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STEFAN PROBLEM IN A 2D CASE

BY

PIOTR BOGUS LAW MUCHA (Warszawa)

Abstract. The aim of this paper is to analyze the well posedness of the one-phase
quasi-stationary Stefan problem with the Gibbs–Thomson correction in a two-dimensional
domain which is a perturbation of the half plane. We show the existence of a unique
regular solution for an arbitrary time interval, under suitable smallness assumptions on
initial data. The existence is shown in the Besov–Slobodetskĭı class with sharp regularity
in the L2-framework.

1. Introduction. The one-phase Stefan problem models phenomena of
phase transitions between liquid and solid. The Gibbs–Thomson correction
adds the influence of the shape of the free surface to the model. We will
investigate the mathematical aspects of this system. We concentrate on the
quasistationary case in a two-dimensional domain. We want to investigate
the existence of solutions to the system.

This subject has been studied by many authors, e.g. in [2, 3, 4, 6]. These
results provide only partial answers. It was not clear which approach gives
the best information about the system. An important achievement is pa-
per [5]. The authors noted that the system can be treated as a nonlocal
nonlinear parabolic equation of order three. Using the theory of semigroups
for abstract parabolic systems, they showed the existence of unique classical
solutions locally in time.

In our paper, we construct regular solutions to the system in a domain
which is a perturbation of the half plane. The key element of our technique
is a Schauder-type estimate for a linearization of the full system. It turns
out that the linearized equations are a local version of the following nonlocal
parabolic equation of order three:

(1.1) ∂tφ+ (−∆)
3/2φ = m.

Having this interesting property we are able to prove existence of solutions
to the system such that the graph function (describing the free boundary)
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φ belongs to W
7/2,7/6
2 for any T > 0. However this can be done only for

small data.
This new approach improves the results obtained in [5] as regards reg-

ularity and also clarifies the parabolic character of the model. We consider
here only the two-dimensional case and the L2-approach to show precisely
the main idea of the technique. The resulting regularity of solutions is opti-
mal in the L2-framework (regularity of p cannot be decreased if we want to
control regular solutions to system (1.2)).
The Stefan problem with the Gibbs–Thomson correction, also known as

the Hele–Shaw system, reads:

(1.2)

∆p = 0 in Ωt,

p = aκ on ∂Ωt,

∂p

∂n
= −Vn on ∂Ωt,

∂Ωt|t=0 = ∂Ω0,

where

(1.3)

∂Ω0 = {(x1, φ0(x1)) : x1 ∈ R},

∂Ωt = {(x1, φ(x1, t)) : x1 ∈ R}, t ∈ [0, T ),

Ωt = {(x1, x2) : x1 ∈ R and x2 > φ(x1, t)}.

We are looking for the evolution of the domain Ωt described by the free
boundary ∂Ωt and the existence of p.
Here a > 0 is a constant and κ denotes the curvature of the boundary

∂Ωt and is given by the function φ as follows:

(1.4) κ =
1√

1 + |φ,x1 |
2
∂x1

(
φ,x1√
1 + |φ,x1 |

2

)

where the comma denotes differentiation. The quantity Vn is the normal
velocity of the evolution of the boundary,

(1.5) Vn = −
∂tφ√
1 + |φ,x1 |

2
.

The statement of problem (1.2)–(1.5) restricts our attention to the case
where the boundary is the graph of a function. This assumption requires
suitable smallness of norms of φ to avoid difficulties with the description
of ∂Ωt. The function φ0 describes the initial boundary ∂Ω0.
The main result is the following.

Theorem 1.1. Let T > 0 and φ0 ∈ W 22 (R). Then there exists ε0 =
ε0(T ) > 0 such that if

(1.6) ‖φ0‖W 2
2 (R)
≤ ε0,
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then there exists a unique regular solution to problem (1.2 ) on the time
interval [0, T ] such that

(1.7)
∇p ∈ L2(0, T ;W

1
2 (Ωt)) ∩W

1/3
2 (0, T ;L2(Ωt)),

φ ∈W
7/2,7/6
2 (R× [0, T ]).

The key element to prove Theorem 1.1 is a Schauder-type estimate for
a linearization of (1.2). We will investigate the following system:

(1.8)

∆p = f in R
2
+ × (0, T ),

p|x2=0 = aφ,x1x1 + g on R× (0, T ),

p,x2 |x2=0 = −∂tφ+ h on R× (0, T ),

φ|t=0 = φ on R,

p→ 0 as |x| → ∞.

It will turn out that system (1.8) can be reduced to the parabolic equa-
tion (1.1).

The kernel of the paper is the following result.

Theorem 1.2. Let T > 0 and assume that

(1.9)

h, gx1 ∈W
1/2,1/6
2 (R× (0, T )), g ∈W

0,1/2
2 (R× (0, T )),

f ∈ L2(R
2
+ × (0, T )) ∩W

1/3
2 (0, T ;W

−1
2 (R

2
+)),

φ0 ∈W
2
2 (R).

