COLLOQUIUM MATHEMATICUM

ON CYCLIC VERTICES IN VALUED TRANSLATION QUIVERS

BY
PIOTR MALICKI (Toruń)

Abstract

Let x and y be two vertices lying on an oriented cycle in a connected valued translation quiver (Γ, τ, δ). We prove that, under certain conditions, x and y belong to the same cyclic component of (Γ, τ, δ) if and only if there is an oriented cycle in (Γ, τ, δ) passing through x and y.

Before we state our combinatorial result, we fix some terminology.
Let $\Gamma=\left(\Gamma_{0}, \Gamma_{1}\right)$ be a quiver, that is, a locally finite oriented graph with the set of vertices Γ_{0} and the set of arrows Γ_{1}. Assume that Γ contains neither loops nor multiple arrows. Given a vertex x of Γ, denote by x^{+}the set of all vertices y of Γ such that there is an arrow $x \rightarrow y$, and by x^{-}the set of all vertices y such that there is an arrow $y \rightarrow x$.

A pair (Γ, τ) is called a translation quiver if $\tau: \Gamma_{0}^{\prime} \rightarrow \Gamma_{0}$ is an injective map, for some subset $\Gamma_{0}^{\prime} \subseteq \Gamma_{0}$, satisfying $(\tau x)^{+}=x^{-}$for all $x \in \Gamma_{0}^{\prime}$. The vertices in $\Gamma_{0} \backslash \Gamma_{0}^{\prime}$ are said to be projective, and those in $\Gamma_{0} \backslash \tau \Gamma_{0}^{\prime}$ injective. A vertex x is said to be τ-periodic if $\tau^{t} x=x$ for some $t \geq 1$. A τ-orbit without a projective or an injective vertex is called stable. In case all τ-orbits of (Γ, τ) are stable, (Γ, τ) itself is said to be stable. Note that (Γ, τ) is stable if and only if $\Gamma_{0}^{\prime}=\Gamma_{0}$ and $\tau: \Gamma_{0}^{\prime} \rightarrow \Gamma_{0}$ is bijective. Given a translation quiver (Γ, τ) a translation subquiver is a translation quiver of the form $\left(\Lambda, \tau^{\prime}\right)$ with $\Lambda_{0} \subseteq \Gamma_{0}, \Lambda_{1} \subseteq \Gamma_{1}, \Lambda_{0}^{\prime} \subseteq \Gamma_{0}^{\prime}$, and with τ^{\prime} being the restriction of τ to Λ_{0}^{\prime}.

Recall that a path $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{r}$ in Γ is called sectional if $x_{i-2} \neq \tau x_{i}$ for each $i, 2 \leq i \leq r$. Let $\delta: \Gamma_{1} \rightarrow \mathbb{N} \times \mathbb{N}$ be a map and write $\delta(\alpha)=\left(\delta_{x, y}, \delta_{x, y}^{\prime}\right)$ for all arrows $\alpha: x \rightarrow y$ of Γ. The triple (Γ, τ, δ) is called a valued translation quiver if the following conditions are satisfied for all non-projective vertices x of Γ :
(i) $\delta_{\tau x, y}^{\prime}=\delta_{y, x}$ for all $y \in x^{-}$.
(ii) $\delta_{\tau x, y}=\delta_{y, x}^{\prime}$ for all $y \in x^{-}$.

