COLLOQUIUM MATHEMATICUM

A SIMPLE SOLUTION OF HILBERT'S FOURTEENTH PROBLEM IN DIMENSION FIVE

BY
ARNO VAN DEN ESSEN (Nijmegen)

Abstract

We give a short proof of a counterexample (due to Daigle and Freudenburg) to Hilbert's fourteenth problem in dimension five.

Introduction. In 1900 at the International Congress of Mathematicians in Paris David Hilbert presented a list of 23 problems, intended to challenge the mathematicians of the new century. The fourteenth problem of this list can be stated as follows: let k be a field, $k[x]:=k\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring, $k(x)$ its quotient field and L a subfield containing k.

Is $L \cap k[x]$ a finitely generated k-algebra?
A positive answer was given by Zariski ([7]) in case $\operatorname{trdeg}_{k} L \leq 2$. However in 1958 Nagata ([5]) constructed a counterexample in dimension 32. Then in 1988 Roberts ([6]) found a new counterexample in dimension 7. Recently, in 1998 Freudenburg ([2]), studying Robert's example, found a 6-dimensional counterexample, from which a 5-dimensional example was obtained in 1999 by Daigle and Freudenburg in [1]: they consider on $B:=k[X, S, T, U, V]$ the derivation $D:=X^{3} \partial_{S}+S \partial_{T}+T \partial_{U}+X^{2} \partial_{V}$ and show that $B^{D}:=\operatorname{ker} D:$ $B \rightarrow B$ is not finitely generated over k (then the quotient field L of B^{D} is a counterexample to Hilbert fourteen, since $L \cap B=B^{D}$).

The main aim of this note is to give a short proof of this result, by substantially simplifying the arguments given in [1] and [2].

Finally, I would like to mention that recently S. Kuroda has constructed new counterexamples to Hilbert fourteen in the missing dimensions 4 and 3 ([3], [4]).

1. The main result. Throughout this paper we use the following notations: k is a field of characteristic zero,

$$
B:=k[X, S, T, U, V], \quad D_{0}:=X^{3} \partial_{S}+S \partial_{T}+T \partial_{U}, \quad D:=D_{0}+X^{2} \partial_{V} .
$$

Furthermore,

$$
A:=k[S, T, U], \quad D_{1}:=\partial_{S}+S \partial_{T}+T \partial_{U}
$$

Finally, for any $0 \neq f \in B$, $\operatorname{deg} f$ denotes the usual degree of f. We also use another grading on A given by a vector $w \in \mathbb{N}^{3}$ and we write w-deg to denote the degree with respect to this grading. The main aim of this note is to give a short proof of

Theorem 1.1 (Daigle-Freudenburg). B^{D} is not a finitely generated k algebra.

The proof is based on the following result which will be proved in the next section.

Proposition 1.2. Let $e: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $e(3 l)=2 l, e(3 l+1)=$ $e(3 l+2)=2 l+1$ for all $l \geq 0$. There exist $c_{0}=1, c_{1}, c_{2}, \ldots$ in A with $D_{1} c_{i}=c_{i-1}$ and $\operatorname{deg} c_{i} \leq e(i)$ for all $i \geq 1$

Proof of Theorem 1.1. (i) Define

$$
a_{i}:=X^{2 i+1} c_{i}\left(\frac{S}{X^{3}}, \frac{T}{X^{3}}, \frac{U}{X^{3}}\right) \quad \text { for } i \geq 0
$$

Then one easily verifies that $D_{0} a_{i}=X^{2} a_{i-1}$ for all $i \geq 1$ and that

$$
F_{n}:=\sum_{i=0}^{n}(-1)^{i} \frac{n!}{(n-i)!} a_{i} V^{n-i} \in B^{D} \quad \text { for all } n \geq 1
$$

