NONCOERCIVE DIFFERENTIAL OPERATORS
ON HOMOGENEOUS MANIFOLDS OF NEGATIVE CURVATURE
AND THEIR GREEN FUNCTIONS

BY

ROMAN URBAN (Wrocław)

Abstract. We obtain upper and lower estimates for the Green function for a second order noncoercive differential operator on a homogeneous manifold of negative curvature.

1. Introduction and the main result. In this paper we study the Green function for a second order noncoercive differential operator L on a connected, simply connected homogeneous manifold of negative curvature. Such a manifold is a solvable Lie group $S = NA$, a semidirect product of a nilpotent Lie group N and an abelian group $A = \mathbb{R}^+$. Moreover, for an H belonging to the Lie algebra \mathcal{A} of A, the eigenvalues of $\text{Ad}_{\exp H}|_N$ are all greater than 0. Conversely, every such group equipped with a suitable left-invariant metric becomes a homogeneous Riemannian manifold with negative curvature (see [H]).

On S we consider a second order left-invariant operator

$$L = \sum_{j=0}^{m} Y_j^2 + Y.$$

We assume that Y_0, Y_1, \ldots, Y_m generate the Lie algebra \mathcal{S} of S. Moreover, we can choose Y_0, Y_1, \ldots, Y_m so that $Y_1(e), \ldots, Y_m(e)$ belong to the Lie algebra \mathcal{N} of N. Let $\pi : S \to A = S/N$ be the canonical homomorphism. Then the image of L under π is a second order left-invariant operator on \mathbb{R}^+,

$$(a\partial_a)^2 - \gamma a\partial_a,$$

where $\gamma \in \mathbb{R}$. The operator $L = L_\gamma$ is noncoercive (there is no $\varepsilon > 0$ such that $L + \varepsilon I$ admits the Green function) if and only if $\gamma = 0$.

The author was partly supported by KBN grant 2P03A04316, Foundation for Polish Science, subsidy 3/99, and European Comission via TMR Network “Harmonic Analysis”, contract no. ERB FMRX-CT97-0159.
Finally, the operator we are interested in can be written in the form
\[(1.1) \quad \mathcal{L} = \sum_j \Phi_a(X_j)^2 + \Phi_a(X) + a^2 \partial_a^2 + a \partial_a,\]
where \(X, X_1, \ldots, X_m\) are left-invariant vector fields on \(N\) and \(X_1, \ldots, X_m\) generate \(\mathcal{N}\), \(\Phi_a = \text{Ad}(\exp(\log a) Y_0) = e(\log a) \text{ad} Y_0 = e(\log a) D\) and \(D = \text{ad} Y_0\) is a derivation of the Lie algebra \(\mathcal{N}\) of the Lie group \(N\) such that the real parts \(d_j\) of the eigenvalues \(\lambda_j\) of \(D\) are positive. By multiplying \(\mathcal{L}\) by a constant we can make \(d_j\) arbitrarily large (see [DHU]).

Let \(G(xa, yb)\) be the Green function for \(\mathcal{L}\). It is (uniquely) defined by two conditions:

(i) \(\mathcal{L}G(\cdot, yb) = -\delta_{yb}\) as distributions (functions are identified with distributions via the right Haar measure),

(ii) for every \(yb \in S\), \(G(\cdot, yb)\) is a potential for \(\mathcal{L}\).

Let
\[(1.2) \quad G(x, a) = G(xa, e),\]
where \(e\) is the identity element of the group \(S\). In this paper we call \(G(x, a)\) the Green function for \(\mathcal{L}\).

For a positive \(\delta\) less than \(1/2\) define
\[(1.3) \quad T_\delta = \{(x, a) \in N \times \mathbb{R}^+ : 1 - \delta < a < 1 + \delta, \ |x| < \delta\},\]
where \(|\cdot|\) denotes the “homogeneous norm” (see Preliminaries).

Our aim is to prove the following result:

Theorem 1.4. For a given \(0 < \delta < 1/2\) there exists a positive constant \(C\) such that for \((x, a) \notin T_\delta\) we have the following estimate for the Green function \(G\) defined in (1.2):
\[(1.5) \quad C^{-1} w(x, a) \leq G(x, a) \leq C w(x, a),\]
where the function \(w\) is defined by
\[(1.6) \quad w(x, a) = \begin{cases} 1 & \text{if } |x| \leq 1, \ a \leq 1, \\ |x|^{-Q} & \text{if } |x| \geq 1, \ |x| \geq a, \\ a^{-Q} & \text{if } a \geq 1, \ a \geq |x|, \end{cases}\]
and \(Q = \sum d_j = \sum \text{Re} \lambda_j\).