Then there exists a unique solution to problem (1.8) such that

(1.10) ‖φ‖
W
7/2,7/6
2 (R×(0,T ))

+ ‖∇p‖
W
1,1/3
2 (R2+×(0,T ))

≤ c(T )(‖h, g,x1‖W 1/2,1/6
2 (R×(0,T ))

+ ‖g‖
W
0,1/2
2 (R×(0,T ))

+ ‖φ0‖W 2
2 (R)

+ ‖f‖
L2(R2+×(0,T ))∩W

1/3
2 (0,T ;W−1

2 (R
2
+))
),

where c(T ) is an increasing function of T .

The idea of the proof of Theorem 1.2 is based on the approach used for
parabolic-elliptic systems as in [8]. The Fourier transform and the theory of
Besov spaces will be basic tools to obtain the bound (1.10).

Theorem 1.1 is a consequence of Theorem 1.2 and the Banach fixed point
theorem together with some technical lemmas proved in the Appendix.

The result can be extended to more general cases (n-dimensional for
a general initial domain in the Lp-framework), but then more advanced
techniques are required (see [7]).

The paper is organized as follows. In Section 2 we introduce the basic
notation and some auxiliary results. Next, we prove Theorem 1.2. In Sec-
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tion 4, we prove Theorem 1.1. The last section contains the proofs of the
lemmas from Section 2.

2. Notation. Throughout the paper we try to use standard notations.
The main considerations will be carried out in the anisotropic Besov–

Slobodetskĭı spaces Wm,n
p for m,n ≥ 0 and p ≥ 1 (see [1]) with the norm

(2.1) ‖f‖Wm,n
p (Ω×(0,T )) = ‖f‖Lp(Ω×(0,T )) + 〈f〉Wm,n

p (Ω×(0,T )),

where 〈f〉Wm,n
p
is the main seminorm of ‖f‖Wm,n

p
defined by

〈f〉p
Wm,n
p (Ω×(0,T ))

=

T\
0

〈f〉pWm
p (Ω)

dt+
\
Ω

〈f〉pWn
p (0,T )

dx(2.2)

=
∑

|α|=[m]

T\
0

dt
\
Ω

dx
\
Ω

dx′
|∂αx f(x, t)− ∂

α
x f(x

′, t)|p

|x− x′|d+p(m−[m])

+
\
Ω

dx

T\
0

dt

T\
0

dt′
|∂
[n]
t f(x, t)− ∂

[n]
t f(x, t′)|p

|t− t′|1+p(n−[n])
,

where d = dimΩ and [·] denotes the integer part of a real number.
By W−12 (R

2
+) we denote the dual space to

V = {ϕ ∈W 12(loc)(R
2
+) : ∇ϕ ∈ L2(R

2
+) and ϕ|x2=0 = 0},

and

(2.3) ‖f‖W−1
2 (R

2
+)
= sup

ϕ
〈f, ϕ〉L2(R2+),

where the sup is taken over ϕ ∈ V such that ‖∇ϕ‖L2 ≤ 1.
The theory of Slobodetskĭı spaces [1, Chap. XVIII] gives the following

imbedding theorem.

Lemma 2.1. Let 1 ≤ p ≤ q < ∞, m1 > m2 ≥ 0, n1 > n2 ≥ 0 and
d = dimΩ. Then

(2.4) Wm1,n1
p (Ω × (0, T )) ⊂Wm2,n2

q (Ω × (0, T )),

provided

(2.5)
d

m1

(
1

p
−
1

q

)
+
1

n1

(
1

p
−
1

q

)
≤min{1−(m1−m2)/m1, 1−(n1−n2)/n1}.

The spaces W 3m,m2 (R× (0, T )) for m ∈ R+ will play a crucial role. The
following trace theorem holds for this class.

Lemma 2.2. Let 3m − 3/2 > 0 and u ∈ W 3m,m2 (Ω × (0, T )) for some
T > 0. Then

(2.6) u = u|t=0 ∈W
3m−3/2
2 (Ω).



STEFAN PROBLEM 153

Lemma 2.3. Let f ∈W
5/2,5/6
2 (R× (0, T )) and g ∈W

1/2,1/6
2 (R× (0, T )).

Then

(2.7) ‖fg‖
W
1/2,1/6
2 (R×(0,T ))

≤ c‖f‖
W
5/2,5/6
2 (R×(0,T ))

‖g‖
W
1/2,1/6
2 (R×(0,T ))

.

Lemma 2.4. Let f ∈ W
5/2,5/6
2 (R × (0, T )) and g, h ∈ W

3/2,1/2
2 (R ×

(0, T )). Then

(2.8) ‖fgh‖
W
1/2,1/6
2 (R×(0,T ))

≤ c‖f‖
W
5/2,5/6
2 (R×(0,T ))

‖g‖
W
3/2,1/2
2 (R×(0,T ))

‖h‖
W
3/2,1/2
2 (R×(0,T ))

,

(2.9) ‖fg‖
W
0,1/2
2 (R×(0,T ))

≤ c‖f‖
W
5/2,5/6
2 (R×(0,T ))

‖g‖
W
3/2,1/2
2 (R×(0,T ))

.

