C OLLOQUIUM MATHEMATICUM

INEQUALITIES FOR TWO SINE POLYNOMIALS

BY
HORST ALZER (Waldbröl) and STAMATIS KOUMANDOS (Nicosia)
Abstract. We prove:
(I) For all integers $n \geq 2$ and real numbers $x \in(0, \pi)$ we have

$$
\alpha \leq \sum_{j=1}^{n-1} \frac{1}{n^{2}-j^{2}} \sin (j x) \leq \beta,
$$

with the best possible constant bounds

$$
\alpha=\frac{15-\sqrt{2073}}{10240} \sqrt{1998-10 \sqrt{2073}}=-0.1171 \ldots, \quad \beta=\frac{1}{3} .
$$

(II) The inequality

$$
0<\sum_{j=1}^{n-1}\left(n^{2}-j^{2}\right) \sin (j x)
$$

holds for all even integers $n \geq 2$ and $x \in(0, \pi)$, and also for all odd integers $n \geq 3$ and $x \in(0, \pi-\pi / n]$.

1. Introduction. Problems on the infinite divisibility of probability distributions led K. Takano [18]-[24] to the study of several interesting trigonometric sums. In [19] he investigated the sine polynomial

$$
T_{n}(x)=\sum_{j=1}^{n} \frac{1}{(n-j)!(n+j)!} \sin (j x)
$$

and proved the identity

$$
\begin{equation*}
T_{n}(x)=\frac{\sin (x)}{(2 n)!} \sum_{j=0}^{n-1} \frac{(2(n-j-1))!}{((n-j-1)!)^{2}}(2 \cos (x / 2))^{2 j} . \tag{1.1}
\end{equation*}
$$

This is a special case of a more general identity for Jacobi polynomials obtained in [13]. See also [25]. From (1.1) we immediately get the inequality

$$
\begin{equation*}
0<T_{n}(x) \quad(n \in \mathbb{N}, 0<x<\pi) . \tag{1.2}
\end{equation*}
$$

2000 Mathematics Subject Classification: 26D05, 42A05.
Key words and phrases: trigonometric polynomials, inequalities.

Elementary estimates reveal that the following converse of (1.2) is valid:

$$
\begin{equation*}
T_{n}(x) \leq \frac{1}{2} \quad(n \in \mathbb{N}, 0<x<\pi) \tag{1.3}
\end{equation*}
$$

The bounds given in (1.2) and (1.3) are best possible.
Inequalities for sine and cosine polynomials have attracted the attention of mathematicians since many years. A detailed collection of the most important theorems as well as historical remarks, applications, and numerous references on this subject can be found in the monograph [16, Chapter 4] and the survey paper [9]. Various new results are published in the research articles [1]-[5].

In this paper we study two sine polynomials which are related to T_{n}. The estimates (1.2) and (1.3) inspired us to ask about sharp constant bounds for

$$
S_{n}(x)=\sum_{j=1}^{n-1} \frac{1}{(n-j)(n+j)} \sin (j x), \quad S_{n}^{*}(x)=\sum_{j=1}^{n-1}(n-j)(n+j) \sin (j x)
$$

In what follows, we maintain these notations. The function S_{n}^{*} is a companion of Lukács' polynomial

$$
L_{n}(x)=\sum_{j=1}^{n-1}(n-j) \sin (j x)=\frac{n \sin (x)-\sin (n x)}{4(\sin (x / 2))^{2}}
$$

which has been studied by several authors. F. Lukács proved that $L_{n}(x)>0$ for all $n \geq 2$ and $x \in(0, \pi)$; see [12]. This inequality is important because it represents the positivity of the classical conjugate Fejér kernel; see [27, pp. 91-92]. Variants and generalizations of Lukács' inequality are given in [1], [6], [8]-[11], [15], [16, p. 140].
2. Main results. First, we provide sharp upper and lower bounds for $S_{n}(x)$.