The above result looks like the limit case (as \(\gamma\) tends to 0) of the estimate of the Green function for the operator \(\mathcal{L}_\gamma\) with positive \(\gamma\) (i.e. for a coercive operator). This has been proved by E. Damek [D] by means of Ancona’s theory. However, (1.5) cannot be obtained from Damek’s estimate by taking the limit and so requires essentially new methods. In this paper we make use of a probabilistic method introduced in [DH] and then developed e.g. in [DHZ], [DHU].
The structure of this paper is as follows. In Section 2 we state precisely notation and all necessary definitions.

In Section 3 we recall the basic properties of the Bessel process which appears as the “vertical” component of the diffusion generated by \(a^{-2}L \) on \(N \times \mathbb{R}^+ \) (cf. [DHU]).

In Section 4 we state the estimate of the transition probabilities of the evolution on \(N \) generated by an appropriate operator which appears as the “horizontal” component of the diffusion on \(N \times \mathbb{R}^+ \) mentioned above.

In Section 5 we prove the main lemmas, which are a crucial point in the proof of Theorem 1.4 given in Section 6.

Acknowledgements. The author is grateful to Ewa Damek for suggesting the problem and her helpful remarks. The work on this paper was done during the academic year 1999/2000 when the author was visiting Purdue University in West Lafayette. He would like to express his deep gratitude for hospitality and stimulating environment to his host, Professor Richard Penney.

2. Preliminaries. Some of the notions which appear in this section have been introduced in the previous one. However, for the sake of completeness we state them precisely once again.

Let \(N \) be a connected and simply connected nilpotent Lie group. Let \(D \) be a derivation of the Lie algebra \(N \) of \(N \). For every \(a \in \mathbb{R}^+ \) we define an automorphism \(\Phi_a \) of \(N \) by

\[
\Phi_a = e^{(\log a)D}.
\]

Writing \(x = \exp X \) we have

\[
\Phi_a(x) := \exp \Phi_a(X).
\]

We assume that the real parts \(d_j \) of the eigenvalues \(\lambda_j \) of the matrix \(D \) are strictly greater than 0 and we define the number

\[
Q = \sum_j \text{Re} \lambda_j = \sum_j d_j.
\]

In this paper \(D = \text{ad} Y_0 \) (see Introduction). We consider a group \(S \) which is a semidirect product of \(N \) and the multiplicative group \(A = \mathbb{R}^+ = \{\exp ty_0 : t \in \mathbb{R}\} \):

\[
S = NA = \{xa : x \in N, a \in A\}
\]

with multiplication given by

\[
(xa)(yb) = (x\Phi_a(y)ab).
\]
In \(N \) we define the homogeneous norm \(| \cdot |\) ([DHZ], [DHU]). Let \((\cdot, \cdot)\) be a fixed inner product in \(N \). We define a new inner product
\[
\langle X, Y \rangle = \frac{1}{C_0^2} \int_0^1 (\Phi_a(X), \Phi_a(Y)) \, da
\]
and the corresponding norm
\[
\|X\| = \langle X, X \rangle^{1/2}.
\]
We put
\[
|X| = (\inf \{ a > 0 : \|\Phi_a(X)\| \geq 1 \})^{-1}.
\]
One can easily show that for every \(Y \neq 0 \) there exists precisely one \(a > 0 \) such that \(Y = \Phi_a(X) \) with \(|X| = 1\). Then we have \(|Y| = a\).

Finally, we define a homogeneous norm on \(N \). For \(x = \exp X \) we put
\[
|x| = |X|.
\]
Notice that if the action of \(A = \mathbb{R}^+ \) on \(N \) (given by \(\Phi_a \)) is diagonal, the norm we have just defined is the usual homogeneous norm on \(N \) (see [FS]).

And a final remark about notation: The letter \(C \) occurs in inequalities as a positive constant and may vary from statement to statement, even in the same calculation.

3. Bessel process. Let \(b_t \) denote the Bessel process with a parameter \(\alpha \geq 0 \) (cf. [RY]), i.e. a continuous Markov process with state space \([0, \infty)\) generated by
\[
\Delta = \partial_a^2 + \frac{2\alpha + 1}{a} \partial_a.
\]
The transition function with respect to the measure \(y^{2\alpha + 1} \, dy \) is given by (cf. [RY] again)
\[
(3.1) \quad p_t(x, y) = \begin{cases}
 c_\alpha \frac{1}{2t} \exp \left(\frac{-x^2 - y^2}{4t} \right) I_\alpha \left(\frac{xy}{2t} \right) \frac{1}{(xy)^\alpha} & \text{for } x, y > 0, \\
 c_\alpha \frac{1}{(2t)^{\alpha + 1}} \exp \left(-\frac{y^2}{4t} \right) & \text{for } x = 0, y > 0,
\end{cases}
\]
where
\[
I_\alpha(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{2k+\alpha}}{k! \Gamma(k + \alpha + 1)}
\]
is the Bessel function (see [L]). Therefore for \(x \geq 0 \) and a measurable set \(B \subset (0, \infty) \),
\[
P_x(b_t \in B) = \int_B p_t(x, y) y^{2\alpha + 1} \, dy.
\]
The following lemmas concerning some properties of the Bessel process are very well known and their proofs are rather standard. Sketches of those proofs can be found in [DHU] or [U].

