕ(v) =
µϕ(v) and hence λ = µ. Moreover, µ2ϕ(v)ϕ(w) = ϕ(v) ⋆ ϕ(w) = ϕ(v ⋆ w)
= λ2ϕ(vw) = µ2ϕ(vw), which implies that ϕ ∈ Iso(A,B). An analogous
calculation shows that Iso(A,B) ⊂ Iso(λA, λB).

Corollary 3.3. If A is a quadratic division algebra of dimension 4
or 8, and λ 6= 0, then Aut(λA) = Aut(A).

We now turn our attention to the GP-algebras. First recall the definition
of the category A± and the functor ?± (Section 1). Next note that the
complex Lie algebra sl3C is obtained from su3C by extending scalars to
the complex numbers, that is, sl3C = su3C⊗R C. Let Sδ = (sl3C, ∗), the
multiplication “∗” being defined as for Oδ. We write S±

δ = (Sδ, •∗, [ , ]∗),
where • and [ , ] refer to the ordinary matrix multiplication.

The multiplication in the commutative algebra S+ = (Sδ, •∗) is indepen-
dent of δ and is given by x •∗ y = i(x • y − 2

3 tr(xy)I). The multiplication

in S−

δ = (Sδ, [ , ]∗) is given by [x, y]∗ = 2δ[x, y]. Given a natural number n
and A ∈ GLn(R), we let κA : R

n×n → R
n×n, X 7→ A−1XA. Note that κA

is indeed an automorphism of the matrix algebra R
n×n.

Proposition 3.4. Let δ, γ ∈ R r {0}. Then Oδ
∼= Oγ ⇔ δ = ±γ.
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Proof. Let ϕ : Oδ → Oγ be an isomorphism. Then ϕ induces an iso-
morphism Sδ → Sγ , also denoted by ϕ. Using the functor ?±, we see that
ϕ ∈ Iso(S−

δ , S
−
γ ) and ϕ ∈ Aut(S+).

The homothety h2δ : S−

δ → sl3C, x 7→ 2δx, is an isomorphism of algebras.

Hence Aut(sl3C) → Iso(S−

δ , S
−
γ ), ψ 7→ ϕ = h−1

2γ ψh2δ = (δ/γ)ψ is a bijection.

We have Aut(sl3C) = {κA,−κA(?t) | A ∈ SL3(C)}.
If ψ = κA, then ϕ = (δ/γ)κA. Hence

ϕ(x) •∗ ϕ(y) =
δ

γ
κA(x) •∗

δ

γ
κA(y)

=
δ2

γ2
i

(

κA(x) • κA(y) − 2

3
tr(κA(x)κA(y))I

)

=
δ2

γ2
i

(

κA(x•y) − 2

3
tr(xy)κA(I)

)

=
δ2

γ2
κA(x •∗ y),

ϕ(x •∗ y) =
δ

γ
κA(x •∗ y).

Because ϕ ∈ Aut(S+), the relation (δ2/γ2)κA(x•∗y) = (δ/γ)κA(x•∗y) must
hold for all x, y ∈ S+, which implies δ = γ.

If ψ = −κA(?t), then ϕ = −(δ/γ)κA(?t), and

ϕ(x •∗ y) = − δ
γ
κA

(

i

(

x•y − 2

3
tr(xy)I

))t

= − δ
γ
κA

(

i

(

xt•yt− 2

3
tr(xy)I

))

= − δ
γ
κA

(

i

(

xt•yt − 2

3
tr(xtyt)I

))

= − δ
γ
κA(xt •∗ yt),

ϕ(x) •∗ ϕ(y) = − δ
γ
κA(xt) •∗

(

− δ
γ

)

κA(yt) =
δ2

γ2
κA(xt) •∗ κA(yt)

=
δ2

γ2
κA(xt •∗ yt).

Here, ϕ ∈ Aut(S+) implies δ = −γ.
We have seen that Oδ

∼= Oγ only if δ = ±γ. Conversely, it is clear that
?t : Oδ → O−δ, x 7→ xt, is an isomorphism.

As a consequence of the proof, we get the following corollary.

Corollary 3.5. (i) Aut(Oδ) = {κA | A ∈ SU3},
(ii) Iso(Oδ, O−δ) = {κA ◦ (?t) | A ∈ SU3}.