Recall that a map $\ell: \Gamma_{0} \rightarrow \mathbb{N}$ is called an additive length function for (Γ, τ, δ) if (cf. [3]):

2000 Mathematics Subject Classification: 16G20, 16G70.
Key words and phrases: translation quiver, cyclic component, sectional cycle.
Research supported by the Polish Scientific Grant KBN No. 1 P03A 01827.
(i) for any vertex x which is not projective,

$$
\ell(x)+\ell(\tau x)=\sum_{y \in x^{-}} \delta_{y, x} \ell(y)
$$

(ii) for any vertex x which is projective,

$$
\ell(x)>\sum_{y \in x^{-}} \delta_{y, x} \ell(y)
$$

(iii) for any vertex x which is injective,

$$
\ell(x)>\sum_{y \in x^{+}} \delta_{y, x}^{\prime} \ell(y)
$$

We denote by $(\Gamma, \tau, \delta)_{c}$ the valued translation subquiver of (Γ, τ, δ) obtained by removing from (Γ, τ, δ) all vertices which do not lie on oriented cycles, and the arrows attached to them. The connected components of $(\Gamma, \tau, \delta)_{c}$ are said to be cyclic components of (Γ, τ, δ).

The following theorem is the main result of this note.
Theorem. Let (Γ, τ, δ) be a connected valued translation quiver and ℓ be an additive length function with $\ell(u) \neq \ell(v)$ for any arrow $u \rightarrow v$ in (Γ, τ, δ). Moreover, let x and y be two vertices lying on an oriented cycle of (Γ, τ, δ), and assume that (Γ, τ, δ) is not stable. Then x and y belong to the same cyclic component of (Γ, τ, δ) if and only if there is an oriented cycle in (Γ, τ, δ) passing through x and y.

The following example shows that our assumption on the non-stability of the translation quiver is essential for the validity of the theorem.

Example. Let (Γ, τ, δ) be the valued translation quiver of the form

Observe that every vertex lies on a unique sectional cycle. On the other hand, no two vertices of (Γ, τ, δ) from different sectional cycles lie on a common oriented cycle.

In the proof of our main result, an essential role will be played by the following preliminary fact (cf. [5, Lemmas 1 and 2]).

Proposition. Let (Γ, τ, δ) be a connected valued translation quiver and ℓ be an additive length function such that $\ell(u) \neq \ell(v)$ for any arrow $u \rightarrow v$ in (Γ, τ, δ). Assume that there exists a sectional cycle in (Γ, τ, δ). Then the meshes in (Γ, τ, δ) are of the form

for $k \in \mathbb{Z}$. Thus, (Γ, τ, δ) contains neither projective nor injective vertices, all vertices in (Γ, τ, δ) are of the form $\tau^{k} x_{i}, i=0,1, \ldots, n-1, k \in \mathbb{Z}$, and (Γ, τ, δ) is trivially valued.

Proof. Let

$$
\begin{equation*}
x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_{n}=x_{0} \tag{*}
\end{equation*}
$$

be a sectional cycle in (Γ, τ, δ). By assumption, $\ell\left(x_{i}\right) \neq \ell\left(x_{i+1}\right)$ for any arrow $x_{i} \rightarrow x_{i+1}, i=0,1, \ldots, n-1$, so there exists a minimal element among the numbers $\ell\left(x_{0}\right), \ell\left(x_{1}\right), \ldots, \ell\left(x_{n-1}\right)$. Without loss of generality we may assume that $\ell\left(x_{0}\right)$ is minimal. Then x_{0} is not projective, and hence τx_{0} exists. Moreover, $\tau x_{0} \neq x_{n-2}$, because the cycle $(*)$ is sectional. Then $\ell\left(x_{0}\right)+$ $\ell\left(\tau x_{0}\right) \geq \delta_{x_{n-1}, x_{0}} \ell\left(x_{n-1}\right) \geq \ell\left(x_{n-1}\right)$, and, combining this with $\ell\left(x_{n-2}\right)>$ $\ell\left(x_{0}\right)$, we get $\ell\left(x_{n-2}\right)+\ell\left(\tau x_{0}\right)>\ell\left(x_{n-1}\right)$. Hence x_{n-1} is not projective and τx_{n-1} exists. Let $k=n-1$. Again, since the cycle $(*)$ is sectional, we have $\ell\left(\tau x_{k}\right) \neq \ell\left(x_{k-2}\right)$. Then
$\ell\left(x_{k}\right)+\ell\left(\tau x_{k}\right) \geq \delta_{\tau x_{k+1}, x_{k}} \ell\left(\tau x_{k+1}\right)+\delta_{x_{k-1}, x_{k}} \ell\left(x_{k-1}\right) \geq \ell\left(\tau x_{k+1}\right)+\ell\left(x_{k-1}\right)$, and combining this with the inequalities $\ell\left(\tau x_{k+1}\right)+\ell\left(x_{0}\right) \geq \ell\left(x_{k}\right)$ and $\ell\left(x_{k-2}\right)>\ell\left(x_{0}\right)$, we get $\ell\left(x_{k-2}\right)+\ell\left(\tau x_{k}\right)>\ell\left(x_{k-1}\right)$. Hence x_{k-1} is not projective and τx_{k-1} exists. Repeating the above arguments for each $k=$ $n-2, n-3, \ldots, 3$, we conclude that x_{k} is projective and τx_{k} exists for each $k=n-2, n-3, \ldots, 2$. Now, $\ell\left(\tau x_{2}\right) \neq \ell\left(x_{0}\right)$, because the cycle $(*)$ is sectional. Then we have

