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DIFFERENTIATION AND SPLITTING

FOR LATTICES OVER ORDERS

BY

WOLFGANG RUMP (Eichstätt)

Abstract. We extend our module-theoretic approach to Zavadskĭı’s differentiation
techniques in representation theory. Let R be a complete discrete valuation domain with
quotient field K, and Λ an R-order in a finite-dimensional K-algebra. For a hereditary
monomorphism u : P →֒ I of Λ-lattices we have an equivalence of quotient categories

∂̃u : Λ-lat/[H]
∼

→ δuΛ-lat/[B] which generalizes Zavadskĭı’s algorithms for posets and
tiled orders, and Simson’s reduction algorithm for vector space categories. In this article
we replace u by a more general type of monomorphism, and the derived order δuΛ by some

over-order ∂uΛ ⊃ δuΛ. Then ∂̃u remains an equivalence if δuΛ-lat is replaced by a certain
subcategory of ∂uΛ-lat. The extended differentiation comprises a splitting theorem that
implies Simson’s splitting theorem for vector space categories.

Introduction. In a previous article [19] we generalized Zavadskĭı’s dif-
ferentiation algorithm [26–28] for representations of posets to lattices over
orders Λ in a finite-dimensional algebra A over a field K with a complete
discrete valuation. Instead of a pair of points in a poset, our differentiation
depends on a hereditary monomorphism u : P →֒ I of Λ-lattices, that is,
I/P is of finite length and satisfies

HomΛ(P, I/P ) = ExtΛ(I/P, I) = ExtΛ(H,L) = 0

for Λ-lattices H,L between P and I, and

(P) P and I∗ are projective.

Then the isomorphism classes of Λ-lattices between P and I can be rep-
resented by a finite set Hu. With each (left) Λ-lattice E, we associate a

pair ∂uE =
(
E+

E−

)
of Λ-lattices with E− ⊆ E ⊆ E

+. Dually, the heredi-

tary monomorphism u∗ : I∗ →֒ P ∗ yields a pair
(
F−

F+

)
of right Λ-lattices with

F+ ⊆ F ⊆ F
− for any given right Λ-lattice F . Then we can form the derived

order

δuΛ :=

(
Λ+ Λ+Λ−

Λ− Λ−

)
⊆ M2(A)
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of Λ, and ∂u becomes a functor

∂u : Λ-lat→ δuΛ-lat

between Λ- and δuΛ-lattices. Since Λ+ = Λ−, the definition of δuΛ is self-
dual.

In [19] we proved that ∂u induces an equivalence of quotient categories

(0) ∂̃u : Λ-lat/[Hu]
∼
→ δuΛ-lat/

[(
I
P

)]
,

which generalizes known versions of Zavadskĭı’s algorithm, e.g. Simson’s
algorithm for vector space categories [21–23] in case Λ is subhereditary,
and Zavadskĭı’s algorithm for tiled orders [28] in case P and I are tame
irreducible with I/P of length one ([19], §3).

In the present article we show that a modified version of (0) remains
valid when the projectivity condition (P) is dropped. To this end we consider
pre-hereditary monomorphisms u : P → I, i.e. such that U := I/P is length-
finite with

(C) ∂uP = ∂uI =

(
I

P

)
,

EndΛ(I)→ EndΛ(U) surjective, and U is a Zavadskĭı module [19] over B :=
Λ/Λ−, that is, a module BU with the property that each submodule is
U -projective and each factor module U -injective. The closure condition (C)
implies that

∂uΛ :=

(
Λ+ Λ+− + Λ−+

Λ− Λ−

)
⊆ M2(A)

is an over-order of δuΛ. If u is pre-hereditary, ∂u induces an equivalence
(Theorem 1)

(0′) ∂̃u : Λ-lat/[Hu]
∼
→ ∂uΛ-lat

s/
[(
I
P

)]
,

where ∂uΛ-lat
s consists of the ∂uΛ-lattices

(
F
G

)
with F ⊇ G+ and G ⊆ F−.

Moreover, ∂uΛ-lat
s coincides with ∂uΛ-lat if

(P◦) Λ−P and I
∗
Λ+ are projective.

When the stronger projectivity condition (P) holds, the orders ∂uΛ and δuΛ
coincide.

If u : P →֒ I is pre-hereditary, then any decomposition of I/P in-
duces a decomposition of u. The functor ∂u does not change if multiplic-
ities of indecomposable direct summands of u are reduced to one. For u =
u1 ⊕ . . .⊕ un with u1, . . . , un indecomposable and pairwise non-isomorphic,
u′1 := ∂u2⊕...⊕un(u) is pre-hereditary, and the functor ∂u is equivalent to the
composition ∂u′1∂u2⊕...⊕un . Therefore, we may assume u to be indecompos-
able. In this case, I/P is uniserial.
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Apart from the various Zavadskĭı algorithms mentioned above, the modi-
fied equivalence (0′) generalizes D. Simson’s splitting theorem ([24], Theorem
17.53) which extends previous results of Nazarova & Rŏıter ([24], Lemma
8.1), and Dlab & Ringel ([2], Lemma 8.4). The splitting theorem has served
as a basic tool in the theory of representation-finite Schurian vector space
categories [7].

For our splitting theory (§5) which we are going to explain now, the use
of ∂uΛ instead of δuΛ is indispensable (see §7, Example 6).

In dealing with orders in not necessarily semisimple algebras A, the con-
cept of generalized over-order Γ of Λ introduced (for A semisimple) by the
Kiev school (e.g. [3]) is important. Such a Γ is given by a ring homomor-
phism Λ → Γ with R-torsion cokernel. A pre-hereditary monomorphism
u : P →֒ I with S := KP = KI simple and ∆ := EndΛ(P ) = EndΛ(I)
the (unique) maximal order in the skew field D := EndA(S) will be called
splitting if A = EndD(S) × A

′ and Hom∆(I, PΠ) ⊆ Λ. Our fundamental
splitting lemma (Proposition 18) then says that in this case, the maximal
order Γ0 in M2(EndD(S)) with indecomposable representation

(
I
P

)
satisfies

RadΓ0 ⊆ ∂uΛ. (Hence ∂uΛ is subhereditary whenever A is simple.) Remark-
ably, that inclusion does not hold for δuΛ instead of ∂uΛ.

In order to apply this result, we define a splitting of Λ as a pair of
generalized over-orders Λ1, Λ2 such that Λ1Λ2 = Λ2Λ1 is an order, and
each indecomposable Λ-lattice is a Λi-lattice for some i ∈ {1, 2}. (Here, the
product Λ1Λ2 is an R-lattice in KΛ1 ⊗KΛ KΛ2.) The importance of this
notion comes from the fact (Proposition 17) that a splitting is tantamount
to an equivalence of categories

Λ1-lat/[Γ ]× Λ2-lat/[Γ ]→ Λ-lat/[Γ ]

with Γ := Λ1Λ2. Of particular interest is the case where Γ is hereditary.
We then speak of a hereditary splitting. Under some extra assumption, a
splitting pre-hereditary monomorphism u gives rise to a hereditary splitting
(Theorem 4). For orders Λ in a simple K-algebra, this result is equivalent
to Simson’s splitting theorem ([24], §17.53).

A special case of hereditary splitting will be characterized in Theorem 3:
Here, ΛΛ admits a decomposition Λ = P1 ⊕ P2 which yields an equivalence

Ω1-lat/[Γ1]×Ω2-lat/[Γ2]
∼
→ Λ-lat/[Γ ]

of categories with Ωi := (EndΛPi)
op and Γi := (EndΓΓPi)

op. Such type of
splitting arises for generalized Brauer tree orders (Example 5 of §7).

For an R-order Λ, there always exist proper monomorphisms u : P →֒ I
with S := KP = KI simple, EndΛ(P ) = EndΛ(I) =: ∆ maximal, and I/P
uniserial with pairwise non-isomorphic composition factors. Then u is pre-
hereditary if and only if P 6∼= I. For P ∼= I, however, there are cases where
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(0′) still holds. Namely, if the identical morphism 1 : I → I is splitting, and
the projection of Λ into EndK∆(S) is a hereditary order Λ0, Proposition 20
yields an equivalence

(0′′) Λ-lat/[Λ0]
∼
→ Λ′-lat

for some R-order Λ′. If ∂uΛ is an order (which is not always true here since
(C) is no longer valid), then Λ′-lat coincides with ∂uΛ-lat/[∂uP ], and the

equivalence is given by ∂̃u. Only the weak form (P
◦) of the projectivity

condition (P) is satisfied in that case.

Equivalences of type (0′′) with Λ0 not necessarily hereditary have re-
cently been studied by Iyama [5] who defines Λ′ in terms of the Auslander–
Reiten quiver of Λ. The question arises whether a similar generalization of
(0) or even (0′) is possible. We shall take up this problem in [20].

Some examples are collected in §7, chosen as small as possible, to illus-
trate the results of the paper.

1. The derivative. Throughout this article, let R be a complete dis-
crete valuation domain with quotient field K, and Λ an R-order in a finite-
dimensional K-algebra A; that is to say, Λ is an R-subalgebra of A which
is finitely generated over R such that KΛ = A. Unless otherwise stated,
modules over a ring S will be assumed to be left modules. By S-mod we
denote the category of finitely generated S-modules.