Lemmas 2.3 and 2.4 are shown in the Appendix.
For simplicity we introduce the following notation for norms of several

variables in the same Banach space, say B:

(2.10) ‖a1, . . . , an‖B = max{‖a1‖B, . . . , ‖an‖B}

for a1, . . . , an ∈ B.

3. Model problem in the half space. The goal of this part is the
analysis of a linearization of the system with frozen coefficients in R

2
+ ×

(0,∞). The results are stated in Theorem 1.2.
We consider (1.8) with T =∞,

(3.1)

∆p = f in R
2
+ × (0,∞),

p|x2=0 = aφ,x1x1 + g on R× (0,∞),

p,x2 |x2=0 = −∂tφ+ h on R× (0,∞),

φ|t=0 = φ0 on R,

p→ 0 as |x| → ∞.

The main result of this section is the following.

Theorem 3.1. The solutions to (3.1) exist and satisfy

(3.2) 〈φ〉
W
7/2,7/6
2 (R×(0,∞))

+ 〈∇p〉
W
1,1/3
2 (R2+×(0,∞))

≤ c(〈h, g,x1〉W 1/2,1/6
2 (R×(0,∞))

+ 〈g〉
W
0,1/2
2 (R×(0,∞))

+ 〈φ0〉W 2
2 (R)

+ 〈f〉
L2(R2+×(0,∞))∩W

1/3
2 (0,∞;W−1

2 (R
2
+))
).

Proof. The first step is connected with the function f . We consider the
elliptic problem

(3.3)
∆p = f in R

2
+,

p|x2=0 = 0 on R,

for t ∈ (0,∞). We prove
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Lemma 3.1. Let

(3.4) f ∈ L2(R
2
+ × (0,∞)) ∩W

1/3
2 (0,∞;W

−1
2 (R

2
+)).

Then the solution of (3.3) satisfies

(3.5) 〈∇p〉
W
1,1/3
2 (R2+×(0,∞))

+ 〈p,x2 |x2=0〉W 1/2,1/6
2 (R×(0,∞))

≤ c‖f‖
L2(R2+×(0,∞))∩W

1/3
2 (0,∞;W−1

2 (R
2
+))
.

Proof. By the weak formulation of problem (3.3), we obtain existence in
the space W 12(loc)(R

2
+) ∩ {ψ|x2=0 = 0},

(3.6) (∇p,∇ψ)L2(R2+) = −(f, ψ)L2(R2+)

for any ψ ∈ W 12 (R
2
+) ∩ {ψ|x2=0 = 0}. Using the definition of W

1/3
2 (see

(2.2)), we easily conclude that

(3.7) 〈∇p〉
W
1/3
2 (0,∞;L2(R2+))

≤ c〈f〉
W
1/3
2 (0,∞;W−1(R2+))

.

Moreover, the Parseval identity leads to

(3.8) 〈p〉W 2,0
2 (R

2
+×(0,∞))

≤ c‖f‖L2(R2+×(0,∞)).

From the trace theorem, we deduce the estimate for p,x2 |x2=0. Lemma 3.1
is proved.

The above result makes it possible to omit the influence of the function f .
Introduce the following form of solutions to problem (3.1):

(3.9) pold = pnew + pL1,

where pL1 is the solution of (3.3) given by Lemma 3.1 and pold is a solution
of (3.1), while pnew is a solution of

(3.10)

∆p = 0 in R
2
+ × (0,∞),

p|x2=0 = aφ,x1x1 + g on R× (0,∞),

p,x2 |x2=0 = −∂tφ+ h on R× (0,∞),

φ|t=0 = φ0 on R,

p→ 0 as |x| → ∞,

where

(3.11) gnew = gold − pL1|x2=0, hnew = hold − pL1,x2 |x2=0,

and by the estimates from Lemma 3.1 we have

(3.12) 〈hnew, gnew,x1〉W 1/2,1/6
2 (R×(0,∞)

≤ c(〈hold, gold,x1〉W 1/2,1/6
2 (R×(0,∞))

+ 〈f〉
L2(R2+×(0,∞))∩W

1/3
2 (0,∞;W−1

2 (R
2
+))
).

Now, we investigate system (3.10):
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Lemma 3.2. Let h, g,x1 ∈W
1/2,1/6
2 (R× (0,∞)), g ∈W

0,1/2
2 (R× (0,∞))

and φ0 ∈W
2
2 (R). Then solutions to (3.10) exist and satisfy

(3.13) 〈φ〉
W
7/2,7/6
2 (R×(0,∞))

+ 〈∇p〉
W
1,1/3
2 (R2+×(0,∞))

≤ c(〈h, g,x1〉W 1/2,1/6
2 (R×(0,∞))

+ 〈g〉
W
0,1/2
2 (R×(0,∞))

+ 〈φ0〉W 2
2 (R)
).