Theorem 1. For all integers $n \geq 2$ and real numbers $x \in(0, \pi)$ we have

$$
\begin{equation*}
\alpha \leq \sum_{j=1}^{n-1} \frac{1}{n^{2}-j^{2}} \sin (j x) \leq \beta \tag{2.1}
\end{equation*}
$$

with the best possible constant bounds

$$
\alpha=\frac{15-\sqrt{2073}}{10240} \sqrt{1998-10 \sqrt{2073}}=-0.1171 \ldots, \quad \beta=\frac{1}{3}
$$

Proof. Let $x \in(0, \pi)$. Then

$$
0<S_{2}(x)=\frac{1}{3} \sin (x) \leq \frac{1}{3}=S_{2}(\pi / 2)
$$

and for $n \geq 3$ we obtain

$$
\begin{align*}
S_{n}(x) & \leq \sum_{j=1}^{n-2} \frac{1}{n^{2}-j^{2}}+\frac{1}{n^{2}-(n-1)^{2}} \tag{2.2}\\
& \leq \frac{n-2}{n^{2}-(n-2)^{2}}+\frac{1}{n^{2}-(n-1)^{2}}=\tau_{n}, \quad \text { say. }
\end{align*}
$$

Combining (2.2) and

$$
\frac{1}{3}-\tau_{n}=\frac{(n-2)(2 n-5)}{12(n-1)(2 n-1)}>0
$$

we conclude that $S_{n}(x)<1 / 3$.
A short calculation reveals that

$$
S_{3}(x)=\sqrt{1-(\cos (x))^{2}}\left(\frac{1}{8}+\frac{2}{5} \cos (x)\right)
$$

attains its absolute minimum at

$$
x_{0}=\arccos \left(-\frac{1}{64}(5+\sqrt{2073})\right)=2.4808 \ldots
$$

with

$$
S_{3}\left(x_{0}\right)=\frac{15-\sqrt{2073}}{10240} \sqrt{1998-10 \sqrt{2073}}=-0.1171 \ldots
$$

We denote by U_{k} the Chebyshev polynomial of the second kind, which is given by

$$
U_{k}(t)=\frac{\sin ((k+1) x)}{\sin (x)} \quad(k=0,1, \ldots)
$$

where $\cos (x)=t$. Then we obtain the representation

$$
S_{n}(x)=\sqrt{1-t^{2}} \sum_{j=1}^{n-1} \frac{U_{j-1}(t)}{n^{2}-j^{2}}
$$

In order to prove the left-hand bound of (2.1) it suffices to show that

$$
\begin{equation*}
\sqrt{1-t^{2}} \sum_{j=1}^{n-1} \frac{U_{j-1}(t)}{n^{2}-j^{2}}+0.117>0 \quad \text { for }-1<t<1 \tag{2.3}
\end{equation*}
$$

We define, for $s \in[0,1]$,

$$
h(s)=1-\frac{1}{2} s-\frac{1}{8} s^{2}-\frac{1}{16} s^{3}-\sqrt{1-s}
$$

Since $h(0)=0$ and

$$
h^{\prime}(s)=\frac{\left(40+15 s+9 s^{2}\right) s^{3}}{16\left(8 \sqrt{1-s}+(1-s)\left(8+4 s+3 s^{2}\right)\right)}
$$

we conclude that h is positive on $(0,1]$. Thus, for $t \in(-1,1)$ we get

$$
\sqrt{1-t^{2}} \leq 1-\frac{1}{2} t^{2}-\frac{1}{8} t^{4}-\frac{1}{16} t^{6}
$$

This implies that the validity of

$$
\begin{equation*}
\left(1-\frac{1}{2} t^{2}-\frac{1}{8} t^{4}-\frac{1}{16} t^{6}\right) \sum_{j=1}^{n-1} \frac{U_{j-1}(t)}{n^{2}-j^{2}}+0.117>0 \quad \text { for }-1<t<1 \tag{2.4}
\end{equation*}
$$

leads to (2.3). Let P_{n} be the polynomial on the left-hand side of (2.4). An application of Sturm's theorem (see, for example, [26, p. 248]) shows that for $n=4,5, \ldots, 33$ the function P_{n} has no zero on $[-1,1]$. Since $U_{k}(1)=k+1$ ($k \geq 0$), we obtain

$$
P_{n}(1)=\frac{5}{16} \sum_{j=1}^{n-1} \frac{j}{n^{2}-j^{2}}+0.117>0
$$

Thus, $P_{n}(t)>0$ for $t \in[-1,1]$.
Next, we prove that $S_{n}(x)>-0.117$ for $n \geq 34$. We set

$$
a_{j}=\frac{\sin (j x)}{n-j}, \quad b_{j}=\frac{1}{n+j} \quad(j=1, \ldots, n-1)
$$

