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INEQUALITIES FOR TWO SINE POLYNOMIALS

BY

HORST ALZER (Waldbröl) and STAMATIS KOUMANDOS (Nicosia)

Abstract. We prove:

(I) For all integers n ≥ 2 and real numbers x ∈ (0, π) we have

α ≤
n−1
∑

j=1

1

n2 − j2
sin(jx) ≤ β,

with the best possible constant bounds

α =
15 −

√
2073

10240

√

1998 − 10
√

2073 = −0.1171 . . . , β =
1

3
.

(II) The inequality

0 <

n−1
∑

j=1

(n2 − j2) sin(jx)

holds for all even integers n ≥ 2 and x ∈ (0, π), and also for all odd integers n ≥ 3
and x ∈ (0, π − π/n].

1. Introduction. Problems on the infinite divisibility of probability dis-
tributions led K. Takano [18]–[24] to the study of several interesting trigono-
metric sums. In [19] he investigated the sine polynomial

Tn(x) =
n

∑

j=1

1

(n− j)!(n+ j)!
sin(jx)

and proved the identity

(1.1) Tn(x) =
sin(x)

(2n)!

n−1
∑

j=0

(2(n− j − 1))!

((n− j − 1)!)2
(2 cos(x/2))2j.

This is a special case of a more general identity for Jacobi polynomials
obtained in [13]. See also [25]. From (1.1) we immediately get the inequality

(1.2) 0 < Tn(x) (n ∈ N, 0 < x < π).

2000 Mathematics Subject Classification: 26D05, 42A05.
Key words and phrases: trigonometric polynomials, inequalities.

[127]



128 H. ALZER AND S. KOUMANDOS

Elementary estimates reveal that the following converse of (1.2) is valid:

(1.3) Tn(x) ≤ 1

2
(n ∈ N, 0 < x < π).

The bounds given in (1.2) and (1.3) are best possible.
Inequalities for sine and cosine polynomials have attracted the attention

of mathematicians since many years. A detailed collection of the most im-
portant theorems as well as historical remarks, applications, and numerous
references on this subject can be found in the monograph [16, Chapter 4]
and the survey paper [9]. Various new results are published in the research
articles [1]–[5].

In this paper we study two sine polynomials which are related to Tn. The
estimates (1.2) and (1.3) inspired us to ask about sharp constant bounds for

Sn(x) =
n−1
∑

j=1

1

(n− j)(n+ j)
sin(jx), S∗

n(x) =
n−1
∑

j=1

(n− j)(n+ j) sin(jx).

In what follows, we maintain these notations. The function S∗
n is a com-

panion of Lukács’ polynomial

Ln(x) =
n−1
∑

j=1

(n− j) sin(jx) =
n sin(x) − sin(nx)

4(sin(x/2))2
,

which has been studied by several authors. F. Lukács proved that Ln(x) > 0
for all n ≥ 2 and x ∈ (0, π); see [12]. This inequality is important because it
represents the positivity of the classical conjugate Fejér kernel; see [27, pp.
91–92]. Variants and generalizations of Lukács’ inequality are given in [1],
[6], [8]–[11], [15], [16, p. 140].

2. Main results. First, we provide sharp upper and lower bounds for
Sn(x).

Theorem 1. For all integers n ≥ 2 and real numbers x ∈ (0, π) we have

(2.1) α ≤
n−1
∑

j=1

1

n2 − j2
sin(jx) ≤ β,

with the best possible constant bounds

α =
15 −

√
2073

10240

√

1998 − 10
√

2073 = −0.1171 . . . , β =
1

3
.

Proof. Let x ∈ (0, π). Then

0 < S2(x) =
1

3
sin(x) ≤ 1

3
= S2(π/2),
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and for n ≥ 3 we obtain

Sn(x) ≤
n−2
∑

j=1

1

n2 − j2
+

1

n2 − (n− 1)2
(2.2)

≤ n− 2

n2 − (n− 2)2
+

1

n2 − (n− 1)2
= τn, say.