A Λ-submodule E of a left A-module M is said to be a (full) Λ-lattice
in M if RE is finitely generated and KE = M . Since M can be identified
with K ⊗R E, the embedding E →֒ M is determined by the Λ-module E,
which is also called a Λ-representation. Every homomorphism f : E → F
of Λ-lattices has a unique A-linear extension KE → KF , which we again
denote by f . Therefore, the inverse image f−1(F ) will be regarded as a Λ-
submodule ofKE which may strictly contain E. The category of Λ-lattices is
denoted by Λ-lat. Recall that a (left) Λ-lattice E is said to be injective if the
right Λ-lattice E∗ := HomR(E,R) is projective. When ΛE is projective and
injective, then E is also called bijective. Moreover, a Λ-lattice E is said to be
irreducible if KE is a simple A-module. If KE decomposes into two simple
A-modules, we call E binomial. An irreducible Λ-lattice E with EndΛ(E) a
maximal order in EndA(KE) is said to be tame. For the general theory of
lattices over orders we refer to [12].

Let u : P →֒ I be a monomorphism of Λ-lattices with KP = KI. In [19]
we defined for any Λ-lattice E the u-trace and u-cotrace:

trcuE :=
∑
{f(I) | f ∈ HomΛ(P,E)},

ctruE :=
⋂
{f−1(P ) | f ∈ HomΛ(E, I)}.
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Thus trcuE is R-finite, and ctruE is full in KE, i.e. K(ctruE) = KE. Hence

E+ := E + trcuE, E− := E ∩ ctruE(1)

are Λ-lattices in KE with E− ⊆ E ⊆ E
+. Dually, with respect to the

monomorphism u∗ : I∗ →֒ P ∗ of Λop-lattices, for F ∈ Λop-lat we define

F− := F + trcu∗ F, F+ := F ∩ ctru∗ F.(2)

Then F+ ⊆ F ⊆ F
−, and

(E+)∗ = (E∗)+, (E−)
∗ = (E∗)−.(3)

Since every homomorphism ΛΛ → I is of the form a 7→ ax with x ∈ I, we
obtain Λ− = {a ∈ Λ | aI ⊆ P} = {a ∈ Λ | P

∗a ⊆ I∗} and thus

Λ− = Λ+,(4)

which is a (two-sided) ideal of Λ.

The following closure condition:

(C) I+ = I, P− = P

has been introduced in [19]. Since the identity 1 : P → P carries I to I,
we have I ⊆ P+. On the other hand, P →֒ I gives P+ ⊆ I+. Therefore,
condition (C) implies that P and I determine each other:

P+ = I, I− = P.(5)

Note, however, that (C) does not imply the minimality condition

(M) I = Λ+P, P = HomΛ(Λ
−, I),

which states that there are no Λ+- or Λ−-lattices strictly between P and I.
Moreover, we shall see that (C) does not even imply the weak minimality
condition

(M◦) I = Λ−+P, P = HomΛ(Λ
+−, I).

Here, the second equations in (M) and (M◦) assume that P is identified with
HomΛ(Λ,P ).

In [19] we proved the following

Proposition 1. If I+ = I (resp. P− = P ), then Λ
+ (resp. Λ−) is

an over-order of Λ, and for any Λ-lattice E we have E+ = Λ+E+ (resp.
E− = Λ

−E−). Moreover , (C) implies Λ−E
+ ⊆ E−.

Proposition 2. If (C) is satisfied , then Λ−E
+ ⊆ E−⊆(Λ

+−+Λ−+)E−
⊆ E+ for every Λ-lattice E.

Proof. The inclusion Λ−+E− ⊆ E
+ follows since Λ−+ is mapped into

E+ by each homomorphism Λ− → E−. Dually, (E
∗)+Λ

+− ⊆ (E∗)− and
thus (E+)∗Λ+− ⊆ (E

−
)∗, which gives Λ+−E

−
⊆ E+.
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In particular, (C) implies:

Λ−Λ−Λ
+ = Λ−, Λ+Λ−+Λ− = Λ−+,

Λ−+Λ− ⊆ Λ
+, Λ−Λ

−+ ⊆ Λ−.
(6)

Here the first equation follows by (4) and Proposition 1; the second fol-
lows since the functor ( )+ respects right Λ−-lattices; thirdly, Λ−+Λ

−
⊆

(Λ−Λ
−
)+ ⊆ Λ+, and the fourth equation follows by Proposition 2. By dual-

ity, the last three equations also hold for Λ+− instead of Λ−+.

Thus under the assumption (C) we can define the u-derivative of Λ as
the R-order:

Λ′ = ∂uΛ :=

(
Λ+ Λ+− + Λ−+

Λ
−

Λ−

)
⊆ M2(A).(7)

Then a Λ′-lattice is suitably given by a column
(
F
G

)
with F ∈ Λ+-lat, G ∈

Λ−-lat, and Λ−F ⊆ G ⊆ (Λ
+− + Λ−+)G ⊆ F . Hence, the map E 7→

(
E+

E
−

)

gives rise to a functor

∂u : Λ-lat→ Λ
′-lats(8)

into the full subcategory

Λ′-lats :=

{(
F

G

)
∈ Λ′-lat

∣∣∣∣F ⊇ G
+, G ⊆ F−

}
(9)

of Λ′-lat. We shall call (8) the differentiation functor with respect to u, or
simply the u-differentiation. (For representations of partially ordered sets, a
similar functor is known as “refinement functor”; see [24], Definition 9.14.)
Note that the order ∂uΛ has to be distinguished from the Λ-lattice ∂u(ΛΛ),
which is a proper direct summand of Λ(∂uΛ).

Let us call u : P →֒ I pre-hereditary (cf. [19], §2) if the following holds:

(Z) Condition (C) is valid, and for Λ-lattices H,H ′, L, L′ with P ⊆ H ′ ⊆

H ⊆ I and P ⊆ L′ ⊆ L ⊆ I, every isomorphism h : H/H ′
∼
→ L/L′ is

induced by a homomorphism h : H → L with h(H ′) ⊆ L′.

An analysis of this condition will be given in §§2–3.

For a class C of objects in an additive category, let [C] denote the ideal
of morphisms which factor through a finite direct sum of objects in C. By
addC we denote the full subcategory consisting of direct summands of finite
direct sums of objects isomorphic to those in C. In particular, define

Hu := add{H ∈ Λ-lat | P
s ⊆ H ⊆ Is for some s ∈ N}.(10)

As usual, indΛ denotes a representative system of isomorphism classes of in-
decomposable Λ-lattices. The following theorem generalizes [19], Theorem 2:
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Theorem 1. If u : P →֒ I is pre-hereditary , then the u-differentiation
(8) induces an equivalence of categories

∂̃u : Λ-lat/[Hu]
∼
→ Λ′-lats/

[(
I
P

)]

Moreover , Λ′-lats = Λ′-lat if and only if the weak minimality condition
(M◦) is satisfied.

We shall prove in §3 that (M◦) follows by the weak projectivity condition

(P◦) Λ−P and I
∗
Λ+ are projective,

and that (P◦) and (M◦) are equivalent whenever u has no direct summands
u1 : P1 →֒ I1 with u1(P1) = I1 6= 0.

Thus if (M◦) holds, the theorem yields a bijection:

indΛ \ indHu
∼
→ indΛ′ \ ind add

{(
I
P

)}
.

Here, ind add
{(
I
P

)}
consists of the indecomposable direct summands of

(
I
P

)
.

An explicit determination of indHu will be given in §2.

Remark. If the u-derivative (7) of Λ is replaced by the suborder (see
[19])

δuΛ :=

(
Λ+ Λ+Λ−

Λ− Λ−

)
,(11)

we gain some simplification in return for a slightly weaker statement of the
main theorem. Then a δuΛ-lattice is just given by a pair

(
F
G

)
with Λ−F ⊆

G ⊆ F , and the u-differentiation (8) induces an equivalence Λ-lat/[Hu]
∼
→

δuΛ-lat/
[(
I
P

)]
if and only if the (strong) minimality condition (M) holds.

In analogy with the above, (M) is a consequence of the (strong) projectivity
condition

(P) P and I∗ are projective Λ-lattices.

In the presence of this condition, the collection of concepts related with u
attains its simplest form (§3). Thus (11) seems to be more natural than the
definition (7) of the u-derivative. On the other hand, all the results of §5
depending on Proposition 18 are no longer valid if ∂uΛ is replaced by δuΛ.
In §3 we shall prove that (P) implies δuΛ = ∂uΛ.

2. Pre-hereditary monomorphisms. The proof of Theorem 1 will be
divided into three parts showing that ∂̃u is faithful, full, and dense, respec-
tively. For this purpose, we shall prove that a pre-hereditary monomorphism
u satisfies three conditions which will be used in order to conclude each of
the partial assertions on ∂̃u. For any Λ-lattice E, Proposition 2 implies that
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E+/E− is a module over the artinian ring

B := Λ/Λ−.(12)

This notation will be maintained throughout the paper. The three conditions
mentioned are:

(C) I+ = I, P− = P.

(L) Condition (C) holds, and for M,M ′ ∈ B-mod and H,H ′ ∈ Hu, each
diagram

H H ′

M M ′

q
�� ��

//_ _ _
q′

����f //

with q(H−) = 0 and q
′(H ′−) = 0 can be completed.

(H) Condition (C) holds, B is (left) hereditary, and I/P is a bijective
B-module.

The fundamental condition (C) has already been introduced. Together with
(C), (L), and (H), we shall discuss the following related properties. Firstly,
there are two stronger versions of (C):

(C′) ExtΛ(I/P, I) = HomΛ(P, I/P ) = 0.

(C′′) P/RadP and Rad◦I/I have no common composition factors with
I/P .

Here, RadP = (RadΛ)P denotes the Jacobson radical, and the upper radical
Rad◦ is defined for any E ∈ Λ-lat by

(Rad◦E)∗ = RadE∗.