Proof. We apply the standard approach to parabolic-elliptic systems,
using the Fourier transform

(3.14) ·̂ = Fx1 [·] =
\
R

e−iξx1 · dx1.

Then system (3.10) takes the following form:

(3.15)

(−|ξ|2 + ∂2x2)p̂ = 0 in R
2
+ × (0,∞),

p̂|x2=0 = −a|ξ|
2φ̂+ ĝ on R× (0,∞),

p̂,x2 |x2=0 = −∂tφ̂+ ĥ on R× (0,∞),

φ̂|t=0 = φ̂0 on R,

p̂→ 0 as x2 →∞.

Solving the first equation, in view of (3.15)5 (the 5th equation in (3.15)) we
obtain

(3.16) p̂(ξ, x2, t) = q̂(ξ, t)e
−|ξ|x2

for a function q(·, ·). Then the boundary conditions (3.15)2,3 read

(3.17)
q̂ = −a|ξ|2φ̂+ ĝ on R,

−|ξ|q̂ = −∂tφ̂+ ĥ on R.

Inserting the first equation into the second one we obtain

(3.18) (∂t + a|ξ|
3)φ̂ = ĥ+ |ξ|ĝ = m̂ in R× (0,∞).

The above equation contains the main information carried by the system.
It is a parabolic equation with an elliptic operator of order three which
determines the type of regularity of solutions and also determines the whole
procedure. As we saw, the above form of the equation is equivalent to (1.1).

To solve (3.18), we first construct an extension of the problem to t < 0.

By assumption m ∈W
1/2,1/6
2 (R× (0,∞)). Introduce

(3.19) m̃(x, t) =

{
m(x, t) for t ≤ 0,

m(x,−t) for t < 0.

By the definition of the Slobodetskĭı spaces, m̃ ∈W
1/2,1/6
2 (R2) and

(3.20) ‖m̃‖
W
1/2,1/6
2 (R×R)

≤ c‖m‖W 1/2,1/6(R×(0,∞)).
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Now we modify m̃ by defining

(3.21) M(x, t) = ζ(t)m̃(x, t),

where ζ : R→ [0, 1] is a smooth function such that

(3.22) ζ(t) =





1 for t ≥ 0,

∈ [0, 1] for −1 < t < 0,

0 for t ≤ −1.

Note that still M ∈W
1/2,1/6
2 (R2) and

(3.23) ‖M‖
W
1/2,1/6
2 (R×R)

≤ c‖m‖
W
1/2,1/6
2 (R×(0,∞))

with M |t≥0 = m.
Consider the initial value problem

(3.24)
(∂t + a|ξ|

3)φ̂1 = M̂ in R× (−1,∞),

φ̂1|t=−1 = 0 on R.

By the uniqueness in time and properties of M , we extend the system
to t < −1 by zero and apply the Fourier transform with respect to time
(τ ↔ t). Thus (3.24) reads

(3.25) (iτ + a|ξ|3)φ̂1 = M̂ in R× R.

From (3.25), we get

(3.26) φ̂1 =
M̂

iτ + a|ξ|3
.

Applying the Parseval identity and the definition of the Besov–Slobodetskĭı
spaces (see Section 2) we obtain the bounds

(3.27) 〈φ1〉W 7/2,7/6
2 (R×R)

≤ c〈h, ∂x1g〉W 1/2,1/6
2 (R×(0,∞))

,

provided that h, ∂x1g ∈W
1/2,1/6
2 (R× (0,∞)).

Since φ1 = 0 for t = −1, we control the L2-norm of the solution for finite
time, hence in particular we have

(3.28) φ1|t=0 ∈W
2
2 (R) and ‖φ1|t=0‖W 2

2 (R)
≤ c〈m〉

W
1/2,1/6
2 (R×(0,∞))

.

Putting

(3.29) φ = φ1 + φ2,

by (3.18) and (3.24), we get

(3.30)
(∂t + a|ξ|

3)φ̂2 = 0 in R× (0,∞),

φ̂2|t=0 = φ̂0 − φ̂1|t=0 on R.

To solve (3.30) we prove the following result.
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Lemma 3.3. Let φ0 ∈W
2
2 (R). Then there exists a unique solution to the

parabolic problem

(3.31)
∂tφ+ aF

−1
x [|ξ|

3φ̂] = 0 in R× (0,∞),

φ|t=0 = φ0 on R,

such that φ ∈W
7/2,7/6
2 (R× (0,∞)) and

(3.32) 〈φ〉
W
7/2,7/6
2 (R×(0,∞))

≤ c‖φ0‖W 2
2 (R)

.

Proof. After the application of the Fourier transform system (3.31) reads

(3.33)
∂tφ̂+ a|ξ|

3φ̂ = 0 on R× (0,∞),

φ̂ = φ̂0 in R.