Combining (2.2) and

1

3
− τn =

(n− 2)(2n− 5)

12(n− 1)(2n− 1)
> 0,

we conclude that Sn(x) < 1/3.
A short calculation reveals that

S3(x) =
√

1 − (cos(x))2
(

1

8
+

2

5
cos(x)

)

attains its absolute minimum at

x0 = arccos

(

− 1

64
(5 +

√
2073)

)

= 2.4808 . . .

with

S3(x0) =
15 −

√
2073

10240

√

1998 − 10
√

2073 = −0.1171 . . . .

We denote by Uk the Chebyshev polynomial of the second kind, which is
given by

Uk(t) =
sin((k + 1)x)

sin(x)
(k = 0, 1, . . . ),

where cos(x) = t. Then we obtain the representation

Sn(x) =
√

1 − t2
n−1
∑

j=1

Uj−1(t)

n2 − j2
.

In order to prove the left-hand bound of (2.1) it suffices to show that

(2.3)
√

1 − t2
n−1
∑

j=1

Uj−1(t)

n2 − j2
+ 0.117 > 0 for − 1 < t < 1.

We define, for s ∈ [0, 1],

h(s) = 1 − 1

2
s− 1

8
s2 − 1

16
s3 −

√
1 − s.

Since h(0) = 0 and

h′(s) =
(40 + 15s+ 9s2)s3

16(8
√

1 − s+ (1 − s)(8 + 4s+ 3s2))
,
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we conclude that h is positive on (0, 1]. Thus, for t ∈ (−1, 1) we get
√

1 − t2 ≤ 1 − 1

2
t2 − 1

8
t4 − 1

16
t6.

This implies that the validity of

(2.4)

(

1 − 1

2
t2 − 1

8
t4 − 1

16
t6

)n−1
∑

j=1

Uj−1(t)

n2 − j2
+ 0.117 > 0 for − 1 < t < 1

leads to (2.3). Let Pn be the polynomial on the left-hand side of (2.4). An
application of Sturm’s theorem (see, for example, [26, p. 248]) shows that for
n = 4, 5, . . . , 33 the function Pn has no zero on [−1, 1]. Since Uk(1) = k + 1
(k ≥ 0), we obtain

Pn(1) =
5

16

n−1
∑

j=1

j

n2 − j2
+ 0.117 > 0.

Thus, Pn(t) > 0 for t ∈ [−1, 1].
Next, we prove that Sn(x) > −0.117 for n ≥ 34. We set

aj =
sin(jx)

n− j
, bj =

1

n+ j
(j = 1, . . . , n− 1).

Applying Abel’s lemma (see [17, pp. 32–33]) gives

(2.5) Sn(x) =
n−1
∑

j=1

ajbj ≥ b1 min
1≤k≤n−1

k
∑

j=1

aj =
1

n+ 1
min

1≤k≤n−1

k
∑

j=1

sin(jx)

n− j
.

Let k ∈ {1, . . . , n− 1} and

Wk,n(x) =
1

n+ 1

k
∑

j=1

sin(jx)

n− j
.

We get

(n+ 1)Wk,n(x) ≥ −
k

∑

j=1

1

n− j
= ψ(n− k) − ψ(n),

where ψ = Γ ′/Γ denotes the logarithmic derivative of Euler’s gamma func-
tion. Since ψ is strictly increasing on (0,∞), we obtain

(2.6) (n+ 1)Wk,n(x) ≥ ψ(1) − ψ(n) = −γ − ψ(n).

The function

Y (x) = 0.117(x+ 1) − ψ(x) − γ

is strictly convex on (0,∞) with

Y (34) = 0.0062 . . . , Y ′(34) = 0.0871 . . . .
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Hence, we have

(2.7) −γ − ψ(n) > −0.117(n+ 1) for n ≥ 34.

Combining (2.6) and (2.7) leads to Wk,n(x) > −0.117. From (2.5) we con-
clude that Sn(x) > −0.117 for n ≥ 34. This completes the proof of Theo-
rem 1.

In view of Lukács’ inequality Ln(x) > 0 it is tempting to conjecture that
S∗

n(x) is positive for all n ≥ 2 and x ∈ (0, π). We prove that this is true for
even n. If n is odd, then we conclude from S∗

n(π) = 0 and S∗
n
′(π) = (n2−1)/4

that S∗
n is not everywhere positive on (0, π). However, as Theorem 2 below

indicates, the negative values only appear in a small interval in the vicinity
of π.