4. Automorphism groups of flexible division algebras. In order to
describe the automorphism groups of all flexible division algebras, it remains
to consider the quadratic ones.
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Firstly, let π3 be a vector product on R
3, λ ∈ R r {0} and η = λπ. For

σ ∈ O3(R) we now have

σ ∈ Aut(η) ⇔ ση = η(σ ∧ σ) ⇔ λσπ3 = λπ3(σ ∧ σ) ⇔ σ ∈ Aut(π3).

Hence, by Proposition 1.1, Aut(H(η)) ∼= Aut(H) ∼= SO3(R).

Secondly, consider η = δπ(δ ∧ δ), where δ ∈ Pds(R7) and π is a vector
product on R

7. Let σ ∈ O7(R). As δ = δ∗, we get

σ ∈ Aut(η) ⇔ ση = η(σ ∧ σ)

⇔ σδπ(δ ∧ δ) = δπ((δσ) ∧ (δσ))

⇔ δπ(δ ∧ δ) = (δσ)∗π((δσ) ∧ (δσ))

⇔ π = (δσδ−1)∗π((δσδ−1) ∧ (δσδ−1)) ⇔ δσδ−1 ∈ Aut(π).

Hence Aut(η) = δ−1 Aut(π)δ ∩ O7(R).

Lemma 4.1. With the above notation, δ−1 Aut(π)δ∩O7(R) = CAut(π)(δ).

Proof. Let v = {v1, . . . , v7} be an orthonormal eigenbasis for R
7 with

respect to δ, with corresponding eigenvalues λ1 ≥ · · · ≥ λ7. Let f ∈ Aut(π)
be such that δ−1fδ ∈ O7(R); write [f ]v = (f i

j)i,j . Then

1 = ‖(δ−1fδ)v1‖ = ‖λ1(δ
−1f)v1‖ =

∥

∥

∥

∥

λ1

7
∑

i=1

1

λi
f i
1vi

∥

∥

∥

∥

⇒ fv1 ∈ Eλ1
(δ).

Suppose fvk ∈ Eλk
(δ) for all k ≤ n. Then fvn+1 ∈ [fv1, . . . , fvn]⊥, and thus

fvn+1 ∈ Eλn+1
(δ). By induction, all eigenspaces of δ are invariant under

f . Therefore, f ∈ CAut(π)(δ), and δ−1 Aut(π)δ ∩ O7(R) ⊂ δ−1CAut(π)(δ)δ ∩
O7(R) = CAut(π)(δ). The converse is trivial.

Summarising Proposition 2.5, Proposition 2.8, Corollary 3.3, Corollary
3.5 and the above considerations, we obtain the following result concerning
the automorphisms of flexible division algebras:

Theorem 4.2. (i) Let A = AE(a, b) be a commutative division algebra

with exactly one idempotent. Then Aut(A)={I, (e1, e2) 7→ (e1,−e2)}
if a = 0, and Aut(A) = {I} otherwise.

(ii) If (a, b) ∈ K2 = {(a, b) ∈ R2 | b > a = 1/2 or a > b = 1/2}, then

Aut(AF (a, b)) = {I}.
(iii) If (a, b) ∈ K3 = {(a, b) ∈ R2 | ab > 1/4, (a, b) 6∈ K2}, then

Aut(AF (a, b)) = {ϕσ}σ∈S , where S ⊂ S3 is given by
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S =































{I, (1, 2)(3)} if a = b 6= −1,

{I, (1)(2, 3)} if a = (1 − b)/2b,

{I, (1, 3)(2)} if b = (1 − a)/2a,

S3 if a = b = −1,

{I} otherwise.

(iv) Aut(λA) ∼= SO3(R) if λ 6= 0 and A is a flexible quadratic division

algebra of dimension 4.

(v) Aut(λA) ∼= CAut(π)(δ) if λ 6= 0 and A ∼= H(δ∗π(δ ∧ δ)), where δ ∈
Pds(R7) and π is a vector product on R7.

(vi) Aut(Oγ) = {κA | A ∈ SU3(R)} if γ 6= 0.

5. The G2-action on Pds(R7). In this section, V denotes a fixed 7-
dimensional Euclidean space, equipped with a vector product π. To abbre-
viate notation, we write xy instead of π(x ∧ y).

Our approach to the normal form problem for the group action (2) is
based on a handy description of the group G2 = Aut(π).

Lemma 5.1. Let u, v ∈ V be orthonormal vectors. Then the following

identities hold :

(i) u(uv) = −v,
(ii) v(uv) = u.

