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A SIMPLE SOLUTION OF HILBERT’S FOURTEENTH PROBLEM

IN DIMENSION FIVE

BY

ARNO VAN DEN ESSEN (Nijmegen)

Abstract. We give a short proof of a counterexample (due to Daigle and Freuden-
burg) to Hilbert’s fourteenth problem in dimension five.

Introduction. In 1900 at the International Congress of Mathematicians
in Paris David Hilbert presented a list of 23 problems, intended to challenge
the mathematicians of the new century. The fourteenth problem of this list
can be stated as follows: let k be a field, k[x] := k[x1, . . . , xn] the polynomial
ring, k(x) its quotient field and L a subfield containing k.

Is L ∩ k[x] a finitely generated k-algebra?

A positive answer was given by Zariski ([7]) in case trdegk L ≤ 2. However
in 1958 Nagata ([5]) constructed a counterexample in dimension 32. Then in
1988 Roberts ([6]) found a new counterexample in dimension 7. Recently, in
1998 Freudenburg ([2]), studying Robert’s example, found a 6-dimensional
counterexample, from which a 5-dimensional example was obtained in 1999
by Daigle and Freudenburg in [1]: they consider on B := k[X, S, T, U, V ] the
derivation D := X3∂S + S∂T + T∂U + X2∂V and show that BD := kerD :
B → B is not finitely generated over k (then the quotient field L of BD is
a counterexample to Hilbert fourteen, since L ∩ B = BD).

The main aim of this note is to give a short proof of this result, by
substantially simplifying the arguments given in [1] and [2].

Finally, I would like to mention that recently S. Kuroda has constructed
new counterexamples to Hilbert fourteen in the missing dimensions 4 and 3
([3], [4]).

1. The main result. Throughout this paper we use the following no-
tations: k is a field of characteristic zero,

B := k[X, S, T, U, V ], D0 := X3∂S + S∂T + T∂U , D := D0 + X2∂V .
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Furthermore,

A := k[S, T, U ], D1 := ∂S + S∂T + T∂U .

Finally, for any 0 6= f ∈ B, deg f denotes the usual degree of f . We also
use another grading on A given by a vector w ∈ N

3 and we write w-deg to
denote the degree with respect to this grading. The main aim of this note
is to give a short proof of

Theorem 1.1 (Daigle–Freudenburg). BD is not a finitely generated k-

algebra.

The proof is based on the following result which will be proved in the
next section.

Proposition 1.2. Let e : N → N be defined by e(3l) = 2l, e(3l + 1) =
e(3l + 2) = 2l + 1 for all l ≥ 0. There exist c0 = 1, c1, c2, . . . in A with

D1ci = ci−1 and deg ci ≤ e(i) for all i ≥ 1

Proof of Theorem 1.1. (i) Define

ai := X2i+1ci

(
S

X3
,

T

X3
,

U

X3

)
for i ≥ 0.

Then one easily verifies that D0ai = X2ai−1 for all i ≥ 1 and that

Fn :=

n∑

i=0

(−1)i n!

(n − i)!
aiV

n−i ∈ BD for all n ≥ 1.

Suppose now that BD is finitely generated by g1, . . . , gs over k. We may
assume that gi(0) = 0 for all i. Write gi =

∑
gijV

j with gij ∈ k[X, S, T, U ].
By (ii) below we find that gij ∈ (X, S, T, U) for all i, j. Let d denote the
maximum of the V -degrees of all gi. Consider Fd+1 = XV d+1+lower degree
V -terms as above. So Fd+1 ∈ BD = k[g1, . . . , gs]. Looking at the coefficient
of V d+1, we deduce that X ∈ (X, S, T, U)2, a contradiction.

(ii) To prove that gij ∈ (X, S, T, U) for all i, j it suffices to show that
if g =

∑
gjV

j ∈ BD satifies g(0) = 0 then each gj ∈ (X, S, T, U). First,
clearly g0 ∈ (X, S, T, U). So let j ≥ 1. From Dg = 0 we get jgjX

2 =
D0(−gj−1) ∈ D0(k[X, S, T, U ]) ⊂ (X3, S, T ) for all j ≥ 1. If gj(0) ∈ k∗, then
X2 ∈ (X3, S, T, UX2), contradiction. So gj(0) = 0, i.e. gj ∈ (X, S, T, U).