Stronger than the lifting condition (L) is the extension property:

(E) (C) holds, and ExtΛ(H,L) = 0 for H,L ∈ Hu;

weaker is the restricted lifting condition:

(R) (C) holds, and EndΛ(I)→ EndΛ(I/P ) is surjective.

In §3, the rôle of the projectivity conditions

(P◦) Λ−P and I
∗
Λ+ are projective,

(P) ΛP and I
∗
Λ are projective,

and their relationship to the minimality conditions

I = Λ−+P, P = HomΛ(Λ
+−, I),(M◦)

I = Λ+P, P = HomΛ(Λ
−, I)(M)

will be clarified.
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Let us show first that all these conditions (including (Z)) are self-dual.
This is obvious in all cases except (L), (H), and (C′). For the heredity con-
dition (H) this follows by (4) and the fact that ExtR(−, R) gives a duality
in B-mod. In particular,

ExtR(I/P,R) ∼= P
∗/I∗.

In order to verify that (L) is self-dual, note that q(H−) = 0 signifies that
M ∼= H/L with H− ⊆ L ⊆ H. Thus if we identify M with H/L and
M ′ with H ′/L′ for some L′ ⊃ H ′−, we can assume q, q

′ to be the natural
epimorphisms. Hence the dual diagram is

L∗ L′∗

L∗/H∗ L′∗/H ′∗
�� ��

oo_ _ _ _ _
����

f∗oo

with f∗ = ExtR(f,R) and L
∗ ⊆ (H∗)− by (3). Hence, (L) is self-dual.

For a finitely generated R-torsion Λ-module V and F ∈ Λ-lat define
ExtlatΛ (V, F ) as the subset of extensions F ֌ E ։ V in ExtΛ(V, F ) with
E ∈ Λ-lat.

Lemma 1. If U runs through the submodules of V , there is a natural
partition of sets:

ExtΛ(V, F ) =
∐

U⊆V

ExtlatΛ (V/U, F ).

Proof. For any ε : F →֒ E ։ V in ExtΛ(V, F ), the R-torsion part T(E) is
mapped bijectively onto a submodule U of V which yields an exact sequence
ε0 : F →֒ E0 ։ V/U with E0 = E/T(E). The diagram

ε0 : F E0 V/U

ε : F E V

T(E) U

�o //������������ // //

�o // // //

OO OO OOOO

∼ //
�/OO �/OO
PB

shows that ε and ε0 determine each other since PB is a pullback square.

As a consequence, we find that (C′) is self-dual:

ExtΛ(I/P, I) = 0 ⇔ HomΛ(I
∗, P ∗/I∗) = 0.

In fact, by the lemma, ExtΛ(I/P, I) = 0 says that any overlattice E of I with
E/I isomorphic to a factor module of I/P must coincide with I. Therefore,
we get the implications

(C′′)⇒ (C′)⇒ (C).(13)
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As an immediate consequence of (1), we obtain

(C) ⇔ HomΛ(I, I) = HomΛ(P, I) = HomΛ(P, P ).(14)

Next we shall derive an equivalent formulation of (C′′). Firstly, we have

Proposition 3. A simple Λ-module is annihilated by Λ− if and only if
it occurs as a composition factor in I/P .

Proof. By the definition of Λ− we have Λ−I ⊆ P . Conversely, [19],
Lemma 4, implies that B is finitely cogenerated by I/P . Hence, the simple
B-modules occur as composition factors in I/P .

The proposition yields an alternative formulation of (C′′):

(C′′) ⇔ (Λ−P = P and I
∗Λ− = I

∗).(15)

Here, the condition I∗Λ− = I
∗ can be replaced by virtue of the equivalence

I∗Λ− = I
∗ ⇔ HomΛ(Λ−, I) = I,(16)

where HomΛ(Λ−, I) is identified with {x ∈ KI | Λ−x ⊆ I}.

Next we turn our attention to the lifting condition (L). Define

p := RadR, k := R/p.(17)

Then [19], Proposition 9, implies that B is a finite-dimensional k-algebra.
Whenever (C) holds, let us consider two full subcategories of B-mod:

B+ := {H+/H | H ∈ Hu}, B− := {H/H− | H ∈ Hu}.(18)

Lemma 2. If (L) is satisfied , and H ∈ Hu is indecomposable, then H
+

and H− are indecomposable.

Proof. Suppose H+ = I1⊕ I2 with I1 indecomposable, and let q : H
+

։

I1 be the natural projection. If P1 := (I1)− and H1 := q(H) ⊇ P1, then (L)
implies that the natural epimorphism r : H1 ։ H1/P1 can be lifted along
the epimorphism r ◦ q|H : H → H1 ։ H1/P1, i.e. there is an s : H1 → H
with rq ◦ s = r. Hence, 1 − qs ∈ EndΛ(H1) factors through P1 →֒ H1.
Now if H1 = P1, then P1 is a direct summand of H, whence H = P1 and
H+ = I1 is indecomposable. Otherwise, qs is an isomorphism, i.e. H1 is a
direct summand of H and thus H = H1.

For a module M ∈ B-mod, let Gen(M) be the class of B-modules which
are finitely generated by M , i.e. are epimorphic images of finite direct sums
M s of M . Similarly, Cog(M) denotes the class of B-modules finitely cogen-
erated by M , i.e. submodules of M s, s ∈ N. If (C) holds, then

B+ = Gen(I/P ), B− = Cog(I/P ).(19)

Proposition 4. If (L) is valid , then the functors Q+ : Hu → B+ and

Q− : Hu → B− with Q+(H) = H+/H and Q−(H) = H/H− yield equiva-
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lences of categories:

Hu/[I]
∼
→ B+, Hu/[P ]

∼
→ B−.

Proof. A morphism f : H → L in Hu factors through some I
s if and

only if f extends to H+. But this is tantamount to Q+(f) = 0. Thus Q+ is
faithful modulo [I]. It is also full by virtue of (L), and dense by (18). Hence,
Q+ induces an equivalence. The remaining assertion follows by duality.

As an immediate consequence, we get

Corollary. If (L) is valid , and H ∈ Hu has no direct summand in

add{I} (resp. add{P}), then H is indecomposable if and only if H+/H
(resp. H/H−) is indecomposable.

Proposition 5. If (L) is satisfied , and H ∈ Hu is indecomposable, then

H/H− ∈ B+ ⇔ H+/H ∈ B− ⇔ H ∈ add{P ⊕ I}.

Proof. H ∈ add{P ⊕ I} says that H = H+ or H = H−. If H/H− ∈ B+

and H 6= H−, then we have an isomorphism h : H/H−
∼
→ L+/L with

L ∈ Hu, and by the above corollary, we may assume L to be indecomposable.
Thus by the symmetry of this assumption, it remains to prove that H = H+

and L = L−. Now (L) implies that h lifts to an f : H → L
+ with f(H−) ⊆ L.

Then f extends to H+, whence H/H− is a direct summand of H
+/H−.

By Lemma 2 we infer that H+, hence also H+/H−, is indecomposable.
Consequently, H = H+. Similarly, h factors through L+/L−, which yields
L = L−.

In particular, (L) implies

B+ ∩B− = add{I/P}.(20)

Our next result holds without the assumption (L). Let B-proj (resp. B-inj)
denote the full subcategory of projective (resp. injective) modules inB-mod.

Proposition 6. If (C) is valid , then every module M ∈ B-mod is of
the form M = H/L with P s ⊆ L ⊆ H ⊆ Is for some s ∈ N. Moreover ,
B-proj ⊆ B− and B-inj ⊆ B+.

Proof. By [19], Lemma 4, every finitely generated free B-module is iso-
morphic to some H/P s with P s ⊆ H ⊆ Is. Hence M is of the desired form.
If M is projective, then M is a direct summand of some Bt ∼= H/P s ∈ B−,
and if M = H/L is injective, then H/L →֒ L+/L splits, whence M ∈ B+.

Concluding the analysis of (L), we show

(E)⇒ (L).(21)
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In fact, if we put L := Ker q′ in the diagram of (L), then L ∈ Hu, and the
exact sequence

HomΛ(H,L) →֒ HomΛ(H,H
′)
q′
∗→ HomΛ(H,M

′)→ ExtΛ(H,L)

yields (21).

Now let us focus our attention upon the heredity condition (H). Since

BB ∈ B−, we have

(H) ⇔ ((C) & B+ = B-inj & B− = B-proj).(22)

Moreover, the following characterization of (H) is valid. Recall ([19], §1)
that a B-module M is called a Zavadskĭı module if each submodule is M -
projective, and each factor module M -injective.

Proposition 7. (H) is satisfied if and only if (C) holds and I/P is a
Zavadskĭı module.

Proof. Suppose (H). Then every submodule of I/P is projective, and
every factor module of I/P is injective, whence I/P is a Zavadskĭı module.
Conversely, suppose (C) holds and I/P is a Zavadskĭı module. Then Propo-
sition 6 (with [1], 16.12.f) implies that a module M ∈ B-mod is projective
(resp. injective) if and only if M is I/P -projective (resp. I/P -injective). By
[19], Proposition 2, (I/P )s is a Zavadskĭı module for any s ∈ N. Hence, every
submodule of BB is projective, i.e. B is left hereditary. Moreover, I/P is
bijective, whence (H).

Now we are able to prove

Theorem 2. (Z)⇔ ((H) & (R))⇔ (L).