Thus we obtain the explicit formula

(3.34) φ̂(ξ, t) = φ̂0(ξ)e
−a|ξ|3t.

Let us estimate the seminorm of the solution given by (3.34). If the domain
is R, we can apply an equivalent definition of norms in W s

2 :

(3.35) 〈f〉W s
2 (R)
=
\
R

dξ |ξ|2s|f̂ |2.

This form is more convenient to estimate spatial regularity. We have

〈φ〉2
W
7/2,0
2 (R×(0,∞))

=

∞\
0

\
R

dξ |φ̂0|
2|ξ|7e−2a|ξ|

3t dt(3.36)

=
\
R

dξ |ξ|4|φ̂0|
2|ξ|3

1

2a|ξ|3
dξ =

1

2a
〈φ0〉

2
W 2
2 (R)

.

And for the time regularity we apply the definition given by (2.2):

(3.37) 〈∂tφ〉W 0,1/6
2 (R×(0,∞))

=
\
R

dξ

∞\
0

dt

∞\
0

dt′
∣∣a|ξ|3φ̂0e−a|ξ|

3t − a|ξ|3φ̂0e
−a|ξ|3t′

∣∣2

|t− t′|1+1/3
;

introducing new coordinates s = |ξ|3t and s′ = |ξ|3t′, we see that this equals

(3.38) 〈φ0〉
2
W 2
2 (R)

∞\
0

ds

∞\
0

ds′
|e−as − e−as

′

|2

|s− s′|4/3
.

The last integral is finite. Hence (3.36) and (3.38) imply (3.32). Lemma 3.3
is proved.

To finish the proof of Theorem 3.1, we need to find estimates on p. By
the boundary equations (3.17), we deduce that
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(3.39) 〈q〉
W
3/2,1/2
2 (R×(0,∞))

+ 〈q,x1〉W 1/2,1/6
2 (R×(0,∞))

≤ c(〈h, g,x1〉W 1/2,1/6
2 (R×(0,∞))

+ 〈g〉
W
0,1/2
2 (R×(0,∞))

).

By (3.16) and (3.35) we also obtain

(3.40) 〈F−1x1 [|ξ|
1/2
p̂ ]〉

W
3/2,1/2
2 (R2+×(0,∞))

+ 〈F−1x1 [|ξ|
3/2
p̂ ]〉

W
1/2,1/6
2 (R2+×(0,∞))

≤ c(〈h, ∂x1g〉W 1/2,1/6
2 (R2+×(0,∞))

+ 〈g〉
W
0,1/2
2 (R×(0,∞))

).

To get regularity with respect to x2 it is enough to use arguments similar
to (3.37)–(3.38) applied to (3.16). To control the norm of p,x2x2 we apply
(3.10)1. Estimate (3.2) follows from (3.5), (3.12), (3.13), (3.32) and (3.40).
Theorem 3.1 is proved.

Note that Theorem 3.1 only gives information on the main seminorms of
solutions. To prove Theorem 1.2 we need information for finite time, which
follows from the next lemma and estimate (3.28) for the whole norm.

Lemma 3.4. Let f ≡ 0, g = h = 0 and φ0 = 0. Then system (3.1) admits
only one regular solution.

Proof. We want to show that all possible solutions in this case are trivial
(p = 0 and φ = 0). Multiply (3.1)1 by p and integrate over R

2
+, to get

(3.41) 0 = −
\

R
2
+

∆p · p dx =
\

R
2
+

|∇p|2 dx−
\
R

∂p

∂n
p dx1;

from the boundary conditions we obtain\
R
2
+

|∇p|2 dx+
\
R

p,x2p dx1 =
\

R
2
+

|∇p|2 dx+ a
\
R

(−∂tφ)φ,x1x1 dx1(3.42)

=
\

R2+

|∇p|2 dx+
a

2

d

dt

\
R

|φx1 |
2 dx1.

Since φ0 ≡ 0, also
T
|φ0,x1 |

2dx1 = 0. Hence φ ≡ 0 and p ≡ 0. Lemma 3.4 is
shown.

The proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.1. To analyze problem (1.2) we need to control
the influence of the free boundary. The easiest solution is to introduce a
transformation of Ωt onto R

2
+ as follows:

(4.1) Φt(x̃1, x̃2) = (x̃1, x̃2 − φ(x̃1, t)).

Note that the regularity of the transformation is equivalent to the smooth-
ness of φ.
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After the transformation (4.1) into the half space problem (1.2) reads

(4.2)

∆p = (∆−∆φ)p in R
2
+ × (0, T ),

p|x2=0 = aφ,x1x1 + b1(φ,x1)φ,x1x1 on R× (0, T ),

p,x2 |x2=0 = −∂tφ+ b2(φ,x1) · ∇p+ b3(φ,x1)∂tφ on R× (0, T ),

φ|t=0 = φ0 on R,

where

(4.3)

∆φ =

( ∑

l,k=1,2

∂xk
∂x̃l

∂xk

)2
,

b1(φ,x1) =
1

1 + |φ,x1 |
2
− 1,

b2(φ,x1) =

(
φ,x1√
1 + |φ,x1 |

2
, 1−

1√
1 + |φ,x1 |

2

)
,

b3(φ,x1) = 1−
1√

1 + |φ,x1 |
2

and x1 = x̃1, x2 = x̃2 − φ(x̃1, t).