Suppose now that B^{D} is finitely generated by g_{1}, \ldots, g_{s} over k. We may assume that $g_{i}(0)=0$ for all i. Write $g_{i}=\sum g_{i j} V^{j}$ with $g_{i j} \in k[X, S, T, U]$. By (ii) below we find that $g_{i j} \in(X, S, T, U)$ for all i, j. Let d denote the maximum of the V-degrees of all g_{i}. Consider $F_{d+1}=X V^{d+1}+$ lower degree V-terms as above. So $F_{d+1} \in B^{D}=k\left[g_{1}, \ldots, g_{s}\right]$. Looking at the coefficient of V^{d+1}, we deduce that $X \in(X, S, T, U)^{2}$, a contradiction.
(ii) To prove that $g_{i j} \in(X, S, T, U)$ for all i, j it suffices to show that if $g=\sum g_{j} V^{j} \in B^{D}$ satifies $g(0)=0$ then each $g_{j} \in(X, S, T, U)$. First, clearly $g_{0} \in(X, S, T, U)$. So let $j \geq 1$. From $D g=0$ we get $j g_{j} X^{2}=$ $D_{0}\left(-g_{j-1}\right) \in D_{0}(k[X, S, T, U]) \subset\left(X^{3}, S, T\right)$ for all $j \geq 1$. If $g_{j}(0) \in k^{*}$, then $X^{2} \in\left(X^{3}, S, T, U X^{2}\right)$, contradiction. So $g_{j}(0)=0$, i.e. $g_{j} \in(X, S, T, U)$.

2. The proof of Proposition 1.2. Put

$$
T_{1}:=T-\frac{1}{2} S^{2}, \quad U_{1}:=U-S T+\frac{1}{3} S^{3}
$$

Then $A=k\left[T_{1}, U_{1}\right][S]$. Since $D_{1} T_{1}=D_{1} U_{1}=0$ and $D_{1} S=1$ we get $A_{1}^{D}=k\left[T_{1}, U_{1}\right]$. Consider on A the grading defined by $w(S)=1, w(T)=2$ and $w(U)=3$. Then $D_{1}\left(A_{n}\right) \subset A_{n-1}$ for all $n \geq 1$, where A_{n} is the k-span of all monomials of A of w-degree n. By induction on n we construct $c_{n} \in A$.

So assume that c_{n} is already constructed. Write $c_{n}=\sum_{i=0}^{n} H_{n-i} S^{i}$ with $H_{n-i} \in A_{n-i} \cap A^{D_{1}}$ (this is possible since $A=A^{D_{1}}[S]$ and $c_{n} \in A_{n}$). Then

$$
\widetilde{c}_{n+1}:=\sum_{i=0}^{n} \frac{1}{i+1} H_{n-i} S^{i+1} \in A_{n+1}
$$

and $D_{1}\left(\widetilde{c}_{n+1}\right)=c_{n}$. Finally, by Lemma 2.1 below, there exists $h \in A_{n+1} \cap$ $A^{D_{1}}$ such that $\widetilde{c}_{n+1}:=c_{n+1}-h$ satisfies deg $c_{n+1} \leq e(n+1)$.

Lemma 2.1. If $f \in A_{n+1}$ is such that $\operatorname{deg} D_{1} f \leq e(n)$, then there exists $h \in A_{n+1} \cap A^{D_{1}}$ such that $\operatorname{deg}(f-h) \leq e(n+1)$.

Proof. (i) Let $n=3 l$ (the cases $n=3 l+1$ and $n=3 l+2$ are treated similarly) and let M be the k-span of all $f \in A_{n+1}$ such that deg $D_{1} f \leq 2 l$ $(=e(3 l))$. Write $f=\sum \alpha_{i j k} S^{i} T^{j} U^{k}$ with $i+2 j+3 k=3 l+1$ and $\alpha_{i j k} \in k$. Then

$$
D_{1} f=\sum_{i+2 j+3 k=3 l+1}\left(i \alpha_{i j k}+(j+1) \alpha_{i-2, j+1, k}+(k+1) \alpha_{i-1, j-1, k+1}\right) S^{i-1} T^{j} U^{k} .
$$