Proof. (Z) ⇒ ((H) & (R)). By (C), the homomorphism h in condition
(Z) induces an endomorphism of I/P , whence I/P is a Zavadskĭı mod-
ule. By Proposition 7, this implies (H). In order to verify (R), suppose
f ∈ EndΛ(I/P ). Then there are Λ-lattices H,L between I and P with
f : I/P ։ I/L

∼
→ H/P →֒ I/P , and (Z) yields a homomorphism f : I → H

with f(L) ⊆ P which induces the isomorphism I/L
∼
→ H/P . By (C), the

endomorphism f is also induced by f .

((H) & (R)) ⇒ (L). Under the hypothesis (H) we shall reduce (L) to
(R). Consider the diagram for (L) and replace H ′ by L. The conditions
q(H−) = 0 and q

′(L−) = 0 imply that q and q
′ factor through the natural

epimorphisms H ։ H/H− and L ։ L/L−. By (22), H/H− ∈ B− is a
projective B-module. Hence, f lifts to a map g : H/H− → L/L−, and it
remains to prove that the diagram
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H L

H/H− L/L−

//_ _ _ _ _
���� ����

g //

can be completed. Considering the pullback

L L+

L/L− L+/L−

�o //

���� �����o //

we may assume without loss of generality that L = L+. But then L/L− is
injective, whence g factors through H/H− →֒ H

+/H−. Therefore, it suffices
to complete a diagram

I1 I2

I1/P1 I2/P2

//_ _ _ _
���� ����

//

with I1, I2 ∈ add{I} and Pi = (Ii)− for i ∈ {1, 2}. Then I1, I2 may be
assumed to be indecomposable, and thus (R) yields the desired lifting.
The remaining implication (L)⇒ (Z) is trivial.

Corollary. u : P →֒ I is pre-hereditary if and only if (R) holds, and
I/P is a Zavadskĭı module.

Let us investigate which modifications of u : P →֒ I preserve the property
(Z). Firstly, we have:

Proposition 8. Property (Z) remains valid if u is replaced by a finite
direct sum us : P s →֒ Is. If u1 : P1 →֒ I1 and u2 : P2 →֒ I2 satisfy (Z), and
the modules I1/P1 and I2/P2 have no composition factor in common, then
u1 ⊕ u2 : P1 ⊕ P2 →֒ I1 ⊕ I2 is pre-hereditary if it satisfies (C).

Proof. Clearly, the restricted lifting property (R) carries over to us and
u1 ⊕ u2 under the given hypothesis, and (C) carries over to u

s. By [19],
Theorem 1, Is/P s and I1 ⊕ I2/P1 ⊕ P2 are Zavadskĭı modules, whence the
above corollary gives the desired result.

If (C) holds, then by (14), any decomposition of P or I gives rise to a
decomposition of u : P →֒ I, say,

u = u1 ⊕ . . .⊕ un, ui : Pi →֒ Ii.(23)

The trace and cotrace of a Λ-lattice E are then given by

trcuE =

n∑

i=1

trcui E, ctruE =

n⋂

i=1

ctrui E,(24)
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and similarly, the u-differentiation ∂u is calculated by means of the ∂ui . If
two different summands ui and uj in (23) are equivalent, i.e. if there is an

isomorphism f : Ii
∼
→ Ij with f(Pi) = Pj, then ∂u does not change if the

direct summand uj in (23) is cancelled. On the other hand, if u is an iso-
morphism, then E+ = E− = E. Such monomorphisms will be called trivial.
Clearly, ∂u also does not change if a trivial direct summand of u is cancelled.
Therefore, we shall say that u is reduced if there are neither multiple nor
trivial summands in a decomposition (23). Thus if (Z) is satisfied for a re-
duced monomorphism (23), then each Ii/Pi is an indecomposable Zavadskĭı
module, and the composition factors of I/P are pairwise non-isomorphic.
Hence each submodule of I/P is of the formM1⊕ . . .⊕Mn with submodules
Mi of Ii/Pi. The following result is easily verified:

Proposition 9. If u : P →֒ I is reduced pre-hereditary , then each u′ :
P ′ →֒ I ′ with Λ-lattices P ′, I ′, and P ⊆ P ′ ⊆ I ′ ⊆ I, is again pre-hereditary.

By [19], Proposition 5, we have

Proposition 10. If (Z) is satisfied , then B = Λ/Λ− is Morita equiva-
lent to a product of triangular matrix algebras over finite-dimensional divi-

sion algebras over k.

The indecomposable B-modules are thus of the form H1/H2 with in-
decomposable H1, H2 ∈ Hu and H1 ⊆ H2 ⊆ H

+
1 . This also follows by

Proposition 6 and the structure of Zavadskĭı modules ([19], §1).

3. The projectivity conditions. In the known versions [28, 26, 21,
19] of Zavadskĭı’s algorithm, if considered as special cases of Theorem 1, the
projectivity condition

(P) P is projective, I is injective

is satisfied. We shall demonstrate in this section how the relationship be-
tween the various conditions on u : P →֒ I is simplified in the presence of
(P).
Firstly, the implications (13) are turned into equivalences:

(P)⇒ ((C′′)⇔ (C′)⇔ (C)).(25)

Namely, if I/P and P/RadP had a common composition factor, (P) would
yield a homomorphism P → I with image not in P .
Secondly, we have

(P)⇒ ((L)⇔ (E)).(26)

Indeed, suppose (P) and (L) are satisfied, and H,L ∈ Hu. Then L →֒ L
+
q
։

L+/L induces an exact sequence

HomΛ(H,L
+)
q∗
→ HomΛ(H,L

+/L)→ ExtΛ(H,L)→ ExtΛ(H,L
+),
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where ExtΛ(H,L
+) = 0 since L+ is injective; moreover, for each homomor-

phism H → L+/L, the composition g : H− →֒ H → L
+/L factors through

L+ ։ L+/L by the projectivity of H−. Hence g = 0, and we infer that q∗
is surjective by virtue of (L). In conjunction with (21), the equivalence (26)
follows.

Thirdly, let us focus our attention upon the minimality condition

(M) I = Λ+P, P = HomΛ(Λ
−, I).

Proposition 11. Let (C) be satisfied. Then (M) is equivalent to each
of the following properties:

(a) E+ = Λ+E and E− = HomΛ(Λ
−, E) for every Λ-lattice E.

(b) (Λ+)+ = Λ
+ and (Λ−)− = Λ

−.

Proof. (M)⇒ (a). For any morphism f : P → E in Λ-lat, we have
f(I) = f(Λ+P ) ⊆ Λ+E ⊆ E+. Hence E+ = Λ+E, i.e. E+ is the smallest
Λ+-overlattice of E. Therefore, E− = HomΛ(Λ

−, E) follows by duality.

(a)⇒ (b)⇒ (M). The equality (Λ−)− = Λ
− states that HomΛ(Λ

−, I)
coincides with HomΛ(Λ

−, P ) = P , that is, the second assertion of (a) with
E = I. By duality, the first assertion of (a) implies (Λ+)+ = Λ

+. The latter
equation is equivalent to I = Λ+P .

In particular, the proposition implies that if (C) and (M) are satisfied,
then ∂uΛ coincides with the simplified u-derivative δuΛ defined in (11), and

E++ = E+, E−− = E−(27)

for each E ∈ Λ-lat. Clearly, this also follows by (C′′).

If in the definition (1) of E+, the morphisms P → E are restricted to
those which factor through a free Λ-lattice, then Λ+E is obtained instead of
E+. Similarly, if E ∈ Λ−-lat, and we restrict ourselves to homomorphisms
P → E in [Λ−], we get Λ−+E instead of E+. Therefore, the implications

(P)⇒ (M), (P◦)⇒ (M◦)(28)

hold in general. Under the hypothesis of Theorem 1, the converse is also
true:

Proposition 12. If u : P →֒ I is reduced pre-hereditary , then the equiv-
alences (P)⇔ (M) and (P◦)⇔ (M◦) are valid.

Proof. (M)⇒ (P). By duality it suffices to prove that I = Λ+P implies
the projectivity of P . Let P1 be any indecomposable direct summand of P .
Then I = Λ+P implies Λ+P1 = P

+
1 . Therefore, an epimorphism g : Λ

n
։ P1

maps (Λ+)n onto P+1 . Since by assumption P
+
1 6= P1, there exists a direct

summand P2 of P together with a homomorphism f : P2 → Λ
n such that

gf(P+2 ) 6⊆ P1. By [19], Proposition 9, we conclude that gf : P
+
2 → P

+
1 is an
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isomorphism. Hence gf : P2 → Λ
n → P1 is an isomorphism, and thus P1 is

projective. Analogously, (M◦)⇒ (P◦) follows.

Remark. By the above implications (25), (26), we obtain [19], Theo-
rem 2, as a special case of Theorem 1.

4. Proof of Theorem 1. The fundamental condition (C) already suf-
fices to prove that the u-differentiation (8) induces a faithful functor of
quotient categories:

Proposition 13. Let (C) be satisfied. Then ∂u induces a faithful func-

tor ∂̃u.

Proof. Clearly, the ideal [Hu] is mapped into
[(
I
P

)]
. Hence ∂̃u is well

defined. For any E ∈ Λ-lat we have

HomΛ′

((
E+

E−

)
,

(
I

P

))
= HomΛ(E, I),

HomΛ′

((
I

P

)
,

(
E+

E−

))
= HomΛ(P,E).

Now let f : E → F be a morphism in Λ-lat such that ∂uf has a factorization

∂uf :

(
E+

E−

)
g
→

(
Is

P s

)
h
→

(
F+

F−

)
.

Then f = h ◦ g with g : E → Is and h : P s → F . Hence, f factors through
g(E) + P s ∈ Hu.