Theorem 2. For all even integers n ≥ 2 and real numbers x ∈ (0, π)
we have

(2.8) 0 <
n−1
∑

j=1

(n2 − j2) sin(jx).

Moreover , (2.8) holds for all odd integers n ≥ 3 and real numbers x ∈
(0, π − π/n].

Proof. We define

σn(x) =
n−1
∑

j=1

sin(jx) =
cos(x/2) − cos((n− 1/2)x)

2 sin(x/2)
.

Some elementary calculations lead to

S∗
n(x) = n2σn(x) + σ′′n(x)(2.9)

=
sin(x)(1 − cos(nx)) + n(1 − cos(x))(n sin(x) − 2 sin(nx))

2(1 − cos(x))2
.

In order to prove that S∗
n(x) is positive it is sufficient to show that

0 < 1 − cos(nx) + n2(1 − cos(x))

(

1 − 2
sin(nx)

n sin(x)

)

= Fn(x), say.

We distinguish three cases.

Case 1: 0 < x < π/n. Using

sin(nx)

n sin(x)
< 1,

(

sin(nx)

n sin(x)

)′

=
sin(nx)

nx sin(x)
(nx cot(nx) − x cot(x)) < 0,

we get

F ′
n(x) = n2 sin(x)

(

1 − sin(nx)

n sin(x)

)

− 2n2(1 − cos(x))

(

sin(nx)

n sin(x)

)′

> 0.

This yields Fn(x) > Fn(0) = 0.
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Case 2: π/n ≤ x ≤ π − π/n. Applying the inequality

(2.10)

∣

∣

∣

∣

sin(nx)

n sin(x)

∣

∣

∣

∣

≤ 1

3
,

we conclude that Fn(x) is positive.

Case 3: π−π/n < x < π and n even. Then we have sin(nx) < 0, which
implies that Fn(x) > 0.

Remarks. (1) Equality holds in (2.10) only when n = 3 and x = π/2.
Actually (2.10) can be refined to

(2.11) −1

3
≤ sin(nx)

n sin(x)
≤

√
6

9
,

π

n
≤ x ≤ π − π

n
, n = 2, 3, . . . ,

where the constants −1/3,
√

6/9 are the best possible. Inequality (2.11) was
stated by R. Askey in [7] as a problem, which was solved by A. A. Jagers
in [14]. Additional comments on these inequalities as well as references to
applications are given by R. Askey in [14]. We note that inequality (2.10)
was also used by R. Askey and G. Gasper in [8, p. 727] in the proof of an
inequality for Jacobi polynomials.

(2) Since S∗
n(0) = 0, we see that the lower bound 0 is sharp. From (2.9)

we get the limit relation

lim
n→∞

S∗
n(π/n) = ∞,

which reveals that there does not exist a constant upper bound for S∗
n(x).

And, if n is odd, then we obtain

lim
n→∞

S∗
n(π − π/(4n)) = −∞.

This also implies that there does not exist a constant lower bound for S∗
n(x)

which is valid for all odd n.
(3) Inequality (2.8) is closely related to

(2.12) 0 <

n−1
∑

j=1

(n2 − j2)
sin(jx)

j
(n ≥ 2, 0 < x < π),

which is given in [11]. Inequalities (2.8) and (2.12) do not imply each other.
If (2.8) were true for odd n as well, then (2.12) would follow from (2.8) by
summation by parts.

(4) It is natural to ask about sharp inequalities for the cosine polynomials

Cn(x) =
n−1
∑

j=1

1

n2 − j2
cos(jx), C∗

n(x) =
n−1
∑

j=1

(n2 − j2) cos(jx).
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We have C2(x) = cos(x)/3 and as in (2.2) we get, for n ≥ 3,

|Cn(x)| ≤ τn <
1

3
.

Thus,

−1

3
< Cn(x) <

1

3
(n ≥ 2, 0 < x < π),

where both bounds are best possible. Since

lim
n→∞

C∗
n(0) = ∞, lim

n→∞
C∗

n(π) = −∞,

it follows that there do not exist constant bounds for C∗
n(x) which hold for

all n ≥ 2 and x ∈ (0, π).
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[16] G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in Polynomials:

Extremal Problems, Inequalities, Zeros, World Sci., Singapore, 1994.
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