To show existence we apply the standard Banach procedure. We will
look for the solution as a fixed point of the map

(4.4) Ξ(q, ψ) = (p, φ),

where (p, φ) solves the system

(4.5)

∆p = (∆−∆ψ)q in R
2
+ × (0, T ),

p|x2=0 = aφ,x1x1 + b1(ψ,x1)ψ,x1x1 on R× (0, T ),

p,x2 |x2=0 = −∂tφ+ b2(ψ,x1) · ∇q + b3(ψ,x1)∂tψ on R× (0, T ),

φ|t=0 = φ0 on R.

The solutions to problem (4.5) will be searched for in the space

Π = (L2(R
2
+ × (0, T )) ∩W

1/3
2 (0, T ;W

−1
2 (R

2
+)))(4.6)

× (W
7/2,7/6
2 (R× (0, T )) ∩ {ψ|t=0 = φ0}).

First, we wish to find δ0 > 0, describing a set in Π, so small that

(4.7) if ‖(q, ψ)‖Π ≤ δ0, then ‖(p, φ)‖Π ≤ δ0.

Next we show that map Ξ is a contraction on this set.

Lemma 4.1. If ‖φ0‖W 2
2 (R)
is sufficiently small then the map Ξ is a con-

traction.
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Proof. From Theorem 1.2 and the form of system (4.5) we have

(4.8) ‖(p, φ)‖Π

≤ c(‖∂x1(b1(ψ,x1)ψ,x1x1), b2(ψ,x1)∇q, b3(ψ,x1)∂tψ‖W 1/2,1/6
2 (R×(0,T ))

+ ‖b1(ψ,x1)ψ,x1x1‖W 0,1/2
2 (R×(0,T ))

+ ‖(∆−∆ψ)q‖L2(R2+×(0,T ))∩W
1/3
2 (0,T ;W−1

2 (R
2
+))
+ ‖φ0‖W 2

2 (R)
).

Applying Lemmas 2.3 and 2.4 we conclude that

(4.9) ‖(p, φ)‖Π ≤ a1‖(q, ψ)‖
2
Π + a2‖φ0‖W 2

2 (R)
.

Taking (q, ψ) such that

(4.10) ‖(q, ψ)‖ ≤ min{2a2‖φ0‖W 2
2 (R)

, 1/2a1} = δ0,

we get (4.7).
We want to show

(4.11) ‖Ξ(q, ψ)− Ξ(q̃, ψ̃)‖Π ≤ (1− ε)‖(q, ψ)− (q̃, ψ̃)‖Π ,

provided that

(4.12) ‖(q, ψ), (q̃, ψ̃)‖Π ≤ δ1

for sufficiently small δ1 such that δ0 > δ1 > 0.
To prove (4.11), we examine the following system which comes from (4.5)

and the definition of Ξ:

(4.13)

∆(p− p̃) = F in R
2
+ × (0, T ),

(p− p̃)|x2=0 = a(φ− φ̃),x1x1 +G on R× (0, T ),

(p− p̃),x2 |x2=0 = −∂t(φ− φ̃) +H on R× (0, T ),

(φ− φ̃)|t=0 = 0 on R× (0, T ),

where

(4.14)

F = (∆−∆ψ)q − (∆−∆ψ̃)q̃,

G = b1(ψ,x1)ψ,x1x1 − b1(ψ̃,x1)ψ̃,x1x1 ,

H = b2(ψ,x1) · ∇q − b2(ψ̃,x1) · ∇q̃ + b3(ψ,x1)∂tψ − b3(ψ̃,x1)∂tψ̃.

To find suitable estimates for solutions to (4.13) it is enough to use
Lemma 2.3, since the terms of (4.14)2 are products of functions from

W
5/2,5/6
2 and W

1/2,1/6
2 , hence

(4.15) ‖H‖
W
1/2,1/6
2

≤ c‖(q, ψ), (q̃, ψ̃)‖Π‖(q − q̃, ψ − ψ̃)‖Π .

To estimate G we need to show in particular that

b′1(ψ,x1)ψ,x1x1(ψ,x1x1 − ψ̃,x1x1) ∈W
1/2,1/6
2 (R× (0, T )),
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but ψx1x1 ∈ W
3/2,1/2
2 . By Lemma 2.4 and boundedness of the norms given

by (4.7) we obtain

(4.16) ‖∂x1G‖W 1/2,1/6
2

+ ‖G‖
W
0,1/2
2

≤ c‖ψ, ψ̃‖
W
7/2,7/6
2

‖ψ − ψ̃‖
W
7/2,7/6
2

.