For the proof of Theorem 1 we need a criterion which decides for a
Λ′-lattice in Λ′-lats whether it has a direct summand in common with

(
I
P

)
:

Proposition 14. Let u : P →֒ I be reduced pre-hereditary. Then
(
F
G

)
∈

Λ′-lats has a direct summand in add
{(
I
P

)}
if and only if G+ 6⊆ F−.

Proof. This follows by the proof of [19], Proposition 12.

Lemma 3. If (C) is satisfied , then for each Λ-lattice E,

Λ+−E− ⊆ Λ
−+E, HomΛ(Λ

+−, E) ⊆ HomΛ(Λ
−+, E+).

Proof. The first inclusion is equivalent to (Λ−+E)∗Λ+− ⊆ (E−)
∗. Now

(Λ−+E)∗ is a right Λ+-lattice. Hence, every homomorphism Λ+ → (Λ−+E)∗

of right Λ+-lattices maps Λ+− into (Λ−+E)∗−, i.e. (Λ−+E)∗Λ+− ⊆
(Λ−+E)∗− ⊆ E∗− = (E−)

∗. The second inclusion is dual to the first.

Proof of Theorem 1. An obvious modification of the proof of [19], The-

orem 2, using Proposition 14 above, shows that ∂̃u is full and dense, hence
an equivalence by virtue of Proposition 13.
If (M◦) is satisfied, then each homomorphism P → G ∈ Λ−-lat carries

I = Λ−+P into Λ−+G. Hence G+ ⊆ Λ−+G, and dually, HomΛ(Λ
+−, F ) ⊆
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F− for every Λ
+-lattice F . Hence Λ′-lats coincides with Λ′-lat. Conversely,

if Λ′-lats coincides with Λ-lat, then Lemma 3 implies that
(
Λ−+P
P

)
is a

Λ′-lattice, and thus I = P+ ⊆ Λ−+P . By duality, we obtain (M◦).

Let us add some remarks on the subcategory Λ′-lats of Λ′-lat. If we
assume that (C) is valid, there are two monomorphisms in Λ′-lat which are
naturally associated with u:

u+ :

(
I

P

)
→֒

(
I

HomΛ(Λ+−, I)

)
, u− :

(
Λ−+P

P

)
→֒

(
I

P

)
.(29)

Then the inclusion
trcu− E

′ ⊆ ctru+ E
′(30)

holds for each Λ′-lattice E′, and for E′ =
(
F
G

)
we have

F ⊇ G+ ⇔ trcu− E
′ ⊆ E′, G ⊆ F− ⇔ ctru+ E

′ ⊇ E′.(31)

Hence there is a functor

σu : Λ
′-lat→ Λ′-lats(32)

given by

σuE
′ := (E′ + trcu− E

′) ∩ ctru+ E
′ = (E′ ∩ ctru+ E

′) + trcu− E
′.(33)

Explicitly, we have

σu

(
F

G

)
=

(
F +G+

G ∩ F−

)
,(34)

and therefore, σu operates identically on the objects of Λ
′-lats. This gives

an intrinsic characterization of Λ′-lats:

E′ ∈ Λ′-lats ⇔ σuE
′ ∼= E′.(35)

Proposition 15. If (C) is satisfied , then the functor (32) induces a
faithful dense functor σ̃u : Λ

′-lat/[H′u]→ Λ
′-lats/

[(
I
P

)]
, where

H′u := add

{(
H

L

)
∈ Λ′-lat

∣∣∣∣H,L ∈ Hu, H ⊆ L
+

}
.

Proof. Clearly, σu maps [H
′
u] into

[(
I
P

)]
, whence σ̃u is well defined. Con-

versely, suppose that a morphism h :
(
F
G

)
→
(
F ′

G′

)
in Λ′-lat has the property

that σuh factors through
(
Is

P s

)
for some s ∈ N. Then h is a composition g ◦ f

with f ∈ HomΛ(F, I
s) and g ∈ HomΛ(P

s, G′). Hence, h factors through(
H
L

)
∈ H′u with H := g

−1(F ′)∩ Is and L := f(G) +P s. This proves that σ̃u
is a faithful functor which is dense by virtue of (35).

In general, however, σ̃u is not full, and for that reason, there is no way
to replace Λ′-lats/

[(
I
P

)]
in Theorem 1 by Λ′-lat/[H′u]. In fact, there may be

indecomposable Λ′-lattices neither in Λ′-lats nor in H′u (see Examples 3, 4
in §7).
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As in [19], Proposition 13, we usually can replace Λ′ = ∂uΛ by a Morita
equivalent R-order with less indecomposable projectives. Retaining assump-
tion (C), let

Λ = Q⊕Q0(36)

be a decomposition of Λ-lattices such that HomΛ(Q
′, I/P ) 6= 0 for each

indecomposable direct summand Q′ of Q, and HomΛ(Q0, I/P ) = 0. We
define the reduced u-derivative of Λ by

∂′uΛ :=

(
HomΛ(Q,Q

+) HomΛ(Q,Λ
+− + Λ−+)

Q− Λ−

)
.(37)

Proposition 16. If (C) is valid , then the reduced u-derivative ∂′uΛ is
Morita equivalent to ∂uΛ.

Proof. Since (Q0)− = Q0, Lemma 3 implies (Λ
+−+Λ−+)Q0 = Λ

−+Q0 =
Λ+Q0. Hence ∂uQ0 is a simultaneous direct summand of ∂u(ΛΛ) and Q

′ :=(
Λ+−+Λ−+

Λ−

)
, and ∂uQ ⊕ Q

′ is a progenerator of ∂uΛ. By Proposition 2, the
decomposition Λ− = Q− ⊕Q0 = Λ−Q⊕ Λ−Q0 yields Q− = Λ−Q ⊆ Λ−Q

+

⊆ Q−. Similarly, Q
+ = Λ+Q, and thus

End∂uΛ(∂uQ) = HomΛ(Q,Q
+),

Hom∂uΛ(∂uQ,Q
′) = HomΛ(Q,Λ

+− + Λ−+).

Consequently, the progenerator ∂uQ ⊕ Q
′ leads to the Morita equivalent

R-order (37).

5. Splitting over-orders. Recall that a generalized over-order Γ of
Λ is given by a ring homomorphism f : Λ → Γ with R-torsion cokernel.
Equivalently, Γ is given by its inverse image Ω = f−1(Γ ) in A, which is an
overring of Λ, i.e. an R-subalgebra Ω of A with Ω ⊃ Λ. If Ω is given, then
Γ ∼= Ω/Ω∞, where Ω∞ := {a ∈ A | Ka ⊆ Ω} ⊳ A. In this way, we have a
one-to-one correspondence between generalized over-orders Γ and overrings
Ω of Λ. For a Λ-lattice E, define ΓE := Γ ⊙Λ E, where “⊙” denotes the
tensor product modulo R-torsion. Hence ΓE can be identified with the set of
finite sums

∑
aixi in KΓ ⊗AKE with ai ∈ Γ , xi ∈ E. The same is true for

right Λ-lattices. In particular, if Λ1 and Λ2 are generalized over-orders of Λ,
then Λ1Λ2 and Λ2Λ1 are full R-lattices in KΛ1⊗AKΛ2 = KΛ2⊗AKΛ1, the
largest common factor algebra of KΛ1 and KΛ2. Moreover, the intersection
of the overrings belonging to Λ1 and Λ2 corresponds to a generalized over-
order Λ1∩Λ2 of Λ which we also call the intersection of Λ1 and Λ2 (cf. [3], §1).

Let us define a splitting of Λ as a pair of generalized over-orders Λ1, Λ2
such that Λ1Λ2 = Λ2Λ1 is an order, and each indecomposable Λ-lattice is a
Λi-lattice for some i ∈ {1, 2}. (In general, of course, Λ1Λ2 and Λ2Λ1 need
not be equal!) In particular, the indecomposable projectives can be arranged
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in two classes, which gives rise to a decomposition

Λ = P1 ⊕ P2(38)

with Pi ∈ Λi-lat. Therefore, Λ1 = P1 ⊕ Λ1P2 and Λ2 = Λ2P1 ⊕ P2, whence

Λ1 = P1 ⊕ ΓP2, Λ2 = ΓP1 ⊕ P2(39)

with Γ := Λ1Λ2, and

Λ = Λ1 ∩ Λ2.(40)

The splitting will be called proper if Λ does not coincide with Λ1 or Λ2. If
Γ is hereditary, we shall speak of a hereditary splitting.

Note. For a hereditary R-order Γ , the algebra KΓ is necessarily semi-
simple ([4], Theorem 1.7.1). In fact, for each indecomposable projectiveKΓ -
module S, the full Γ -lattices in S form a chain. Hence S must be simple.

For example, if

Λmn :=

(
∆ Πn

Πm ∆

)
⊆ M2(D)

with ∆ the maximal order in a skew field D (finite-dimensional over K), and
Π := Rad∆, then the pairs Λ30, Λ03 and Λ31, Λ03 are hereditary splittings
of Λ33.

Proposition 17. Let Λ1, Λ2 be generalized over-orders of Λ, and Γ a
generalized over-order of Λ1 and Λ2. The bifunctor (E1, E2) 7→ E1 ⊕ E2
induces a faithful functor between additive categories

Λ1-lat/[Γ ]× Λ2-lat/[Γ ]→ Λ-lat/[Γ ].(41)

The following are equivalent :

(a) Λ1, Λ2 form a splitting of Λ, with Γ = Λ1Λ2.

(b) The functor (41) is an equivalence.