Lemma 3.2. Let $D, \gamma, a \geq 0$. There exists a positive constant C such that for every $t > 0$,
\[
\sup_{a > 0} E_a \left(\frac{1}{0} b_s^{\gamma} ds \right)^{-D/2} < \infty.
\]
Moreover,
\[
E_a \left(\int_0^t b_s^{\gamma} ds \right)^{-D} \leq Ct^{-D(1+\gamma/2)}.
\]

Lemma 3.3. There exist constants c_1, c_2 such that for every $x \geq 0$, for every $\lambda > 0$ and for every $t > 0$,
\[
P_x \left(\sup_{s \in [0,t]} b_s > x + \lambda \right) \leq c_1 e^{-c_2 \lambda^2 / t}.
\]

Lemma 3.4. Let $0 < \eta < 1$. There exist constants c_1, c_2 such that for every $t > 0$,
\[
P_1 \left(\inf_{s \in [0,t]} b_s \leq 1 - \eta \right) \leq c_1 e^{-c_2 / t}.
\]

Proof. It is enough to rewrite the proof of Lemma 2.4 in [DHU].

By a straightforward computation, using the definition of the transition function $p_t(x,y)$ of the Bessel process (3.1) and the asymptotic behaviour of the Bessel function (see [L]):
\[
I_{\alpha}(x) \asymp \begin{cases}
\frac{x^\alpha}{2^\alpha \Gamma(1+\alpha)}, & x \to 0, \\
\exp(x) / (2\pi x)^{1/2}, & x \to \infty,
\end{cases}
\]
we get

Lemma 3.5. There exists a constant C independent of x such that
\[
P_x(a-\eta \leq b_t \leq a+\eta) \leq Ct^{-(\alpha+1)m([a-\eta,a+\eta])},
\]
where $m(B) = \int_B y^{2\alpha+1} dy$.

4. Evolutions. For a multiindex $I = (i_1, \ldots, i_n)$, $i_j \in \mathbb{Z}^+$ and a basis X_1, \ldots, X_n of the Lie algebra \mathcal{N} of N we write $X^I = X_1^{i_1} \ldots X_n^{i_n}$ and $|I| = i_1 + \ldots + i_n$. For $k = 0, 1, \ldots, \infty$ we define
\[
C^k = \{ f : X^I f \in C(N) \text{ for } |I| < k + 1 \}.
\]
and
\[C^k = \{ f \in C^k : \lim_{x \to \infty} X^I f(x) \text{ exists for } |I| < k + 1 \}. \]

For \(k < \infty \) the space \(C^k_\infty \) is a Banach space with the norm
\[
\|f\|_{C^k_\infty} = \sum_{|I| \leq k} \|X^I f\|_{C(N)}.
\]

Let \(L_{\sigma(t)} = \sigma(t)^{-2} \left(\sum \Phi_{\sigma(t)}(X_j)^2 + \Phi_{\sigma(t)}(X) \right) \).

For a continuous function \(\sigma : [0, \infty) \to [0, \infty) \) let \(\{ U_{\sigma}(s,t) : 0 \leq s \leq t \} \) be the unique family of bounded operators on \(C_\infty = C_0^\infty \) which satisfy

(i) \(U_{\sigma}(s,s) = I \),
(ii) \(U_{\sigma}(s,r)U_{\sigma}(r,t) = U_{\sigma}(s,t), \) \(s < r < t \),
(iii) \(\partial_s U_{\sigma}(s,t) f = -L_{\sigma(s)} U_{\sigma}(s,t) f \) for every \(f \in C_\infty \),
(iv) \(\partial_t U_{\sigma}(s,t) f = U_{\sigma}(s,t) L_{\sigma(t)} f \) for every \(f \in C_\infty \),
(v) \(U_{\sigma}(s,t) : C_\infty^2 \to C_\infty^2 \).

\(U_{\sigma}(s,t) \) is a convolution operator. Namely, \(U_{\sigma}(s,t) f = f \ast p_{\sigma}(t,s) \), where \(p_{\sigma}(t,s) \) is a smooth density of a probability measure. By (ii) we have \(p_{\sigma}(t,r) \ast p_{\sigma}(r,s) = p_{\sigma}(t,s) \) for \(t > r > s \). Existence of the family \(U_{\sigma}(s,t) \) follows from [T].

In [DHU], using the Nash inequality, the following estimate of the evolution kernels \(p_{\sigma}(t,0) \) has been proved.