$$
\ell\left(x_{2}\right)+\ell\left(\tau x_{2}\right) \geq \delta_{\tau x_{3}, x_{2}} \ell\left(\tau x_{3}\right)+\delta_{x_{1}, x_{2}} \ell\left(x_{1}\right) \geq \ell\left(\tau x_{3}\right)+\ell\left(x_{1}\right)
$$

and combining this with the inequality $\ell\left(\tau x_{3}\right)+\ell\left(x_{0}\right) \geq \ell\left(x_{2}\right)$, we get $\ell\left(x_{0}\right)+$ $\ell\left(\tau x_{2}\right) \geq \ell\left(x_{1}\right)$. Hence x_{1} is not projective and τx_{1} exists. Moreover, $\tau x_{1} \neq$
x_{n-1}, because the cycle (*) is sectional. Dually, one shows that no vertex $x_{i}, i=0,1, \ldots, n-1$, is injective.

Since x_{i} is neither projective nor injective, we conclude that the translations τ and τ^{-}of the sectional cycle (*) are also sectional cycles. So, by induction on k, we infer that the translations τ^{k} and τ^{-k} of $(*)$ are sectional cycles. Therefore, for any $k \in \mathbb{Z}$ and $i=0,1, \ldots, n-1$, the vertex $\tau^{k} x_{i}$ is neither projective nor injective. Moreover, for any $k \in \mathbb{Z}$ and $i=0,1, \ldots, n-1$, we have the following subquiver of Γ :

Thus, we have
$\ell\left(\tau^{k} x_{i+1}\right)+\ell\left(\tau^{k+1} x_{i+1}\right) \geq \delta_{\tau^{k} x_{i}, \tau^{k} x_{i+1}} \ell\left(\tau^{k} x_{i}\right)+\delta_{\tau^{k+1} x_{i+2}, \tau^{k} x_{i+1}} \ell\left(\tau^{k+1} x_{i+2}\right)$
for all $k \in \mathbb{Z}, i=0,1, \ldots, n-1$, where $\delta_{\tau^{k} x_{i}, \tau^{k} x_{i+1}} \geq 1$ and $\delta_{\tau^{k+1} x_{i+2}, \tau^{k} x_{i+1}}$ ≥ 1. Now, by keeping k fixed and summing over all indices $i \in\{0,1, \ldots$, $n-1\}$, we see that this has to be an equality, showing that the meshes are complete and $\delta_{\tau^{k} x_{i}, \tau^{k} x_{i+1}}=\delta_{\tau^{k+1} x_{i+2}, \tau^{k} x_{i+1}}=1$. Since the set $S=\left\{\tau^{k} x_{i} \mid\right.$ $i=0,1, \ldots, n-1, k \in \mathbb{Z}\}$ contains neither injective nor projective vertices, is closed with respect to the meshes, and ($\Gamma, \tau, \delta)$ is trivially valued, we conclude that S is the whole set of vertices of (Γ, τ, δ)

Proof of Theorem. It is sufficient to show that if x and y are connected by an arrow in (Γ, τ, δ), then there is an oriented cycle in (Γ, τ, δ) passing through x and y.