Proof. It is easily seen that (41) is always faithful. The property that
(41) is full signifies that for Λi-lattices Ei, i ∈ {1, 2}, each Λ-linear map
between E1 and E2 (in either direction) lies in [Γ ]. This means that each
E1 → E2 factors through ΓE1, and each E2 → E1 factors through ΓE2.
Hence Γ = Λ1Λ2 = Λ2Λ1 implies that (41) is full. Conversely, if (41) is full,
we deduce that the natural maps Λ1 → Λ2Λ1 and Λ2 → Λ1Λ2 factor through
Γ . Hence, Γ = Λ1Λ2 = Λ2Λ1. Finally, the density of (41) states that each
indecomposable Λ-lattice is a Λi-lattice for some i ∈ {1, 2}.

By the preceding proposition, the usefulness of splitting pairs of gener-
alized over-orders becomes apparent, especially in the case of a hereditary
splitting. As an application of Theorem 1, we shall see below that a special
class of pre-hereditary monomorphisms gives rise to a hereditary splitting
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of Λ. Here the projectivity condition (P) is not assumed, but another re-
striction on Λ has to be imposed which forces Λ to be subhereditary if the
algebra A = KΛ is simple. In that case, we obtain an equivalent version of
D. Simson’s splitting theorem ([24], Theorem 17.53) for vector space cate-
gories.
Let us first consider an important special class of splitting. For a decom-

position (38) of Λ, and a hereditary generalized over-order Γ of Λ, define

Ωi := (EndΛPi)
op, Γi := (EndΓΓPi)

op(42)

for i ∈ {1, 2}. Then there are functors

Ω1-lat×Ω2-lat
F
⇄

G

Λ-lat(43)

with
F(F1, F2) := (P1 ⊙Ω1 F1)⊕ (P2 ⊙Ω2 F2),

GE := (HomΛ(P1, E), HomΛ(P2, E)),

and in accordance with (38), Λ and Γ can be written in the form

Λ =

(
Ω1 Ω12
Ω21 Ω2

)
, Γ =

(
Γ1 Γ12
Γ21 Γ2

)
,(44)

where Ωij := HomΛ(Pi, Pj) and Γij := HomΓ (ΓPi, ΓPj). We shall call
(38) a complete splitting of Λ into Ω1 and Ω2 if ΓP1 and ΓP2 have no
indecomposable direct summand in common, and Ω12 = Γ12, Ω21 = Γ21, i.e.
the natural maps Ωij → Γij are isomorphisms for i 6= j.

Define the multiplier of a Λ-lattice E as the generalized over-order O(E)
of Λ corresponding to the overring {a ∈ A | aE ⊆ E}. Then for a complete
splitting, the generalized over-orders Λi := Γ ∩O(Pi) are

Λ1 =

(
Ω1 Γ12
Γ21 Γ2

)
, Λ2 =

(
Γ1 Γ12
Γ21 Ω2

)
,(45)

and thus Λ1Λ2 = Λ2Λ1 = Γ . Moreover, they form a splitting by the following

Theorem 3. Let Γ be a hereditary generalized over-order of Λ, and
Λ = P1 ⊕ P2 a decomposition of Λ-lattices such that ΓP1 and ΓP2 have
no indecomposable direct summand in common. Then this gives a complete

splitting if and only if the functors (43) induce a pair of mutually inverse
equivalences

Ω1-lat/[Γ1]×Ω2-lat/[Γ2]
F ′

⇄

G
′

Λ-lat/[Γ ].

In this case, (45) is a hereditary splitting of Λ.

Proof. Since Γ1 and Γ2 are hereditary, the functor G′ is always well de-
fined, whereas F ′ is defined if and only if PiΓi = Pi⊙Ωi Γi are Γ -lattices for
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i ∈ {1, 2}, i.e. if the natural homomorphism PiΓi → Γ ⊙Λ PiΓi is bijective.
Now Γ ⊙Λ PiΓi = (ΓPi)Γi = ΓPi. Hence

F ′ well defined ⇔ (Ω21Γ1 = Γ21, Ω12Γ2 = Γ12).(46)

For an Ω1-lattice F1, there is an exact sequence

T(P1 ⊗Ω1 F1) →֒ P1 ⊗Ω1 F1 ։ P1 ⊙Ω1 F1(47)

where “T” denotes the R-torsion part. Applying HomΛ(P2,−) gives a short
exact sequence

HomΛ(P2,T(P1 ⊗Ω1 F1)) →֒ HomΛ(P2, P1 ⊗Ω1 F1) ։ HomΛ(P2, P1 ⊙Ω1 F1)

where the left-hand term is an R-torsion module, and the right-hand term
is torsion-free. Thus HomΛ(P2, P1 ⊙Ω1 F1) = Ω21 ⊙Ω1 F1. Similarly, if we
apply HomΛ(P1,−) to (47), we get HomΛ(P1, P1⊙Ω1 F1) = Ω1⊙Ω1 F1 = F1,
whence by symmetry,

GF(F1, F2) = (F1, F2)⊕ (Ω12 ⊙Ω2 F2, Ω21 ⊙Ω1 F1).

Consequently,

G′F ′ ∼= 1 ⇔ (Γ1Ω12 = Ω12, Γ2Ω21 = Ω21).(48)

For the rest of the proof, let us assume that F ′ is well defined, and
G′F ′ ∼= 1. Then by (46) and (48) it remains to show that

F ′G′ ∼= 1 ⇔ (Ω12 = Γ12, Ω21 = Γ21).(49)

Suppose first that F ′G′ ∼= 1. Let Ω1 be mapped onto the order Ω
′
1 by the

natural map KΩ1 ։ KΩ1/RadKΩ1. Then Ω21 is a right Ω
′
1-lattice since

Ω21 ∈ Γ2-lat and KΓ2 is semisimple. Hence, Λ has a generalized over-order

Λ′ :=

(
Ω′1 Γ12
Ω21 Γ2

)

such that each Λ′-lattice E =
(
E1
E2

)
is a direct summand of FGE ⊕ Γ s for

some s ∈ N. Thus if E1 has no direct summand in common with Γ1, then
E is a direct summand of

(
E1

Ω21⊙Ω′
1

E1

)
. The kernel of Λ′ → Γ is of the form

(
N1 0
N21 0

)
, and by (46), we have KN21 = KΩ21N1. Since KΩ

′
1 is semisimple,

the ideal KN1 is idempotent, and N1 has no Γ1-lattice 6= 0 as a direct
summand. Hence, Γ12N21 ⊆ KΓ12Ω21N1 ⊆ KN1 and N1Γ12 = 0 implies
Γ12N21 = 0. Therefore,

(
0
N21

)
is a Λ′-sublattice of

(
N1
N21

)
, and by the above,(

N1
N21

)
/
(
0
N21

)
must be a direct summand of

(
N1
Ω21N1

)
. Consequently, Ω21N1 = 0

and thus N21 = 0, i.e. Ω21 ⊆ Γ21. In order to prove Ω21 = Γ21, it now
suffices to show Ω21F1 = Γ21F1 for every Ω

′
1/N1-lattice F1. Since ΓP1 and

ΓP2 have no common direct summand, we have Γ12Γ21 ⊆ RadΓ1, and there
exists an integer i ∈ N with (Γ12Γ21)

iF1 ⊆ F1. We choose i minimal. By
(46), we may assume that F1 has no Γ1-lattice 6= 0 as a direct summand,
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and thus i > 0. Since F ′1 := F1 + (Γ12Γ21)
i−1F1 satisfies (Γ12Γ21)

i−1F ′1 ⊆
F ′1, assume Ω21F

′
1 = Γ21F

′
1 by induction. Then Γ12Γ21F1 = Γ12Γ21F

′
1 =

Γ12Ω21F
′
1 ⊆ F1, and thus E :=

(
F1
Γ21F1

)
is a Λ′-lattice. Hence, E is a direct

summand of
(
F1
Ω21F1

)
, and our claim Ω21F1 = Γ21F1 is proved. By symmetry,

the implication “⇒” in (49) follows.
Conversely, suppose Ω12 = Γ12, Ω21 = Γ21, and let E =

(
E1
E2

)
be a

Λ-lattice. Then ΓE has a decomposition ΓE = H1 ⊕ H2 with epimorphic
images Hi of ΓPi. Moreover, FGE = (P1 ⊙Ω1 E1) ⊕ (P2 ⊙Ω2 E2), and we
have an exact sequence

JE →֒ FGE
c
։ E,(50)

where c is defined by the natural homomorphisms Pi⊗ΩiHomΛ(Pi, E)→ E,
and J denotes the following ideal of Λ:

J :=

(
Γ12Γ21 Γ12
Γ21 Γ21Γ12

)
⊳

(
Ω1 Γ12
Γ21 Ω2

)
= Λ.

Clearly, the map r : P1 ⊙Ω1 E1 → E → ΓE ։ H2 has its image in JH2.
Hence, r yields a retraction of the embedding JH2 →֒ P1 ⊙Ω1 E1. Similarly,
JH1 →֒ P2⊙Ω2E2 has a retraction. Therefore, the exact sequence (50) splits.
Thus F ′G′ ∼= 1, and our proof of (49) is complete. Finally, we infer that (45)
is a hereditary splitting of Λ.