Theorem 4.1. For every compact set \(K \subset N \) which does not contain the identity \(e \) of \(N \), there exist positive constants \(C, \xi, \beta_1, \beta_2 \) and \(D \leq Q \) such that for every \(x \in K \) and for every \(t > 0 \),

\[
p_{\sigma}(t,0)(x) \leq C \left(\int_0^t \sigma^{-2(1-Q/D)}(u) \, du \right)^{-D/2} \exp \left(-\frac{\xi}{A(0,t)} \right),
\]

where \(A(s,t) = \int_s^t (\sigma^{\beta_1}(u) + \sigma^{\beta_2}(u)) \, du \).

In the proof of the above theorem the following estimate of the norm \(\|p_{\sigma}(t,s)\|_{L^\infty(N)} \) has been obtained:

Theorem 4.2. There exist positive constants \(C \) and \(D \leq Q \) such that for every \(s < t \),

\[
\|p_{\sigma}(t,s)\|_{L^\infty(N)} \leq C \left(\int_s^t \sigma^{-2(1-Q/D)}(u) \, du \right)^{-D/2}.
\]

5. **Main lemmas.** From now on we consider the Bessel process \(b_t \) with a parameter \(\alpha = 0 \). In this case \(b_t = \|w_t\| \), where \(w_t \) is a Brownian motion on \(\mathbb{R}^2 \).
In this section we prove some lemmas, which are our main tools in writing estimates for the Green function.

Lemma 5.2. Let $D, \gamma > 0$ and $dm(a) = ada$. For every $\delta > 0$ there exists a constant C such that for every $a \leq 1 - \delta$,

$$\sup_{0 < \eta < \delta/2} \int_0^t \mathbf{E}_1 \left(\int_0^\eta b_s^\gamma \, ds \right)^{-D/2} m([a - \eta, a + \eta])^{-1} 1_{[a-\eta,a+\eta]}(b_t) \, dt \leq C.$$

Proof. In order to simplify notation let $I_{a, \eta} = [a - \eta, a + \eta]$.

First we consider large time ($t \geq 1$):

$$\int_1^\infty \mathbf{E}_1 \left(\int_0^\eta b_s^\gamma \, ds \right)^{-D/2} m(I_{a, \eta})^{-1} 1_{I_{a, \eta}}(b_t) \, dt \leq \int_1^\infty \mathbf{E}_1 \left(\int_0^{t/2} b_s^\gamma \, ds \right)^{-D/2} m(I_{a, \eta})^{-1} 1_{I_{a, \eta}}(\theta_{t/2} b_{t/2}) \, dt,$$

where θ_s is the shift operator. Using the Markov property and Lemma 3.2 we get

$$\int_1^\infty \mathbf{E}_1 \left(\int_0^{t/2} b_s^\gamma \, ds \right)^{-D/2} \mathbf{E}_{b_{t/2}} m(I_{a, \eta})^{-1} 1_{I_{a, \eta}}(\sigma_{t/2}) \, dt$$

$$= \int_1^\infty \mathbf{E}_1 \left(\int_0^{t/2} b_s^\gamma \, ds \right)^{-D/2} m(I_{a, \eta})^{-1} \mathbf{P}_{b_{t/2}} (\sigma_{t/2} \in I_{a, \eta}) \, dt$$

$$\leq C \int_1^\infty t^{-(D/2)(1+\gamma/2)} m(I_{a, \eta})^{-1} \mathbf{P}_{b_{t/2}} (\sigma_{t/2} \in I_{a, \eta}) \, dt.$$

By Lemma 3.5,

$$\mathbf{P}_x(\sigma_t \in I_{a, \eta}) \leq C t^{-1} m(I_{a, \eta})$$

with C independent of the starting point x. Hence by (5.3) we get

$$\sup_{\eta > 0} \int_1^\infty \mathbf{E}_1 \left(\int_0^t b_s^\gamma \, ds \right)^{-D/2} m(I_{a, \eta})^{-1} 1_{I_{a, \eta}}(b_t) \, dt$$

$$\leq C \int_1^\infty t^{-(D/2)(1+\gamma/2)-1} \, dt \leq C_1.$$

Now we consider $t \leq 1$. We divide the set of all trajectories of the Bessel process b_t (with parameter 0) starting from 1 into two subsets:

$$A = \{ b : \sup_{s \in [0,t]} b_s > 2 \}, \quad B = \{ b : \sup_{s \in [0,t]} b_s \leq 2 \}.$$
Consider the set \(A \). Let \(T = \inf\{s : b_s = 2\} \). For \(n \geq 1 \), let
\[
A_n = \{b : t/2^n < T \leq t/2^{n-1}\}.
\]
Then the Markov property gives
\[
(5.6) \quad \int_0^t \mathbb{E}_1 \left(\int_0^t b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} \mathbb{I}_{I_{a,\eta}}(b_t) 1_A(b) \, dt
\]
\[
= \int \sum_{n=1}^\infty \mathbb{E}_1 \left(\int_0^t b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} \mathbb{I}_{I_{a,\eta}}(b_t) 1_{A_n}(b) \, dt
\]
\[
\leq \int \sum_{n=1}^\infty \mathbb{E}_1 \left(\int_0^t b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} \mathbb{I}_{I_{a,\eta}}(b_t) 1_{\{T \leq t/2^{n-1}\}}(b) \, dt
\]
\[
\leq \int \sum_{n=1}^\infty \mathbb{E}_1 \left(\int_0^{t/2^n} b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} \mathbb{I}_{I_{a,\eta}}(b_t) 1_{\{T \leq t/2^{n-1}\}}(b) \, dt
\]
\[
= \int \sum_{n=1}^\infty \mathbb{E}_1 \left(\int_0^{t/2^n} b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{\{T \leq t/2^{n-1}\}}(b)
\]
\[
\times \mathbb{E}_{b_t/2^{n-1}} \mathbb{I}_{\{\sigma : \sigma_{t-t/2^n-1} \in I_{a,\eta}\}}(\sigma) \, dt
\]
\[
\leq \int \sum_{n=1}^\infty \mathbb{E}_1 \left(\int_0^{t/2^n} b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{\{b : \sup_{s \in [t/2^{n-1}]} b_s \geq 2\}}(b)
\]
\[
\times \mathbb{E}_{b_t/2^{n-1}} \mathbb{I}_{\{\sigma : \sigma_{t-t/2^n-1} \in I_{a,\eta}\}}(\sigma) \, dt.
\]
By (5.4) it follows that for \(n \geq 2 \),
\[
(5.7) \quad \mathbb{E}_{b_t/2^{n-1}} 1_{\{\sigma : \sigma_{t-t/2^n-1} \in I_{a,\eta}\}}(\sigma) \leq C(t - t/2^{n-1})^{-1} m(I_{a,\eta})
\]
\[
\leq C(t/2)^{-1} m(I_{a,\eta}).
\]
For \(n = 1 \) the expectation in (5.7) is equal to
\[
\mathbb{P}_{b_t}(\sigma_0 \in I_{a,\eta}) = \mathbb{P}_1(b_t \in I_{a,\eta})
\]
and by (5.4) we get (5.7) for \(n = 1 \).

Therefore using (5.7), Lemma 3.2, Lemma 3.3 and the Schwarz inequality we get
\[
(5.8) \quad \int \sum_{n=1}^\infty \mathbb{E}_1 \left(\int_0^t b_s^2 \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} \mathbb{I}_{I_{a,\eta}}(b_t) 1_{A_n}(b) \, dt
\]
\[
\leq C \int \sum_{n=1}^\infty t^{-1} \mathbb{E}_1 \left(\int_0^{t/2^n} b_s^2 \, ds \right)^{-D/2} 1_{\{b : \sup_{s \in [t/2^{n-1}]} b_s \geq 2\}}(b) \, dt
\]
\[\leq C \int_0^1 \sum_{n=1}^\infty \left[E_1 \left(\int_0^{t/2^n} b_s^\gamma \, ds \right)^{-D/2} \right] \, dt \]
\[\times \left[E_1 1_{\{b: \sup_{s \in [0,t/2^{n-1}]} b_s \geq 2\}} (b) \right]^{1/2} dt \]
\[\leq C \int_0^1 \sum_{n=1}^\infty \left[t^{-1}(t/2^n)^{-D/2}(1+\gamma/2)e^{-c2^{n-1}/t} \right] dt \leq C_2. \]