To deal with F , we first study the L2-norm

(4.17) ‖(∆−∆ψ)(q − q̃)‖L2 + ‖(∆ψ −∆ψ̃)q̃‖L2 .

Note that, pointwise, we have

(4.18) |(∆−∆ψ)(q − q̃)| ≤ c(|∇ψ| |∇
2(q − q̃)|+ |∇2ψ| |∇q|).

By the regularity of ψ and Lemma 2.1 we see that

(4.19)
|∇ψ| ∈ C(R× (0, T )),

∇2ψ ∈W
3/2,1/2
2 (R× (0, T )) ⊂ L5(R× (0, T )),

and from the properties of q and Lemma 2.1 we have

(4.20) ∇(q − q̃) ∈W
1,1/3
2 (R× (0, T )) ⊂ L10/3(R× (0, T )).

Hence the Hölder inequality yields

(4.21) ‖(∆−∆ψ)(q − q̃)‖L2 ≤ c‖ψ‖W 7/2,7/6
2

‖∇(q − q̃)‖
W
1,1/3
2

.

The second term of (4.17) can be handled as follows:

(4.22) |(∆ψ −∆ψ̃)q̃| ≤ c(|∇(ψ − ψ̃)| |∇
2q̃|+ |∇2(ψ − ψ̃)| |∇q̃|).

By the same reasons as for (4.18), we conclude that

(4.23) ‖(∆ψ −∆ψ̃)q̃‖L2 ≤ c‖ψ − ψ̃‖W 7/2,7/6
2

‖∇q̃‖
W
1,1/3
2

.

To estimate the next part of the norm, we recall that

(4.24) ‖f‖2
W
1/3
2 (0,T ;W−1

2 (R
2
+))
=

T\
0

dt

T\
0

dt′
|supφ〈f(t)− f(t

′), φ〉L2 |
2

|t− t′|1+2/3
,

where the sup is taken over φ ∈W 12 (R
2
+) ∩ {φ|x2=0 = 0} and ‖∇φ‖L2 ≤ 1.

Considering the same F as for the L2-norm we have

(4.25) 〈(∆−∆ψ)(q − q̃), φ〉L2

= 〈∇(q̃ − q),∇φ〉L2 + 〈∇ψ(q − q̃),∇ψφ〉L2

= −〈(∇−∇ψ)(q − q̃),∇φ〉L2 + 〈∇ψ(q − q̃), (∇−∇ψ)φ〉L2 .

Since

(4.26) ‖(∇−∇ψ)φ‖L2 ≤ c‖∇ψ‖C‖φ‖W 1
2
,

we conclude that
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(4.27)

T\
0

dt

T\
0

dt′
|supφ〈∇ψ(q − q̃), (∇−∇ψ)φ〉|

2

|t− t′|1+2/3

≤ c‖ψ‖2
W
7/2,7/6
2

‖∇(q − q̃)‖2W 1/3(0,T ;L2(R2+))
.

The analogous estimate holds for the first term of the r.h.s. of (4.25).

The term (∆ψ −∆ψ̃)q̃ can be treated similarly. Thus we show that

(4.28) ‖F‖
W
1/3
2 (0,T ;W−1

2 (R
2
+))
≤ c‖(q, ψ), (q̃, ψ̃)‖Π‖(q − q̃), (ψ − ψ̃)‖Π .

Summing up we obtain

(4.29) ‖(p− p̃, φ− φ̃)‖Π ≤ a3‖(q, ψ), (q̃, ψ̃)‖Π‖(q − q̃, ψ − ψ̃)‖Π .

Since we assumed that

(4.30) ‖(q, ψ), (q̃, ψ̃)‖Π ≤ δ1

and δ1 is so small that a3δ1 ≤ 1 − ε, the map Ξ is a contraction. Lemma
4.1 is proved.

Lemma 4.1 and the choice ε ≤ δ1 complete the proof of Theorem 1.1.

5. Appendix

Proof of Lemma 2.3. We only deal with the seminorms. First,

〈fg〉2
W
1/2,0
2

=

T\
0

dt
\
R

dx
\
R

dx′
|f(x, t)g(x, t)− f(x′, t)g(x′t)|2

|x− x′|1+1

≤

T\
0

dt
\
R

dx
\
R

dx′
(
|f(x, t)|2|g(x, t)−g(x′, t)|2

|x− x′|2
+
|g(x, t)|2|f(x, t)−f(x′, t)|2

|x− x′|2

)

= I1 + I2.

By the imbedding theorem, f ∈ C(R× (0, T )), hence

I1 ≤ c‖f‖
2
L∞‖g‖

2

W
1/2,0
2

,

I2 =

T\
0

dt
\
dx |g(x, t)|2

\
dx′
|f(x, t)− f(x′, t)|2

|x− x′|2

=

T\
0

dt
\
dx |g(x, t)|2

( \
|x−x′|>1

+
\

|x−x′|≤1

) |f(x, t)− f(x′, t)|2
|x− x′|2

= I21 + I22.