2. The proof of Proposition 1.2. Put

T1 := T −
1

2
S2, U1 := U − ST +

1

3
S3.

Then A = k[T1, U1][S]. Since D1T1 = D1U1 = 0 and D1S = 1 we get
AD

1 = k[T1, U1]. Consider on A the grading defined by w(S) = 1, w(T ) = 2
and w(U) = 3. Then D1(An) ⊂ An−1 for all n ≥ 1, where An is the k-span of
all monomials of A of w-degree n. By induction on n we construct cn ∈ A.
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So assume that cn is already constructed. Write cn =
∑n

i=0 Hn−iS
i with

Hn−i ∈ An−i ∩ AD1 (this is possible since A = AD1 [S] and cn ∈ An). Then

c̃n+1 :=
n∑

i=0

1

i + 1
Hn−iS

i+1 ∈ An+1

and D1(c̃n+1) = cn. Finally, by Lemma 2.1 below, there exists h ∈ An+1 ∩

AD1 such that c̃n+1 := cn+1 − h satisfies deg cn+1 ≤ e(n + 1).

Lemma 2.1. If f ∈ An+1 is such that deg D1f ≤ e(n), then there exists

h ∈ An+1 ∩ AD1 such that deg(f − h) ≤ e(n + 1).

Proof. (i) Let n = 3l (the cases n = 3l + 1 and n = 3l + 2 are treated
similarly) and let M be the k-span of all f ∈ An+1 such that deg D1f ≤ 2l
(= e(3l)). Write f =

∑
αijkS

iT jUk with i + 2j + 3k = 3l + 1 and αijk ∈ k.
Then

D1f =
∑

i+2j+3k=3l+1

(iαijk +(j +1)αi−2,j+1,k +(k+1)αi−1,j−1,k+1)S
i−1T jUk.

So

(∗) deg D1f ≤ 2l iff iαijk + (k + 1)αi−1,j−1,k+1 + (j + 1)αi−2,j+1,k = 0

for all i, j, k satisfying i + 2j + 3k = 3l + 1 and (i − 1) + j + k ≥ 2l + 1, i.e.
i+j +k ≥ 2l+2. For such a triple we have i > 0. Hence by (∗) each αijk is a
linear combination of certain αpqr’s with p+ q +r < i+ j +k. Consequently,
each αijk is a linear combination of the αpqr’s satisfying p + q + r = 2l + 2.
Since there are [(l − 1)/2]+1 of them (just solve the equations p+2q+3r = 0
and p + q + r = 2l + 2) it follows that dimπ(M) ≤ [(l − 1)/2] + 1, where for
any g ∈ A, π(g) denotes the sum of all monomials of g of degree ≥ 2l + 2.

(ii) Put N := AD1 ∩ An+1. Then N is the k-span of all “monomials”

np := T1
3p+2U1

l−(2p+1), where 0 ≤ p ≤ [(l − 1)/2].

Claim. The π(np) are linearly independent over k.

It then follows from (i) and the inclusion π(N) ⊂ π(M) that π(N) =
π(M), which proves the lemma.

(iii) To see the claim put

wp := (−2)3p+23l−(2p+1)π(np)|T=0, U= 1

3
S = π((S2)3p+2(S + S3)l−(2p+1)).

Observe that

(S2)3p+2(S + S3)l−(2p+1) =

l−(2p+1)∑

j=0

(
l − (2p + 1)

j

)
S3l+1−2j.
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Since 3l + 1 − 2j ≥ 2l + 2 iff 0 ≤ j ≤ [(l − 1)/2] we get

wp =

[(l−1)/2]∑

j=0

(
l − (2p + 1)

j

)
S3l+1−2j.

Then the linear independence of the wp (and hence of the π(np)) follows
since

det

((
l − (2p + 1)

j

))

0≤p,j≤[(l−1)/2]

6= 0.
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