Applying Abel's lemma (see [17, pp. 32-33]) gives

$$
\begin{equation*}
S_{n}(x)=\sum_{j=1}^{n-1} a_{j} b_{j} \geq b_{1} \min _{1 \leq k \leq n-1} \sum_{j=1}^{k} a_{j}=\frac{1}{n+1} \min _{1 \leq k \leq n-1} \sum_{j=1}^{k} \frac{\sin (j x)}{n-j} \tag{2.5}
\end{equation*}
$$

Let $k \in\{1, \ldots, n-1\}$ and

$$
W_{k, n}(x)=\frac{1}{n+1} \sum_{j=1}^{k} \frac{\sin (j x)}{n-j}
$$

We get

$$
(n+1) W_{k, n}(x) \geq-\sum_{j=1}^{k} \frac{1}{n-j}=\psi(n-k)-\psi(n)
$$

where $\psi=\Gamma^{\prime} / \Gamma$ denotes the logarithmic derivative of Euler's gamma function. Since ψ is strictly increasing on $(0, \infty)$, we obtain

$$
\begin{equation*}
(n+1) W_{k, n}(x) \geq \psi(1)-\psi(n)=-\gamma-\psi(n) \tag{2.6}
\end{equation*}
$$

The function

$$
Y(x)=0.117(x+1)-\psi(x)-\gamma
$$

is strictly convex on $(0, \infty)$ with

$$
Y(34)=0.0062 \ldots, \quad Y^{\prime}(34)=0.0871 \ldots
$$

Hence, we have

$$
\begin{equation*}
-\gamma-\psi(n)>-0.117(n+1) \quad \text { for } n \geq 34 \tag{2.7}
\end{equation*}
$$

Combining (2.6) and (2.7) leads to $W_{k, n}(x)>-0.117$. From (2.5) we conclude that $S_{n}(x)>-0.117$ for $n \geq 34$. This completes the proof of Theorem 1.

In view of Lukács' inequality $L_{n}(x)>0$ it is tempting to conjecture that $S_{n}^{*}(x)$ is positive for all $n \geq 2$ and $x \in(0, \pi)$. We prove that this is true for even n. If n is odd, then we conclude from $S_{n}^{*}(\pi)=0$ and $S_{n}^{* \prime}(\pi)=\left(n^{2}-1\right) / 4$ that S_{n}^{*} is not everywhere positive on $(0, \pi)$. However, as Theorem 2 below indicates, the negative values only appear in a small interval in the vicinity of π.

Theorem 2. For all even integers $n \geq 2$ and real numbers $x \in(0, \pi)$ we have

$$
\begin{equation*}
0<\sum_{j=1}^{n-1}\left(n^{2}-j^{2}\right) \sin (j x) \tag{2.8}
\end{equation*}
$$

Moreover, (2.8) holds for all odd integers $n \geq 3$ and real numbers $x \in$ ($0, \pi-\pi / n]$.

Proof. We define

$$
\sigma_{n}(x)=\sum_{j=1}^{n-1} \sin (j x)=\frac{\cos (x / 2)-\cos ((n-1 / 2) x)}{2 \sin (x / 2)}
$$

Some elementary calculations lead to

$$
\begin{align*}
S_{n}^{*}(x) & =n^{2} \sigma_{n}(x)+\sigma_{n}^{\prime \prime}(x) \tag{2.9}\\
& =\frac{\sin (x)(1-\cos (n x))+n(1-\cos (x))(n \sin (x)-2 \sin (n x))}{2(1-\cos (x))^{2}}
\end{align*}
$$

In order to prove that $S_{n}^{*}(x)$ is positive it is sufficient to show that

$$
0<1-\cos (n x)+n^{2}(1-\cos (x))\left(1-2 \frac{\sin (n x)}{n \sin (x)}\right)=F_{n}(x), \quad \text { say }
$$

We distinguish three cases.
Case 1: $0<x<\pi / n$. Using

$$
\frac{\sin (n x)}{n \sin (x)}<1, \quad\left(\frac{\sin (n x)}{n \sin (x)}\right)^{\prime}=\frac{\sin (n x)}{n x \sin (x)}(n x \cot (n x)-x \cot (x))<0
$$

we get

$$
F_{n}^{\prime}(x)=n^{2} \sin (x)\left(1-\frac{\sin (n x)}{n \sin (x)}\right)-2 n^{2}(1-\cos (x))\left(\frac{\sin (n x)}{n \sin (x)}\right)^{\prime}>0
$$

This yields $F_{n}(x)>F_{n}(0)=0$.