There is a particular case of a complete splitting of R-orders which has
some analogy with one-point extensions of algebras ([13], §2.5). Let Λ be
an R-order in A = A0 × A1 with A0 simple, and I a tame irreducible
(see §1) Λ-lattice with S := KI ∈ A0-mod, ∆ := (EndΛI)

op, and Π :=
Rad∆. Suppose IΠI∗ ⊆ Λ, where I∗ = HomR(I ⊗∆ ∆,R) = Hom∆(I,∆

∗)
is identified with Hom∆(I,∆). Then we call

Λ′ :=

(
∆ I∗

IΠ Λ

)
(51)

the trivial extension of Λ with respect to I. If A0 = Mn(D) with D :=
(EndAS)

op, then (51) is an order in Mn+1(D) × A1. Clearly, the columns
in (51) yield a complete splitting with respect to any hereditary generalized
over-order of the form

Γ ′ :=

(
∆ I∗

IΠ Γ

)
,

where Γ is a hereditary generalized over-order of Λ such that I is a Γ -lattice.
Therefore, Theorem 3 yields an equivalence

Λ-lat/[Γ ]
∼
→ Λ′-lat/[Γ ′].(52)

Other instances of complete splittings are given in §7, Example 5.
For the remainder of this section, let P and I be Λ-lattices in a simple A-

module S. Assume that ∆ := (EndΛI)
op = (EndΛP )

op is the maximal order
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in D := (EndAS)
op with Π := Rad∆. We call a pre-hereditary monomor-

phism u : P →֒ I splitting if the inclusion Hom∆(I, PΠ) →֒ End∆(I) lifts
along the natural ring homomorphism Λ → End∆(I) to a (Λ,Λ)-bimodule
homomorphism Hom∆(I, PΠ)→ Λ. Clearly, this implies that A = A0 ×A1
with A0 := EndD(S). If, as above, I

∗ is identified with Hom∆(I,∆), the
map Hom∆(I, PΠ)→ Λ gives an inclusion

PΠI∗ ⊆ Λ.(53)

Our splitting theorem will be a consequence of

Proposition 18. Let u : P →֒ I be splitting pre-hereditary. Then the
maximal order Γ0 in M2(A0) with

(
I
P

)
as indecomposable representation is

a generalized over-order of ∂uΛ with RadΓ0 ⊆ ∂uΛ.

Note. For A = A0, the proposition implies that ∂uΛ is subhereditary:

RadΓ0 ⊆ ∂uΛ ⊆ Γ0.(54)

However, this is no longer true for δuΛ (see §7, Example 6).

Proof of Proposition 18. Explicitly, we have

Γ0 =

(
II∗ IP ∗

PI∗ PP ∗

)
⊇ RadΓ0 =

(
IΠI∗ IΠP ∗

PΠI∗ PΠP ∗

)
.

By virtue of (53), the elements of ΠI∗ can be regarded as homomorphisms
P → Λ. Therefore, P− = P is mapped into Λ−, whence PΠI

∗ ⊆ Λ−.
Moreover, IΠI∗ ⊆ Λ+, and dually, PΠP ∗ ⊆ Λ−. Hence, IΠP ∗ ⊆ Λ−+

and thus RadΓ0 ⊆ ∂uΛ. Finally, since
(
I
P

)
is a ∂uΛ-lattice, the natural

epimorphism M2(A) ։ M2(A0) maps ∂uΛ into the maximal order Γ0.

Before we proceed further, let us analyse the splitting condition (53) in
the case of a tiled order Λ. Define

SΛ := {E ∈ Λ-lat | KE = S}.(55)

Proposition 19. Let Λ = (Πeij ) be a tiled order in A = Mn(D), and
u : P →֒ I a pre-hereditary monomorphism between Λ-lattices P, I ∈ SΛ.

Then u is splitting if and only if E ⊆ I or E ⊇ P holds for each E ∈ SΛ.

Proof. The splitting condition (53) is tantamount to PΠI∗E ⊆ E for
each E ∈ SΛ. Furthermore, there is no restriction if E is subject to the
condition I∗E = ∆, i.e. E ⊆ I and E 6⊆ IΠ. For these E, (53) reduces to
PΠ ⊆ E, which yields the desired result.

Remark. For a tiled order Λ and a splitting pre-hereditary monomor-
phism u : P →֒ I, it can be shown that apart from indecomposables

(
H
L

)

with P ⊆ L ⊆ H ⊆ I, each indecomposable ∂uΛ-lattice E
′ can be obtained

by ∂u, i.e. there exists an indecomposable Λ-lattice E with ∂uE = E
′⊕
(
I
P

)s
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for some s ∈ N. This fact is no longer true if Λ is not tiled, as Example 7 in
§7 will show.

Now we shall derive our general splitting theorem:

Theorem 4. For an R-order Λ in A = A0 × A1 × A2 with A0 simple,
let u : P →֒ I be splitting pre-hereditary and H a tame irreducible Λ-lattice
with ∆ := (EndΛH)

op, Π := Rad∆, and HΠ ⊆ P ⊆ I ⊆ H. Assume
that S := KH is the simple A0-module, and Rad(End∆H) ⊆ Λ. Moreover ,
suppose ΛΛ has a decomposition Λ = P0 ⊕ P1 ⊕ P2 with Pi ⊆ A0 + Ai, and
for U0 := I/P , U1 := H/I, and U2 := P/HΠ, suppose HomΛ(Pi, Uj) = 0
whenever i 6= j. Under these assumptions, if pi : A ։ A0 × Ai denotes
the natural projection for i ∈ {1, 2}, then Λ1 := p1(Λ) + Hom∆(H,P ) and
Λ2 := p2(Λ) + Hom∆(I,HΠ) constitute a hereditary splitting of Λ.

Remark. If A = A0, then Rad(End∆H) ⊆ Λ implies that Λ is sub-
hereditary. In this case, the theorem can be interpreted as a statement on
vector space categories, and then it coincides with D. Simson’s splitting
theorem ([24], §17.53). In fact, Simson [24] defines a splitting decomposition
KF = K

′′
F + LF + K

′
F of a vector space category KF by three conditions

(i)–(iii) related to the assumptions of Theorem 4 as follows: His first condi-
tion (i) that LF is of chain type corresponds to the property that u : P →֒ I
is pre-hereditary. The second one (ii) says that there are no morphisms from
K
′
F to LF or K

′′
F , and none from LF to K

′′
F . This is equivalent to our disjoint-

ness assumption HomΛ(Pi, Uj) = 0. Thirdly, Simson’s dimension property
(iii) is tantamount to our splitting condition (53).

Proof of Theorem 4. Let Ω be the hereditary order in A0 with H, I, P
as indecomposables, and Ω0 the hereditary suborder which has, in addi-
tion, all the Λ-lattices between I and P as indecomposables. The splitting
condition (53) and the assumption Rad(End∆H) ⊆ Λ imply Hom∆(H,P ) ·
Hom∆(I,HΠ) ⊆ Hom∆(I, PΠ) ⊆ Λ and Hom∆(I,HΠ) · Hom∆(H,P ) ⊆
Hom∆(H,HΠ) ⊆ Λ. Hence, if p0 : A ։ A0 denotes the natural projection,
then

Λ1Λ2 = Λ2Λ1 = p0(Λ) + Hom∆(H,P ) + Hom∆(I,HΠ) ⊆ Ω0.

Now ΩP1 = H
k, ΩP2 = P

l, and ΩP0 = I
m for some k, l,m ∈ N. Then

Λ2P1 = H
k, Λ1P2 = P

l, and Λ1P0 = P0 + P
m ∈ Ω0-lat. Hence

Λ1Λ2 = Λ2Λ1 = Ω0.(56)

If P = HΠ, then Λ1 = p1(Λ) = Λ. Similarly, I = H implies Λ2 = Λ.
Therefore, we may exclude these trivial cases. Then H+ = H = H−, and
the maximal order Θ := End∆(H) is a generalized over-order of Λ

+ and
Λ−. By Lemma 3, we infer (Λ+− + Λ−+)H ⊆ H, and thus M2(Θ) is a
generalized over-order of ∂uΛ. Moreover, RadΘ ⊆ Λ and (RadΘ)I ⊆ HΠ ⊆
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P implies RadΘ ⊆ Λ− and thus RadM2(Θ) ⊆ ∂uΛ. By Proposition 18, the
maximal order Γ0 in M2(A0) with the indecomposable representation

(
I
P

)

is a generalized over-order of ∂uΛ with RadΓ0 ⊆ ∂uΛ. Consequently, the
inclusions

(
HΠ
HΠ

)
⊆
(
I
P

)
⊆
(
H
H

)
imply that

Γ := M2(Θ) ∩ Γ0

is a hereditary order in M2(A0), and a generalized over-order of ∂uΛ with

RadΓ = RadM2(Θ) + RadΓ0 ⊆ ∂uΛ.(57)

Now we have a decomposition of ∂uΛ-lattices

∂uΛ =

(
P+0
(P0)−

)
⊕

(
P+1
P1

)
⊕

(
P+2
P2

)
⊕

(
(Λ+− + Λ−+)P0

Λ−P0

)
⊕

(
P+1
P1

)
⊕

(
P+2
P2

)

= Q1 ⊕Q2

with

Q1 :=

(
(Λ+− + Λ−+)P0

Λ−P0

)
⊕

(
P+1
P1

)2
, Q2 :=

(
P+0
(P0)−

)
⊕

(
P+2
P2

)2

such that

ΓQ1 =

(
H

H

)n1
, ΓQ2 =

(
I

P

)n2

for suitable integers n1, n2. In order to show by Theorem 3 that ∂uΛ =
Q1 ⊕Q2 is a complete splitting with respect to the hereditary order Γ , we
have to verify for {i, j} = {1, 2} that the natural homomorphism

Hom∂uΛ(Qi, Qj)→ HomΓ (ΓQi, ΓQj)(58)

is an isomorphism. Note that HomΓ (ΓQi, ΓQj) = Hom∂uΛ(Qi, ΓQj). Then
the injectivity of (58) follows since Qi ⊆ M2(A0) ⊕M2(Ai); the surjectiv-
ity follows by (57) since each homomorphism Qi → ΓQj has its image in
(RadΓ )Qj ⊆ Qj . Hence Theorem 3 applies, and by (45), there is a pair of
splitting generalized over-orders Λ′1, Λ

′
2 of ∂uΛ. If p

′
i : M2(A) ։ M2(A0×Ai)

denotes the natural projection for i ∈ {1, 2}, then

Λ′i = p
′
i(∂uΛ) + Ji(59)

with

J1 =

{
a ∈ Γ

∣∣∣∣ a
(
H

H

)
⊆

(
I

P

)}
, J2 =

{
a ∈ Γ

∣∣∣∣ a
(
I

P

)
⊆

(
HΠ

HΠ

)}
.