Now we consider the set \(B \). Let \(T = \inf \{ s : b_s = 1 - \delta/2 \} \). For \(n \geq 1 \), let
\[A_n = \{ b : t/2^n < T \leq t/2^{n-1} \}. \]
Notice that
\[T \leq t/2^{n-1} \text{ implies } \inf_{s \in [0,t/2^{n-1}]} b_s \leq 1 - \delta/2. \]
Moreover, by Lemma 3.4,
\[P_1 \left(\inf_{s \in [0,t]} b_s \leq 1 - \delta/2 \right) \leq c_1 e^{-c_2/t}. \]
Then
\[\int_0^1 E_1 \left(\int_0^t b_s^\gamma \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{I_{a,\eta}}(b_t)1_B(b) \, dt \]
\[= \int_0^1 \sum_{n=1}^\infty E_1 \left(\int_0^t b_s^\gamma \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{I_{a,\eta}}(b_t)1_{A_n}(b) \, dt \]
\[\leq \int_0^1 \sum_{n=1}^\infty E_1 \left(\int_0^T b_s^\gamma \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{I_{a,\eta}}(b_t)1_{\{T \leq t/2^{n-1}\}}(b) \, dt \]
\[\leq \int_0^1 \sum_{n=1}^\infty \int_0^{t/2^n} b_s^\gamma \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{I_{a,\eta}}(b_t)1_{\{T \leq t/2^{n-1}\}}(b) \, dt \]
\[= \int_0^1 \sum_{n=1}^\infty \left(\int_0^{t/2^n} b_s^\gamma \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{\{T \leq t/2^{n-1}\}}(b) \]
\[\times E_{\delta t/2^{n-1}} 1_{\{\sigma: \sigma_{t-t/2^{n-1}} \in I_{a,\eta}\}}(\sigma) \, dt \]
\[\leq \int_0^1 \sum_{n=1}^\infty \left(\int_0^{t/2^n} b_s^\gamma \, ds \right)^{-D/2} m(I_{a,\eta})^{-1} 1_{\{b: \inf_{s \in [0,t/2^{n-1}]} b_s \leq 1-\delta/2\}}(b) \]
\[\times E_{\delta t/2^{n-1}} 1_{\{\sigma: \sigma_{t-t/2^{n-1}} \in I_{a,\eta}\}}(\sigma) \, dt \]
\[\leq \int_0^1 \sum_{n=1}^\infty \left(\int_0^{t/2^n} b_s^\gamma \, ds \right)^{-D/2} 1_{\{b: \inf_{s \in [0,t/2^{n-1}]} b_s \leq 1-\delta/2\}}(b) t^{-1} \, dt, \]
where in the last inequality we have used (5.7) for \(n \geq 1 \) (see the remark after (5.7)). Now, as before, in order to estimate the expectation we use the Schwarz inequality. By Lemma 3.2 and (5.9) we have

\[
\int_0^1 E_1 \left(\int_0^t b_s^\gamma \, ds \right)^{-D/2} m(I_{a,n})^{-1} I_{a,n}(b_t) 1_B(b) \, dt
\]

\[
\leq C \int_0^1 t^{-1} \sum_{n=1}^\infty \left[E_1 \left(\int_0^{t/2^n} b_s^\gamma \, ds \right)^{-D} \right]^{1/2} \times \left[E_1 1 \{ b : \inf_{s \in [0,t/2^n-1]} b_s \leq 1 - \delta/2 \} \right]^{1/2} \, dt
\]

\[
\leq C \int_0^1 t^{-1} \sum_{n=1}^\infty (t/2^n)^{- (D/2)(1+\gamma/2)} \left[E_1 1 \{ b : \inf_{s \in [0,t/2^n-1]} b_s \leq 1 - \delta/2 \} \right]^{1/2} \, dt
\]

\[
\leq C \int_0^1 t^{-1} \sum_{n=1}^\infty (t/2^n)^{- (D/2)(1+\gamma/2)} \left[P_1 \left(\inf_{s \in [0,t/2^n-1]} b_s \leq 1 - \delta/2 \right) \right]^{1/2} \, dt
\]

\[
\leq C \sum_{n=1}^\infty t^{-1} (t/2^n)^{- (D/2)(1+\gamma/2)} e^{-c2^{n-1}/t} \, dt \leq C_3.
\]

Now (5.5), (5.8) and (5.10) complete the proof.

Lemma 5.11. Let \(D, \gamma > 0 \) and \(dm(a) = ada \). For every \(0 < \delta < 1/2 \) there exists a constant \(C \) such that for every \(x \leq 1/2 - \delta \) and every \((1-\delta)/2 \leq a \leq 1/2 \),

\[
\sup_{0 < \eta < \delta/4} \int_0^t E_x \left(\int_0^s b_s^\gamma \, ds \right)^{-D/2} m([a - \eta, a + \eta])^{-1} 1_{[a - \eta, a + \eta]}(b_t) \, dt \leq C.
\]

Proof. For large time \(t \geq 1 \) it is enough to rewrite the proof of the previous lemma.

Let \(t \leq 1 \). We define \(T = \inf \{ s : b_s = 1/2 - 3\delta/4 \} \). For \(n \geq 1 \), let

\[
A_n = \{ b : t/2^n < T \leq t/2^{n-1} \}.
\]

Notice that

\[
T \leq t/2^{n-1} \quad \text{implies} \quad \sup_{s \in [0,t/2^n-1]} b_s \geq 1/2 - 3\delta/4.
\]

Then, since \(x \leq 1/2 - \delta \), by Lemma 3.3,

\[
P_x \left(\sup_{s \in [0,t/2^n-1]} b_s \geq 1/2 - 3\delta/4 \right)
\]
\[= \mathbf{P}_x \left(\sup_{s \in [0, t/2^{n-1}]} b_s \geq (1/2 - 3\delta/4 - x) + x \right) \]
\[\leq c_1 e^{-c_2(1/2 - 3\delta/4 - x)^2 2^{n-1} / t} \leq c_1 e^{-c_2(\delta/4)^2 2^{n-1} / t}. \]

Now, because of (5.12) it is enough to rewrite the end of the proof of Lemma 5.2 starting after (5.9). Namely, we have to change the starting point to \(x \) and instead of \(\{ b : \inf_{[0, t/2^{n-1}]} b_s \leq 1 - \delta/2 \} \) put \(\{ b : \sup_{s \in [0, t/2^{n-1}]} b_s \geq 1/2 - 3\delta/4 \} \).