Assume first that (Γ, τ, δ) does not contain a sectional cycle. Suppose that there is an arrow $y \rightarrow x$ in (Γ, τ, δ) but x and y do not lie on a common oriented cycle in (Γ, τ, δ). It follows from our assumption that $\ell(y) \neq \ell(x)$. Assume $\ell(y)>\ell(x)$. Since x lies on an oriented cycle of (Γ, τ, δ), we have

$$
\begin{equation*}
x=x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_{n}=x_{0} . \tag{*}
\end{equation*}
$$

Observe that $x=x_{0}$ is not projective, because $\ell(y)>\ell(x)$ and y is a direct predecessor of x in (Γ, τ, δ), and hence τx_{0} exists. Moreover, $x_{n-1} \neq y$, because x and y do not lie on a common oriented cycle in (Γ, τ, δ). Then

$$
\ell\left(\tau x_{0}\right)+\ell\left(x_{0}\right) \geq \delta_{x_{n-1}, x_{0}} \ell\left(x_{n-1}\right)+\delta_{y, x_{0}} \ell(y) \geq \ell\left(x_{n-1}\right)+\ell(y),
$$

and since $\ell(y)>\ell\left(x_{0}\right)$, we get $\ell\left(\tau x_{0}\right)>\ell\left(x_{n-1}\right)$. Hence x_{n-1} is not projective and τx_{n-1} exists. Again, since x and y do not lie on a common oriented cycle
in (Γ, τ, δ), we have $x_{n-2} \neq \tau x_{0}$, and hence

$$
\begin{aligned}
\ell\left(\tau x_{n-1}\right)+\ell\left(x_{n-1}\right) & \geq \delta_{x_{n-2}, x_{n-1}} \ell\left(x_{n-2}\right)+\delta_{\tau x_{n}, x_{n-1}} \ell\left(\tau x_{n}\right) \\
& \geq \ell\left(x_{n-2}\right)+\ell\left(\tau x_{n}\right)>\ell\left(x_{n-2}\right)+\ell\left(x_{n-1}\right)
\end{aligned}
$$

implies $\ell\left(\tau x_{n-1}\right)>\ell\left(x_{n-2}\right)$, because $x_{n}=x_{0}$. Repeating the above arguments we conclude that, for each $k=1, \ldots, n-2, x_{k}$ is not projective (hence τx_{k} exists), $x_{k-1} \neq \tau x_{k+1}$, and $\ell\left(\tau x_{k}\right)>\ell\left(x_{k-1}\right)$. Finally, observe that $\tau x_{1} \neq y$. Indeed, if $\tau x_{1}=y$, we get a sectional cycle

$$
\tau x_{0} \rightarrow y \rightarrow \tau x_{2} \rightarrow \cdots \rightarrow \tau x_{n-1} \rightarrow \tau x_{n}=\tau x_{0}
$$

a contradiction. Therefore, since the cycle $(*)$ is not sectional, we have $x_{n-1}=\tau x_{1}$. But then (Γ, τ, δ) contains the oriented cycle

$$
\tau x_{0} \rightarrow y \rightarrow x \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n-1}=\tau x_{1} \rightarrow \cdots \rightarrow \tau x_{n}=\tau x_{0}
$$

contrary to assumption. In the case when $\ell(x)>\ell(y)$, invoking an oriented cycle of (Γ, τ, δ) passing through y, we get a similar contradiction.

