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ON THE DIOPHANTINE EQUATION x2 − dy4 = 1
WITH PRIME DISCRIMINANT II

BY

D. POULAKIS (Thessaloniki) and P. G. WALSH (Ottawa)

Abstract. Let p denote a prime number. P. Samuel recently solved the problem of
determining all squares in the linear recurrence sequence {Tn}, where Tn and Un sat-
isfy T 2

n
− pU2

n
= 1. Samuel left open the problem of determining all squares in the se-

quence {Un}. This problem was recently solved by the authors. In the present paper, we
extend our previous joint work by completely solving the equation Un = bx2, where b is
a fixed positive squarefree integer. This result also extends previous work of the second
author.

1. Introduction. Ljunggren [5] proved that the Diophantine equation

(1) X2 − dY 4 = 1

has at most two solutions in positive integers, and gave precise information
on the location of the solutions when two solutions exist. This general the-
orem has recently been improved substantially in [11]. Specifically, in that
paper the assumption of the existence of two solutions has been removed,
and a conclusion similar to that in Ljunggren’s result has been proved.

We first define some notation that will be used throughout the paper.
For a positive nonsquare integer d, we denote by εd = T +U

√
d the minimal

unit in Z[
√

d] of norm 1, and for k ≥ 1, we define Tk +Uk

√
d = (T +U

√
d)k.

Theorem A (Togbe, Voutier, Walsh).

(i) There are at most two positive integer solutions (x, y) to equation

(1). If two solutions y1 < y2 exist , then y2
1 = U1, y2

2 = U2, except

only if d = 1785 or d = 16 · 1785, in which case y2
1 = U1, y2

2 = U4.

(ii) If only one positive integer solution (x, y) exists to equation (1), then

y2 = Ul, where U1 = lv2 for some squarefree integer l, and either

l = 1, l = 2, or l = p for some prime p ≡ 3 (mod 4).

P. Samuel [10] has proved a number of interesting related results in the
case that d is prime, or twice a prime, but for equation (1), with d a prime,
these results fall short of what is the best possible result. More recently

2000 Mathematics Subject Classification: 11D41, 11B39.
Key words and phrases: Pell equation, linear recurrence sequence, Diophantine

equation.

[51]



52 D. POULAKIS AND P. G. WALSH

we established in [9] a sharp result on the solutions of equation (1) in the
case that d is prime, improving upon Theorem 5.2 in [10]. In particular, we
proved that apart from one exceptional case, the equation Uk = y2 implies
that k = 1.

Let {Tk} and {Uk} be the sequences defined above. For a positive inte-
ger b, we define the rank of apparition of b in {Tk} to be the smallest index
k for which b divides Tk, should such an index exist, and denote it as β(b).
If no such index exists, we write β(b) = ∞. Similarly, we define the rank of
apparition of b in {Uk} as the smallest index k for which b divides Uk, and
denote this as α(b).

Note that α(b) is always a positive integer. In [1], it was shown that
for b > 1, an integer solution to the equation Tk = bx2 implies that k =
β(b). In [12], a similar result was proved for the sequence {Uk} under the
added assumption that α(b) is even. Moreover, a precise conjecture on the
remaining case was given, which remains open. The purpose of the present
paper is to extend the main result of [9] to equations of the form Uk = by2

in the case that the discriminant d is prime, and thereby prove Conjecture 1
in [12] for the case that d is prime.

Theorem 1. Let p be a prime number , b a positive integer , and

Tk + Uk

√
p = (T + U

√
p)k,

where T +U
√

p is the minimal unit in Z[
√

p] greater than 1, and of norm 1.

If x is an integer for which Uk = bx2, then k = α(b) except only in the

following specific cases:

(i) (p, b) = (3, 1), in which case U2 = U2α(b) = 22,

(ii) (p, b) = (7, 3), in which case U2 = U2α(b) = 3 · 42,

(iii) (p, b) = (5, 2), in which case U2 = U2α(b) = 2 · 62,

(iv) (p, b) = (29, 910), in which case U2 = U2α(b) = 910 · 1982.

2. Preliminary results. In this section we will collect those results
which will be needed in the course of proving Theorem 1.

Lemma 1. Let d > 1 be a squarefree integer , and let εd = T + U
√

d
denote the minimal unit (> 1) in Q(

√
d). Then

εd = τ2,

where

τ =
a
√

m + b
√

n√
c

,

c ∈ {1, 2}, a, b are positive integers for which U = 2ab/c, m, n are positive

integers for which d = mn, m is not a square if c = 1, and a2m − b2n = c.

Proof. This is well known, for example see Nagell [8].
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Lemma 2. Let a and b be odd positive integers such that aX2−bY 2 = 2
is solvable in odd integers X and Y . Let τa,b = (V

√
a + U

√
b)/

√
2 denote

its minimal solution with V and U odd positive integers, and

τ2k+1
a,b

=
V2k+1

√
a + U2k+1

√
b√

2
(k ≥ 0).

If (x, y) is a positive integer solution of the quartic equation aX2−bY 4 = 2,
then either y2 = U1 or y2 = U3.