The next lemma is taken from [DHU] (Lemma 5.18):

Lemma 5.13. Let \(D, \xi, \gamma > 0 \), \(dm(a) = ada \). For every \(a_1 > 0 \) there is a constant \(C \) such that for every \(x \leq a_1, 0 < a < 1 \),
\[\sup_{0 < \eta < 1} \int_0^\infty \mathbb{E}(t) \left(\int_0^t b_s \gamma \right)^{-D/2} e^{-\xi/A(0,t)} m([a - \eta, a + \eta])^{-1} [a - \eta, a + \eta] (b_t) dt \leq C, \]
where \(A(0,t) \) is defined in Theorem 4.1.

6. Proof of Theorem 1.4. It turns out that it is very convenient to consider along with the operator \(L \) defined in (1.1) the corresponding operator \(L, \)
\[(6.1) \quad L = a^{-2} L = a^{-2} \sum_j \Phi_a(X_j)^2 + \Phi_a(X) + \frac{1}{a} \partial_a. \]

The Green function \(G \) for \(L \) is given by
\[(6.2) \quad G(x, a; y, b) = \int_0^\infty \mathbb{P}_t(x, a; y, b) dt, \]
where \(T_t f(x, a) = \int f(y, b) \mathbb{P}_t(x, a; y, b) dy db \) is the heat semigroup on \(L^2(N \times \mathbb{R}^+, dy db) \) with infinitesimal generator \(L \).

In (6.2) we allow \((x, a) \) to be \((e, 0) \) since \(\lim_{(x, a) \to (e, 0)} G(x, a; y, b) \) exists (see [DHU]).

On \(N \times \mathbb{R}^+ \) we define *dilations*
\[D_t(x, a) = (\Phi_t(x), ta), \quad t > 0. \]

It is not difficult to check that although the operator \(L \) is not left-invariant it has some homogeneity with respect to the family of dilations introduced above:
\[L(f \circ D_t) = t^2 Lf \circ D_t. \]

This implies that
\[(6.3) \quad G(x, a; y, b) = t^{-Q} G(D_t^{-1}(x, a); D_t^{-1}(y, b)). \]
It turns out (see (1.17) in [DHU]) that
\[G(x,a) = G(x,a;e,1) = G^*(e,1;x,a), \]
where \(G^* \) is the Green function for the operator
\[L^* = a^{-2} \sum \Phi_a(X_j)^2 - a^{-2}\Phi_a(X) + \partial_a^2 + a^{-1}\partial_a, \]
conjugate to \(L \) with respect to the measure \(adxda \). Moreover,
\[G^*(e,1;x,a) = \lim_{\eta \to 0} \int_0^\infty \frac{1}{m([a-\eta,a+\eta])} 1_{[a-\eta,a+\eta]}(\sigma_t) \, dt, \]
where the expectation is taken with respect to the distribution of the Bessel process starting from 1 on the space \(C([0,\infty), (0,\infty)) \). All the above facts are proved in [DHU].

Now we are ready to give

Proof of Theorem 1.4. For \(r \geq 0 \), define
\[V_r = \{(x,a) \in N \times \mathbb{R}^+ : |(x,a)| = r \}, \]
where \(|(x,a)| = |x| + a \). Let \(0 < \delta < 1/2 \) be fixed.

Case 1. We consider the set
\[S_1 = \{(x,a) \notin T_\delta : |x| \leq 1, a \leq 1 \}. \]
We have to show that there exists a positive constant \(C \) such that
\[C^{-1} \leq G(x,a) = G^*(e,1;x,a) \leq C \]
for every \((x,a) \in S_1\).

It follows immediately from (6.4), Theorem 4.2, and Lemma 5.2 that we have the upper bound in (6.5) on \(\tilde{S}_1 = S_1 \cap \{(x,a) \in N \times \mathbb{R}^+ : a \leq 1 - \delta \} \). Therefore we are left with \((x,a) \in S_1 \setminus \tilde{S}_1\). But
\[S_1 \setminus \text{Int} \tilde{S}_1 = \{(x,a) : N \times \mathbb{R}^+ : \delta \leq |x| \leq 1, 1 - \delta \leq a \leq 1 \} \]
is a compact set. Since \(G^* \) is a continuous function we get the upper bound on \(S_1 \). The lower bound in (6.5) is a consequence of Lemma 5.21 of [DHU].