By the imbedding theorem we have g ∈ W
1/2,1/6
2 ⊂ L8/3, hence g

2 ∈ L4/3.
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Thus, to estimate I21 we need to bound the expression
( \
|x−x′|>1

|f(x, t)− f(x′, t)|2

|x− x′|2

)3
;

by the Hölder inequality the above quantity is bounded by
( \
|x−x′|>1

dx′

|x− x′|4/3

)3/4( \
|x−x′|>1

|f(x, t)− f(x′, t)|6

|x− x′|1+6·1/3

)
.

The first integral is uniformly bounded and the second is controlled by the

norm of f , since we have the imbedding W
5/2,5/6
2 ⊂W

1/3,0
6 . Hence

I21 ≤ c‖g‖
2

W
1/2,1/6
2

‖f‖2
W
5/2,5/6
2

.

To estimate I22 we estimate
( \
|x−x′|≤1

|f(x, t)− f(x′, t)|2

|x− x′|2

)3

by
( \
|x−x′|≤1

dx′

|x− x′|8/9

)3/4( \
|x−x′|>1

|f(x, t)− f(x′, t)|6

|x− x′|1+6·1/2

)
.

The first integral is uniformly bounded and the second is estimated by the
norm of f since we have the imbedding

W
5/2,5/6
2 (R2+ × (0, T )) ⊂W

1/2,0
6 (R2+ × (0, T )).

Thus

‖I22‖ ≤ c‖g‖
2

W
1/2,1/6
2

‖f‖2
W
5/2,5/6
2

.

Let us consider the regularity with respect to time:

〈fg〉2
W
0,1/6
2

=
\
dx

T\
0

dt

t\
0

dt′
|f(x, t)g(x, t)− f(x, t′)g(x, t′)|2

|t− t′|1+2·1/6

≤
\
dx

T\
0

dt

t\
0

dt′
(
|f(x, t)|2|g(x, t)− g(x, t′)|2

|t− t′|1+1/3
+
|g(x, t′)|2|f(x, t)− f(x, t′)|2

|t− t|1+1/3

)

= J1 + J2.

To find the bound for J1 we use the same argument as for I1. So

J2 ≤
\
dx

T\
0

dt |g(x, t)|2
T\
0

dt′
|f(x, t)− f(x, t′)|2

|t− t′|4/3
;
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but g2 ∈ L4/3, and\
dx

T\
0

dt

( T\
0

dt′
|f(x, t)− f(x, t′)|2

|t− t′|4/3

)3

≤ C(T )
\
dx

T\
0

dt

T\
0

dt′
|f(x, t)− f(x, t′)|6

|t− t′|1+6·1/6
.

We have the imbedding W
5/2,5/6
2 (R× (0, T )) ⊂W

0,1/6
6 (R× (0, T )). So

〈fg〉2
W
0,1/6
2

≤ c‖g‖2
W
1/2,1/6
2

‖f‖2
W
5/2,5/6
2

.

Lemma 2.3 is proved.

Proof of Lemma 2.4. We will just estimate one term. The others can be
considered in a similar way. Take the seminorm connected with the regularity
with respect to time,

〈fgh〉2
W
0,1/6
2

=
\
R

dx

T\
0

dt

T\
0

dt′
|f(x, t)g(x, t)h(x, t)−f(x, t′)g(x, t′)h(x, t′)|2

|t− t′|1+2·1/2

≤ c
\
R

dx

T\
0

dt

T\
0

dt′
(
|f(x, t)− f(x, t′)|2|g(x, t)|2|h(x, t)|2

|t− t′|1+1/3

+
|g(x, t)− g(x, t′)|2|f(x, t)|2|h(x, t)|2

|t− t′|1+1/3

+
|h(x, t)− h(x, t′)|2|f(x, t)|2|g(x, t′)|2

|t− t′|1+1/3

)

= I1 + I2 + I3.

We only handle I1. From Lemma 2.1 we deduce

g2h2 ∈ L2(R× (0, T )).
Hence

I1 ≤ c‖g‖
2

W
3/2,1/2
2

‖h‖2
W
3/2,1/2
2

\
R

dx

T\
0

dt

( T\
0

dt′
|f(x, t)− f(x, t′)|2

|t− t′|1+1/3

)2

≤ c‖g‖2
W
3/2,1/2
2

‖h‖2
W
3/2,1/2
2

( T\
0

dt′

|t′|2/3

)(\
R

dx

T\
0

dt

T\
0

dt′
|f(x, t)− f(x, t′)|4

|t− t′|1+4·1/4

)

≤ c(T )‖g‖2
W
3/2,1/2
2

‖h‖2
W
3/2,1/2
2

‖f‖2
W
5/2,5/6
2

,

since W
5/2,5/6
2 ⊂W

1/4,0
4 .
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