In particular , π induces a vector product on span{u, v, uv}. If in addition

z ∈ V is a unit vector orthogonal to u and v, then

(iii) u(vz) = −(uv)z = (vu)z.

Proof. Since π is in particular a flexible dissident map, we have 〈ux, x〉=0
for all x ∈ V . If x ∈ u⊥, then ‖ux‖ = ‖x‖. This means that the linear map
Lu : u⊥ → u⊥ is an isometry (7). Thus,

〈x, u(uv)〉 = 〈xu, uv〉 = 〈ux, u(−v)〉 = 〈x,−v〉
for all x ∈ V . The second identity follows from the first via anti-commuta-
tivity of π.

By (i), we also have u(uz) = −z. Moreover,

−2v = −‖u+ z‖2v = (u+ z)((u+ z)v) = (u+ z)(uv + zv)

= u(uv) + u(zv) + z(uv) + z(zv)

= −v + u(zv) + z(uv) − v = −2v − u(vz) − (uv)z.

Thus u(vz) = −(uv)z.

(7) Multiplication is considered in the algebra (V, π), that is, Lu(x) = ux = π(u ∧ x).
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A triple (u, v, z) ∈ V 3 is called a Cayley triple in V if {u, v, uv, z} is an
orthonormal set. We denote by C the set of all Cayley triples in V .

Given a Cayley triple (u, v, z) ∈ C, let U = span{u, v, uv}. For any x, y ∈
U , we have 〈x, yz〉 = 〈xy, z〉 = 0. Hence the vector space V decomposes
into an orthogonal direct sum V = U ⊕ span{z} ⊕ Uz. Because (by the
same argument as for Lu in the proof of Lemma 5.1) Rz is an isometry
on z⊥, (uz, vz, (uv)z) will be an orthonormal basis for Uz. Altogether this
means that every Cayley triple c = (u, v, z) determines an orthonormal basis
bc = (u, v, uv, z, uz, vz, (uv)z) for V .

Proposition 5.2 (cf. also [15, 11.16]). The group G2 acts simply tran-

sitively on C by g ·(u, v, z) = (g(u), g(v), g(z)).

Proof. Clearly, the above expression defines a group action. As every
Cayley triple c ∈ C determines a basis bc for V , and bc 6= bc′ if c 6= c′, the
stabiliser of any c ∈ C is trivial.

For transitivity, we must show that the bases given by any two Cay-
ley triples have the same multiplication table. Note that any permuta-
tion of a Cayley triple c = (u, v, z) is again a Cayley triple, and that
(x, y, z), (xz, y, z) ∈ C for all orthonormal pairs x, y ∈ U . Therefore, (xz)z =
z(zx) = −x and (xz)(yz) = (y(xz))z = ((xy)z)z = −xy. Using this, and
Lemma 5.1, one readily constructs the multiplication table for bc:

· u v uv z uz vz (uv)z

u 0 uv −v uz −z −(uv)z vz

v −uv 0 u vz (uv)z −z −uz

uv v −u 0 (uv)z −vz uz −z

z −uz −vz −(uv)z 0 u v uv

uz z −(uv)z vz −u 0 −uv v

vz (uv)z z −uz −v uv 0 −u

(uv)z −vz uz z −uv −v u 0

This shows that the structure constants of (V, π) with respect to bc are
independent of the choice of c ∈ C.

Note that Proposition 5.2 implies that G2 acts transitively on the set of
orthonormal pairs in V , and that the stabiliser of an orthonormal pair (u, v)
acts simply transitively on the unit sphere in {u, v, uv}⊥ ⊂ V .

Given a linear operator α on V and c ∈ C, [α]c denotes the matrix of
α with respect to the basis bc. Fixing a Cayley triple s ∈ C, we obtain a
bijection t : G2 → C, g 7→ g ·s. If we set gc = t

−1(c), then [g−1
c δgc]s = [δ]gc·s

= [δ]c.
The task now will be to describe a map N : Pds(V ) → Pds(V ) with the

following properties:
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(i) [N(δ)]s = [δ]c for some c ∈ C.
(ii) N(δ) = N(δ′) whenever δ = g−1δ′g for some g ∈ G2.

Then N(Pds(V )) will be a cross-section for Pds(V )/G2, andN(δ) the normal
form of δ.

As G2 ⊂ O(V ), all properties of δ as a linear operator on a Euclidean
space are preserved under conjugation with elements in G2. In particular, the
set {(λ, dim Eλ(δ)) | dim Eλ(δ) > 0} of eigenpairs of δ is an invariant for its
orbit under G2. Hence the normal form problem may be solved separately for
each possible set of eigenpairs. We distinguish 15 essentially distinct types of
eigenpairs, determined by the number of eigenspaces, and their dimensions:

1: (7).