Proof. This has recently been proved in [6], improving upon previous
work of Ljunggren.

The following is a beautiful generalization of the aforementioned result of
Ljunggren on the equation x2−2y4 = −1. The extensive details of the proof
are in [2], or alternatively in [13], where this result was proved independently.

Lemma 3 (Chen–Voutier and Yuan). Let d > 3 be a squarefree integer

such that the Pell equation X2 − dY 2 = −1 is solvable in positive integers,
and let τ = v + u

√
d denote its minimal solution. The only possible integer

solution to the equation X2 − dY 4 = −1 is (X, Y ) = (v,
√

u).

Lemma 4. The equations x2−2y4 = 1 and x4−2y2 = 1 have no solutions

in positive integers, the only positive integer solution to the equation x4 −
2y2 = −1 is (x, y) = (1, 1), and the only positive integer solutions to the

equation x2 − 2y4 = −1 are (x, y) = (1, 1), (239, 13).

These are all trivial except for the last equation, which Ljunggren first
solved in [4].

3. Proof of Theorem 1. Assume first that α(b) is even. By Theorem 2
of [12], either k = α(b), or k = 4 = 2α(b), and in the latter case, 2T 2−1 = v2

for some integer v, and TU = bu2 for some integer u. Therefore,

v4 − 1 = (v2 − 1)(v2 + 1) = (2T 2 − 2)(2T 2) = p(2TU)2,

and by Theorem 2.1 of [10], either p = 5 and v = 3, or p = 29 and v = 99. In
either case we see that v2 + 1 is not of the form 2T 2, and so k = 4 = 2α(b)
cannot occur. We will henceforth assume that α(b) is odd.

We first show that if k is even, then k = 2. Let k = 2l; then bx2 = U2l

= 2TlUl, and since α(b) is odd, gcd(b, Ti) = 1 for all i, and so Tl = z2 or
2z2 for some integer z. By Corollary 1.3 of [1] and the main result of [3],
it follows that l = 1, in which case k = 2, or else l = 2, and in this case
Tl = z2, which we show is impossible. If Tl = T2 = z2, then Uk = U4 = bx2,
and Ul = U2 = 2T1U1 = 2bz2

1 or (b/2)z2
1 for some integer z1. Since α(b) is

odd, this forces T1 = z2
2 or 2z2

2 for some integer z2. Since T2 = 2T 2
1 − 1,

the only possibility is T1 = 132, by Ljunggren’s [4] theorem on the quartic
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equation X2−2Y 4 = −1, and hence the discriminant p is forced to be 1785,
which is not prime. Therefore, l = 1 and k = 2 as asserted.

Now assume that U2 = bx2 for some integer x, and that α(b) = 1. Then
gcd(T1, b) = 1, and since U2 = 2T1U1, it follows that T1 is either a square,
or twice a square. Appealing to Theorems 2.1 and 2.2 of [10], we obtain the
specific cases given in the statement of Theorem 1.

We will henceforth assume that k is odd. We will consider two cases
separately, depending on the value of c in Lemma 1.

Case 1: c = 2. Assume that k is an integer for which Uk = bx2, and let
τ = (a1 + b1

√
p)/

√
2 denote the minimal solution to X2 − pY 2 = ±2, and

note that τ2 = T + U
√

p. For i ≥ 1, let

τ2i+1 =
a2i+1 + b2i+1√

2
.

We will assume that X2 − pY 2 = 2 is solvable, as the argument presented
holds equally well in the case that X2 − pY 2 = −2 is solvable.

Assuming that Uk = bx2 with k odd, we get bx2 = akbk, and so there
are positive integers m, n, u, v with b = mn for which ak = mu2, bk = nv2,
hence

m2u4 − pn2v4 = 2.

By Lemma 2, (X, Y ) = (u2, v2) is either the minimal solution, or the third
power of the minimal solution, of the quadratic equation

m2X2 − pn2Y 2 = 2,

and an argument identical to that presented in [9] shows that the latter case
is not possible. This is equivalent to the statement that k = α(b).

Case 2: c = 1. Assume that k is an integer for which Uk = bx2, and let
τ = a1 + b1

√
p denote the minimal solution to X2 − pY 2 = −1, and note

that τ2 = T + U
√

p. For i ≥ 1, let

τ2i+1 =
a2i+1 + b2i+1√

2
.

Assuming that Uk = bx2 with k odd, we obtain bx2 = 2akbk, and so
there are positive integers m, n, u, v with mn = 2b if b is odd, mn = b/2 if b
is even, and for which ak = mu2, bk = nv2. It follows that

m2u4 − pn2v4 = −1.

By Lemma 3, with d = pn2 > 2 and p > 2, (X, Y ) = (u2, v2) must be the
minimal solution of the quadratic equation

X2 − pn2Y 2 = −1.
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This is equivalent to the statement that k = α(b). Assume now that pn2 = 2;
then by Lemma 4, the equation m2u4−pn2v4 = −1 implies that mu2+v2

√
2

is either 1 +
√

2 or 239 + 169
√

2, and b = 2 or 478 respectively. In either
case, k = α(b).
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