So
(*) $\operatorname{deg} D_{1} f \leq 2 l \quad$ iff $\quad i \alpha_{i j k}+(k+1) \alpha_{i-1, j-1, k+1}+(j+1) \alpha_{i-2, j+1, k}=0$
for all i, j, k satisfying $i+2 j+3 k=3 l+1$ and $(i-1)+j+k \geq 2 l+1$, i.e. $i+j+k \geq 2 l+2$. For such a triple we have $i>0$. Hence by ($*$) each $\alpha_{i j k}$ is a linear combination of certain $\alpha_{p q r}$'s with $p+q+r<i+j+k$. Consequently, each $\alpha_{i j k}$ is a linear combination of the $\alpha_{p q r}$'s satisfying $p+q+r=2 l+2$. Since there are $[(l-1) / 2]+1$ of them (just solve the equations $p+2 q+3 r=0$ and $p+q+r=2 l+2)$ it follows that $\operatorname{dim} \pi(M) \leq[(l-1) / 2]+1$, where for any $g \in A, \pi(g)$ denotes the sum of all monomials of g of degree $\geq 2 l+2$.
(ii) Put $N:=A^{D_{1}} \cap A_{n+1}$. Then N is the k-span of all "monomials"

$$
n_{p}:=T_{1}{ }^{3 p+2} U_{1}{ }^{l-(2 p+1)}, \quad \text { where } 0 \leq p \leq[(l-1) / 2] .
$$

Claim. The $\pi\left(n_{p}\right)$ are linearly independent over k.
It then follows from (i) and the inclusion $\pi(N) \subset \pi(M)$ that $\pi(N)=$ $\pi(M)$, which proves the lemma.
(iii) To see the claim put

$$
w_{p}:=(-2)^{3 p+2} 3^{l-(2 p+1)} \pi\left(n_{p}\right)_{\mid T=0, U=\frac{1}{3} S}=\pi\left(\left(S^{2}\right)^{3 p+2}\left(S+S^{3}\right)^{l-(2 p+1)}\right) .
$$

Observe that

$$
\left(S^{2}\right)^{3 p+2}\left(S+S^{3}\right)^{l-(2 p+1)}=\sum_{j=0}^{l-(2 p+1)}\binom{l-(2 p+1)}{j} S^{3 l+1-2 j} .
$$

Since $3 l+1-2 j \geq 2 l+2$ iff $0 \leq j \leq[(l-1) / 2]$ we get

$$
w_{p}=\sum_{j=0}^{[(l-1) / 2]}\binom{l-(2 p+1)}{j} S^{3 l+1-2 j}
$$

Then the linear independence of the w_{p} (and hence of the $\pi\left(n_{p}\right)$) follows since

$$
\operatorname{det}\left(\binom{l-(2 p+1)}{j}\right)_{0 \leq p, j \leq[(l-1) / 2]} \neq 0
$$

REFERENCES

[1] D. Daigle and G. Freudenburg, A counterexample to Hilbert's Fourteenth Problem in dimension five, J. Algebra 221 (1999), 528-535.
[2] G. Freudenburg, A counterexample to Hilbert's Fourteenth Problem in dimension six, Transformation Groups 5 (2000), 61-71.
[3] S. Kuroda, A counterexample to the fourteenth problem of Hilbert in dimension four, J. Algebra 279 (2004), 126-134.
[4] -, A counterexample to the fourteenth problem of Hilbert in dimension three, Michigan Math. J. 53 (2005), 123-132.
[5] M. Nagata, On the Fourteenth Problem of Hilbert, in: Proc. I.C.M. 1958, Cambridge Univ. Press, 1960, 459-462.
[6] P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461-473.
[7] O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math. 78 (1954), 155-168.

Department of Mathematics
Radboud University Nijmegen
6500 GL Nijmegen, The Netherlands
E-mail: A.vandenEssen@math.ru.nl