CASE 2: $\pi / n \leq x \leq \pi-\pi / n$. Applying the inequality

$$
\begin{equation*}
\left|\frac{\sin (n x)}{n \sin (x)}\right| \leq \frac{1}{3} \tag{2.10}
\end{equation*}
$$

we conclude that $F_{n}(x)$ is positive.
CASE 3: $\pi-\pi / n<x<\pi$ and n even. Then we have $\sin (n x)<0$, which implies that $F_{n}(x)>0$.

Remarks. (1) Equality holds in (2.10) only when $n=3$ and $x=\pi / 2$. Actually (2.10) can be refined to

$$
\begin{equation*}
-\frac{1}{3} \leq \frac{\sin (n x)}{n \sin (x)} \leq \frac{\sqrt{6}}{9}, \quad \frac{\pi}{n} \leq x \leq \pi-\frac{\pi}{n}, \quad n=2,3, \ldots \tag{2.11}
\end{equation*}
$$

where the constants $-1 / 3, \sqrt{6} / 9$ are the best possible. Inequality (2.11) was stated by R. Askey in [7] as a problem, which was solved by A. A. Jagers in [14]. Additional comments on these inequalities as well as references to applications are given by R. Askey in [14]. We note that inequality (2.10) was also used by R. Askey and G. Gasper in [8, p. 727] in the proof of an inequality for Jacobi polynomials.
(2) Since $S_{n}^{*}(0)=0$, we see that the lower bound 0 is sharp. From (2.9) we get the limit relation

$$
\lim _{n \rightarrow \infty} S_{n}^{*}(\pi / n)=\infty
$$

which reveals that there does not exist a constant upper bound for $S_{n}^{*}(x)$. And, if n is odd, then we obtain

$$
\lim _{n \rightarrow \infty} S_{n}^{*}(\pi-\pi /(4 n))=-\infty
$$

This also implies that there does not exist a constant lower bound for $S_{n}^{*}(x)$ which is valid for all odd n.
(3) Inequality (2.8) is closely related to

$$
\begin{equation*}
0<\sum_{j=1}^{n-1}\left(n^{2}-j^{2}\right) \frac{\sin (j x)}{j} \quad(n \geq 2,0<x<\pi) \tag{2.12}
\end{equation*}
$$

which is given in [11]. Inequalities (2.8) and (2.12) do not imply each other. If (2.8) were true for odd n as well, then (2.12) would follow from (2.8) by summation by parts.
(4) It is natural to ask about sharp inequalities for the cosine polynomials

$$
C_{n}(x)=\sum_{j=1}^{n-1} \frac{1}{n^{2}-j^{2}} \cos (j x), \quad C_{n}^{*}(x)=\sum_{j=1}^{n-1}\left(n^{2}-j^{2}\right) \cos (j x)
$$

We have $C_{2}(x)=\cos (x) / 3$ and as in（2．2）we get，for $n \geq 3$ ，

$$
\left|C_{n}(x)\right| \leq \tau_{n}<\frac{1}{3}
$$

Thus，

$$
-\frac{1}{3}<C_{n}(x)<\frac{1}{3} \quad(n \geq 2,0<x<\pi)
$$

where both bounds are best possible．Since

$$
\lim _{n \rightarrow \infty} C_{n}^{*}(0)=\infty, \quad \lim _{n \rightarrow \infty} C_{n}^{*}(\pi)=-\infty,
$$

it follows that there do not exist constant bounds for $C_{n}^{*}(x)$ which hold for all $n \geq 2$ and $x \in(0, \pi)$ ．