Case 2. We consider the set
\[S_2 = \{(x,a) \in N \times \mathbb{R}^+ : |x| \geq 1, |x| \geq a \}. \]
(Of course, \(S_2 \cap T_\delta = \emptyset \).)

Every element \((x,a) \in N \times \mathbb{R}^+ \) can be written as
\[(x,a) = D_t(y,b), \quad \text{where } (y,b) \in V_1 \text{ and } t = |(x,a)| = |x| + a. \]
(Recall that \(D_t(x,a) = (\Phi_t(x), ta) \).) By homogeneity of \(G \) (see (6.3)), we get
\[G^*(e,1;x,a) = G^*(D_t(e,t^{-1});D_t(y,b)) = t^{-Q}G^*(e,t^{-1};y,b) \]
\[= |(x,a)|^{-Q}G^*(e,|(x,a)|^{-1};y,b) \]
Since \((x, a) \in S_2 \) then the corresponding \((y, b) \in V_1\) has the property \(|y| \geq b\). Indeed, \(x = \Phi_t(y)\) and \(a = tb\), thus \(t|y| = |x| \geq a = tb\). The above property and \(|y| + b = 1\) imply that \(b \leq 1/2\). Therefore
\[
(y, b) \in V_1 \cap \{(x, a) \in N \times \mathbb{R}^+ : a \leq 1/2\} \subset V_1.
\]
Let \(\beta = |(x, a)|^{-1}\). For \((x, a) \in S_2\) we have \(\beta \leq 1\). Thus by (6.4), Theorem 4.1 and Lemma 5.13 we get
\[
G^*(e, \beta; x, a) \leq C \quad \text{for} \quad (x, a) \in S_2.
\]
Once again, Lemma 5.21 in [DHU] gives the lower bound
\[
G^*(e, \beta; x, a) \geq C^{-1}.
\]
Thus by (6.6) we get
\[
C^{-1}(|x| + a)^{-Q} \leq G(x, a) \leq C(|x| + a)^{-Q}.
\]
Since \(|x| \leq |x| + a \leq 2|x|\) for \((x, a) \in S_2\), the proof of the second case is complete.

Case 3. Finally we consider the set
\[
S_3 = \{(x, a) \notin T_5 : a \geq |x|, \ a \geq 1\}.
\]
Because \(V_1 \cap T_5 \neq \emptyset\) we write every element \((x, a) \in N \times \mathbb{R}^+\) as a dilation of some element from \(V_{1/2}\):
\[
(x, a) = D_t(y, b), \quad \text{where} \ (y, b) \in V_{1/2} \text{ and } t = 2|(x, a)| = 2|x| + 2a.
\]
By homogeneity, we can write, analogously to (6.6),
\[
(6.7) \quad G^*(e, 1; x, a) = 2^{-Q}(|x| + a)^{-Q}G(e, \tilde{\beta}; y, b),
\]
where \(\tilde{\beta} = 2^{-1}(|x| + a)^{-1}\). If \((x, a) \in S_3\) then the corresponding \((y, b) \in V_{1/2}\) has the property \(|y| \leq b\). Indeed, \(|x| = t|y| \leq a = tb\). This, together with \(|y| + b = 1/2\), implies that \(b \in [1/4, 1/2]\).

For \((x, a) \in S_3\) we have \(\tilde{\beta} \leq (2 + 2\delta)^{-1} = 1/2 - \tilde{\delta}\). Indeed, this is clear if \(a \geq 1 + \delta\). But if \(a < 1 + \delta\) then \(|x| \geq \delta\). Thus by (6.4), using Theorem 4.2 and Lemma 5.11 if \(b \geq (1 - \tilde{\delta})/2\), or Theorem 4.1 and Lemma 5.13 if \(b \leq (1 - \tilde{\delta})/2\) (then \(|y| \geq \delta/2\)), we find that there exists a constant \(C\) such that \(G^*(e, \tilde{\beta}; x, a)\) in (6.7) is less than or equal to \(C\). By Lemma 5.21 of [DHU], \(G^*(e, \tilde{\beta}; x, a)\) is also greater than or equal to \(C^{-1}\). Thus by (6.7),
\[
C^{-1}2^{-Q}(|x| + a)^{-Q} \leq G(x, a) \leq C^2 2^{-Q}(|x| + a)^{-Q}, \quad (x, a) \in S_3.
\]
Since \(a \leq |x| + a \leq 2a\) for \((x, a) \in S_3\), the proof is complete.

REFERENCES

Institute of Mathematics
University of Wroclaw
Pl. Grunwaldzki 2/4
50-384 Wroclaw, Poland
E-mail: urban@math.uni.wroc.pl

Received 30 March 2000;
revised 11 August 2000