Assume now that (Γ, τ, δ) contains a sectional cycle

$$
y_{0} \rightarrow y_{1} \rightarrow \cdots \rightarrow y_{m-1} \rightarrow y_{m}=y_{0}
$$

By the proposition above, the meshes in (Γ, τ, δ) are of the form

with $k \in \mathbb{Z},(\Gamma, \tau, \delta)$ contains neither projective nor injective vertices, and all vertices in (Γ, τ, δ) are of the form $\tau^{k} y_{i}, i=0,1, \ldots m-1, k \in \mathbb{Z}$. Moreover, (Γ, τ, δ) is trivially valued. Therefore, the translation quiver is stable, a contradiction.

As a direct consequence of the above proof we obtain the following fact.
Corollary 1. Let (Γ, τ, δ) be a connected valued translation quiver and ℓ be an additive length function such that $\ell(u) \neq \ell(v)$ for any arrow $u \rightarrow v$ in (Γ, τ, δ). Moreover, let x and y be two vertices lying on an oriented cycle of (Γ, τ, δ), and assume that (Γ, τ, δ) has no sectional cycles. Then x and y belong to the same cyclic component $(\Gamma, \tau, \delta)_{c}$ of (Γ, τ, δ) if and only if there is an oriented cycle in (Γ, τ, δ) passing through x and y.

Note that if A is an artin algebra over a commutative artin ring R, then the Auslander-Reiten quiver Γ_{A} has no sectional cycles [1]. Moreover, Γ_{A} is a valued translation quiver with an additive length function defined
as follows: $\ell(X)=l_{R}(X)$, where $l_{R}(X)$ is the length of the composition sequence of an R-module $X \in \bmod A$, and $\bmod A$ is the category of all finitely generated right A-modules. We also know that for any irreducible morphism $f: X \rightarrow Y$ in Γ_{A}, f is either an epimorphism or a monomorphism, and thus $\ell(X) \neq \ell(Y)$. So, the above corollary is a generalization of the analogous fact proved in [4] for the Auslander-Reiten quiver Γ_{A}.

Corollary 2. Let (Γ, τ, δ) be a connected valued translation quiver and ℓ be an additive length function such that $\ell(u) \neq \ell(v)$ for any arrow $u \rightarrow v$ in (Γ, τ, δ). Moreover, let x and y be two vertices lying on an oriented cycle of (Γ, τ, δ), and assume that there exists a τ-periodic vertex in (Γ, τ, δ). Then x and y belong to the same cyclic component $(\Gamma, \tau, \delta)_{c}$ of (Γ, τ, δ) if and only if there is an oriented cycle in (Γ, τ, δ) passing through x and y.

Proof. If (Γ, τ, δ) does not contain a sectional cycle, then the proof is identical as for the theorem above. Again, if (Γ, τ, δ) contains at least one sectional cycle, then (Γ, τ, δ) is stable. Since there exists a τ-periodic vertex, the Happel-Preiser-Ringel theorem [2, Section 2] and the proposition above show that $(\Gamma, \tau, \delta) \cong \mathbb{Z} \Delta /\left(\tau^{n}\right)$, where Δ is a quiver of Euclidean type $\widetilde{\mathbb{A}}_{t}$ with the cyclic orientation. Hence, there is an oriented cycle in (Γ, τ, δ) passing through x and y.

REFERENCES

[1] R. Bautista and S. O. Smalø, Nonexistent cycles, Comm. Algebra 11 (1983), 17551767.
[2] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, Berlin, 1980, 280-294.
[3] H. Krause, On the four terms in the middle theorem for almost split sequences, Arch. Math. (Basel) 62 (1994), 501-505.
[4] P. Malicki and A. Skowroński, Almost cyclic coherent components of an AuslanderReiten quiver, J. Algebra 229 (2000), 695-749.
[5] H. Yao and Y. Ping, On sectional cycles in translation quivers, J. Math. Res. Expos. 23 (2003), 422-426.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pmalicki@mat.uni.torun.pl