REFERENCES

［1］H．Alzer and S．Koumandos，Sharp inequalities for trigonometric sums，Math．Proc． Cambridge Philos．Soc． 134 （2003），139－152．
［2］－，—，A sharp bound for a sine polynomial，Colloq．Math． 96 （2003），83－91．
［3］－，—，Inequalities of Fejér－Jackson type，Monatsh．Math． 139 （2003），89－103．
［4］—，—，Sharp inequalities for trigonometric sums in two variables，Illinois J．Math． 48 （2004），887－907．
［5］－，一，Companions of the inequalities of Fejér－Jackson and Young，Anal．Math． 31 （2005），75－84．
［6］R．Andreani and D．K．Dimitrov，An extremal nonnegative sine polynomial，Rocky Mountain J．Math． 33 （2003），759－774．
［7］R．Askey，Problem 73－21．A sine inequality，SIAM Rev． 15 （1973）， 788.
［8］R．Askey and G．Gasper，Positive Jacobi polynomial sums II，Amer．J．Math． 98 （1976），709－737．
［9］一，一，Inequalities for polynomials，in：The Bieberbach Conjecture，A．Baernstein II， D．Drasin，P．Duren and A．Marden（eds．），Math．Surveys Monogr．21，Amer．Math． Soc．，Providence，RI，1986，7－32．
［10］D．K．Dimitrov，Extremal positive trigonometric polynomials，in：Approximation Theory，DARBA，Sofia，2002，136－157．
［11］D．K．Dimitrov and C．A．Merlo，Nonnegative trigonometric polynomials，Constr． Approx． 18 （2002），117－143．
［12］L．Fejér，Einige Sätze，die sich auf das Vorzeichen einer ganzen rationalen Funktion beziehen；nebst Anwendungen dieser Sätze auf die Abschnitte und Abschnittsmittel－ werte von ebenen und räumlichen harmonischen Entwicklungen und von beschränk－ ten Potenzreihen，Monatsh．Math． 35 （1928），305－344．
［13］M．E．H．Ismail，D．Kim，and D．Stanton，Lattice paths and positive trigonometric sums，Constr．Approx． 15 （1999），69－81．
［14］A．A．Jagers，Solution to［7］，with comments by R．Askey，SIAM Rev． 16 （1974）， 550－553．
［15］J．B．Kelly，Metric inequalities and symmetric differences，in：Inequalities II， O．Shisha（ed．），Academic Press，New York，1970，193－212．
［16］G．V．Milovanović，D．S．Mitrinović，and Th．M．Rassias，Topics in Polynomials： Extremal Problems，Inequalities，Zeros，World Sci．，Singapore， 1994.
［17］D．S．Mitrinović，Analytic Inequalities，Springer，New York， 1970.
[18] K. Takano, On a family of polynomials with zeros outside the unit disk, Int. J. Comput. Numer. Anal. Appl. 1 (2002), 369-382.
[19] -, On a certain formula of trigonometric sum, ibid. 1 (2002), 383-396.
[20] -, On a formula of cosine sum, ibid. 2 (2002), 207-219.
[21] -, On the infinite divisibility of probability distributions consisting of normed product of Cauchy densities, ibid. 2 (2002), 221-236.
[22] -, On certain trigonometric sums, Far East J. Math. Sci. 8 (2003), 63-76.
[23] -, On the infinite divisibility of normed conjugate product of gamma function, in: Proc. 4th Int. Conf. Soc. for Special Functions and their Applications (SSFA), Soc. Spec. Funct. Appl., Chennai, 2003, 1-8.
[24] -, On infinite divisibility of normed product of Cauchy densities, J. Comput. Appl. Math. 150 (2003), 253-263.
[25] K. Takano and H. M. Srivastava, Remarks on some families of trigonometric sums, Int. J. Comput. Numer. Anal. Appl. 2 (2002), 387-399.
[26] B. L. van der Waerden, Algebra I, Springer, Berlin, 1971.
[27] A. Zygmund, Trigonometric Series, 3rd ed., Cambridge Univ. Press, Cambridge, 2002.

Morsbacher Str. 10
D-51545 Waldbröl, Germany
E-mail: alzerhorst@freenet.de

Department of Mathematics and Statistics
The University of Cyprus
P.O. Box 20537

1678 Nicosia, Cyprus
E-mail: skoumand@ucy.ac.cy

Received 1 April 2005;
revised 15 September 2005