2: (1, 6), (2, 5), (3, 4).

3: (1, 1, 5), (1, 2, 4), (1, 3, 3), (2, 2, 3).

4: (1, 1, 1, 4), (1, 1, 2, 3), (1, 2, 2, 2).

5: (1, 1, 1, 1, 3), (1, 1, 1, 2, 2).

6: (1, 1, 1, 1, 1, 2).

7: (1, 1, 1, 1, 1, 1, 1).

Four cases are trivial. Firstly, if δ is of type (7), there is only one eigen-
pair, (λ, 7) where λ ∈ R>0. Any choice of a Cayley triple c will give rise to
the matrix [δ]c = λI7.

If δ is of type (1, 6), we choose c = (u, v, z) ∈ C such that u belongs to the
eigenspace of dimension 1. In case (2, 5), any orthonormal basis (u, v) for the
two-dimensional eigenspace may be extended to a Cayley triple c = (u, v, z).
Finally, if {(λ, 1), (µ, 1), (ν, 5)} is the set of eigenpairs of δ (this is the case
(1, 1, 5)), then c ∈ C may be chosen such that u ∈ Eλ(δ) and v ∈ Eµ(δ).

The matrices obtained will be

[δ]c =

(

λ

νI6

)

for (1, 6),

[δ]c =

(

λI2

νI5

)

for (2, 5),

[δ]c =







λ

µ

νI5






for (1, 1, 5),

where (λ, µ, ν) ∈ R3.

In the remaining cases, the situation is more complicated. As an example,
we will here consider the case (1, 2, 4). Let {(λ, 1), (µ, 2), (ν, 4)} be the set
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of eigenpairs of δ. Take (u, v) to be any orthonormal pair in Eµ. Note that
uv is uniquely determined up to sign by span{u, v} = Eµ.

Lemma 5.3. There exists a unit vector z ∈ Eν(δ) such that (u, v, z) ∈ C
and uz, vz ∈ Eν(δ).

Proof. If uv ∈ Eλ, then {u, v, uv}⊥ = Eν and any unit vector z ∈ Eν will
do. Otherwise, let V ′ = {u, v, uv}⊥, V0 = V ′ ∩ Eν and V1 = V ′ ∩ V ⊥

0 . We
have dimV0 = 3 and dimV1 = 1, and V ′ is invariant under the operator Lu.
Because Lu is bijective on u⊥ ⊃ V ′, the subspace Wu = V0 ∩ L−1

u (V0) of
V ′ has dimension at least 2. The same holds for Lv, and it follows that the
intersection of Wu and Wv = V0 ∩ L−1

v (V0) is a non-trivial subspace of V0.
Take z to be a unit vector in Wu ∩ Wv. Then z, uz, vz ∈ V0 ⊂ Eν , and
(u, v, z) ∈ C.

In the case when uv ∈ Eλ, any choice of z will yield the matrix

[δ]c =







µI2

λ

νI4






.

If uv 6∈ Eλ, choosing z as in Lemma 5.3 we have δ(uv) = a(uv) + b(uv)z
and δ((uv)z) = b(uv) + d(uv)z for some a, b, d ∈ R. We see that in this
construction, (uv)z is uniquely determined by δ up to sign. By possibly
changing the sign of z, we can ensure that (ν − λ)b > 0. This completely
determines the scalars a, b, d ∈ R.

We conclude that

[δ]c = Nτ =













µI2 0 0 0

0 a 0 b

0 0 νI3 0

0 b 0 d













where
(

a b

b d

)

=

(

cos τ sin τ

− sin τ cos τ

)(

λ

ν

)(

cos τ − sin τ

sin τ cos τ

)

, τ ∈ [0, π/2].

Hence {Nτ}τ∈[0,π/2] is a cross-section for the set of positive definite symmet-
ric endomorphisms of type (1, 2, 4) under the action of G2. We remark that
τ = 0 corresponds to the situation where uv ∈ Eλ.

We hope that the above examples have convinced the reader about the
fruitfulness of our method. The remaining ten cases can be dealt with simi-
larly, although the problem then generally will be more complicated. A sys-
tematic treatment of these cases will be given in a forthcoming publication,
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thus completing the classification of all finite-dimensional real flexible divi-
sion algebras.
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