Now for each indecomposable Λ-lattice E, we have ∂uE = E
′ ⊕E′′ with E′

indecomposable and E′′ ∈ Γ -lat. Therefore, our proof will be completed by
the equivalence

ΛiE = E ⇔ Λ
′
i(∂uE) = ∂uE
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for i ∈ {1, 2} and E ∈ Λ-lat. Since E ∈ pi(Λ)-lat ⇔ ∂uE ∈ p
′
i(∂uΛ)-lat, it

remains to show that for each Λ-lattice E, the equivalences

PH∗ · E ⊆ E ⇔ J1(∂uE) ⊆ ∂uE,

HΠI∗ · E ⊆ E ⇔ J2(∂uE) ⊆ ∂uE
(60)

are satisfied. Since ΘE = Θ(E+) and H∗ ∈ Θop-lat, the inclusion PH∗E ⊆
E implies PH∗E+ ⊆ E and thus PH∗E+ = P−H

∗E+ ⊆ E−. By duality,
we also have HΠI∗E ⊆ E ⇔ HΠI∗E+ ⊆ E−. Therefore, (60) follows by
the implication PH∗E+ ⊆ E− ⇒ PH

∗E+ ⊆ E ⇒ IH∗E+ ⊆ E+ and its
dual HΠI∗E+ ⊆ E− ⇒ HΠP

∗E− ⊆ E−.

6. An extended derivative. In [19], Proposition 14, we characterized
hereditary monomorphisms u : P →֒ I between tame irreducible Λ-lattices
P, I. If the projectivity condition (P) is dropped, this gives a characteri-
zation of pre-hereditary u. In particular, we have P 6∼= I for u : P →֒ I
pre-hereditary. In the present section, we shall prove that the categorial
equivalence in Theorem 1 extends to a case (Proposition 20 below) where
the assumption P 6∼= I does not hold. The weak minimality condition (M◦)

is satisfied, and we get an equivalence ∂̃u : Λ-lat/[Hu]
∼
→ ∂uΛ-lat/

[(
I
P

)]
,

where the quotient category ∂uΛ-lat/
[(
I
P

)]
coincides with a category Λ′-lat

for some order Λ′ in a factor algebra of M2(A) (see Examples 1 and 2 of §7).
Moreover, Hu consists of the Λ-lattices belonging to some rational compo-
nent of A. There is a close relationship between the functors ∂̃u in Theorem 1
and Proposition 20 on the one hand, and the two cases occurring in the proof
of the rejection lemma ([19], Proposition 7) on the other hand.

Proposition 20. Let Λ be an R-order in A = A0 × A1 with A0 simple
such that the natural projection A ։ A0 maps Λ onto the hereditary order
Λ0. Let S denote the simple A0-module, and ∆ the unique maximal order
in D := (EndAS)

op with Π := Rad∆. For an indecomposable Λ0-lattice I
which is neither projective nor injective as a Λ-lattice, with P := IΠ, sup-
pose Hom∆(I, P ) ⊆ Λ. Then the u-differentiation (8) induces an equivalence

∂̃u : Λ-lat/[Λ0]
∼
→

(
Λ1 Λ1
N1 Λ1

)
-lat,(61)

where Λ1 := (Λ+A0) ∩A1 and N1 := Λ ∩A1.

Note. Equivalently, the assumption of the theorem says that Λ is a
subdirect product Λ ⊆ Λ0 × Λ1 with Λ0 hereditary and KΛ0 simple, and
that Λ0 has a maximal over-order Θ such that RadΘ = {a ∈ Λ | Θa ⊆ Λ} =
{a ∈ Λ | aΘ ⊆ Λ}.
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Proof of Proposition 20. There is a natural epimorphism of R-orders

Γ :=

(
∆ I∗

P Λ

)
։ Γ0 :=

(
∆ I∗

P Λ0

)
,

where Γ is a trivial extension of Λ. Hence (52) gives an equivalence

F ′ : Λ-lat/[Λ0]
∼
→ Γ -lat/[Γ0]

induced by the functor F : Λ-lat → Γ -lat with F(E) =
(
I∗⊙ΛE
E

)
. By [19],

Proposition 14, we have a pre-hereditary monomorphism v :
(
∆
P

)
→֒
(
∆
I

)

in Γ -lat with
(
∆
P

)
projective and

(
∆
I

)
injective. Since

(
I∗

Λ0

)
= F(Λ0), a Γ -

lattice
(
H
E

)
is of the form F(E) if and only if it does not have

(
∆
P

)
as a

direct summand. For these Γ -lattices, HomΓ
((
H
E

)
,
(
∆
I

))
= HomΛ(E, I), and

therefore (
H

E

)

−

=

(
H

E−

)
.

Dually, the same argument holds for
(
H
E

)∗
= (H∗ E∗), and thus

(
H

E

)+
=

(
H

E+

)

if
(
H
E

)
does not have

(
∆
I

)
as a direct summand. Since ΛI is neither projective

nor injective, we obtain

Γ+ =

(
∆ I∗

I Λ+

)
=

(
∆ I∗

I II∗

)
× Λ1,

Γ− =

(
∆ P ∗

P Λ−

)
=

(
∆ P ∗

P PP ∗

)
× Λ1,

Γ− =

(
∆ I∗

P Λ−

)
=

(
∆ I∗

P PI∗

)
×N1,

Γ+− = Γ−+ =

(
∆ P ∗

I IP ∗

)
× Λ1.

Consequently, we have

∂vΓ = Γ
′
0 ×

(
Λ1 Λ1
N1 Λ1

)
,

where Γ ′0 is the maximal order in M2(KΓ0) with the indecomposable repre-
sentation 



∆
I
∆
P


 .
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Hence, Theorem 1 gives an equivalence

∂̃v : Γ -lat/[Γ0]
∼
→

(
Λ1 Λ1
N1 Λ1

)
-lat,

and the composition ∂̃v ◦ F ′ coincides with ∂̃u. In fact, the preceding calcu-
lation in particular yields

∂uΛ =

(
II∗ IP ∗

PI∗ PP ∗

)
×

(
Λ1 Λ1
N1 Λ1

)
,(62)

where the left-hand factor is the maximal order with
(
I
P

)
as indecomposable

representation.

Remarks. 1. If ∂uΛ is replaced by δuΛ, then the first factor in (62) be-
comes a hereditary order with an additional indecomposable representation(
P
P

)
. This gives another point for our preference for ∂uΛ.
2. If ΛI is projective or injective, then ∂uΛ is no longer defined. In this

case, however, Λ is a trivial extension. Therefore, the equivalence (61) of the
proposition remains valid, although it is only partially induced by some ∂u.
3. Recently, O. Iyama [5] obtained a similar result where Λ0 is not as-

sumed to be hereditary. The right-hand order
(
Λ1 Λ1
N1 Λ1

)
in (61) is then replaced

by an order which is defined in terms of the Auslander–Reiten quiver of Λ.

7. Examples. In the following examples, let p denote the radical of
R, and k := R/p. For any pair of R-orders Λ0, Λ1 with Λ0/RadΛ0 ∼=
Λ1/RadΛ1 ∼= k× . . .× k, we define by the pullback

Λ0 k× . . .× k

Λ0 ⋄ Λ1 Λ1

// //
OO OO

// //

OO OO

an R-order Λ0⋄Λ1 inKΛ0×KΛ1 which will be called the dyad (cf. [10]) of Λ0
and Λ1. Clearly, Λ0⋄Λ1 has the same residue algebra k×. . .×k as Λ0 and Λ1,
and the operation ⋄ is associative and commutative. For Λi-lattices Ei with
E0/RadE0 ∼= E1/RadE1, a similar pullback yields a Λ0 ⋄ Λ1-lattice which
we denote by E0 ⋄E1 whenever it is unique up to isomorphism. Sometimes
it will be convenient to write Λ0 Λ1 instead of Λ0 ⋄ Λ1.

Example 1. In [19], Example 1, we considered the R-order Λ := Λ0 ⋄Λ1
in M2(K) with

Λ0 :=

(
R p

R R

)
, Λ1 :=

(
R p

p R

)
.

Λ has five irreducible representations, namely the Λ0-lattices H1 :=
(
R
R

)
,

H2 :=
(

p

R

)
, and the Λ1-lattices L1 :=

(
R
p

)
, L2 :=

(
p

R

)
, L3 :=

(
R
R

)
. The
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remaining indecomposable Λ-lattices are the two projectives P1 := H1 ⋄ L1
and P2 := H2 ⋄ L2, the corresponding injectives I1 := H1 ⋄ L3 and I2 :=
H2 ⋄ L3, and an additional Λ-lattice L := Λ0 ⋄ L3.

In [19] we already considered the hereditary monomorphism P1 →֒ I1.
In order to illustrate Proposition 20, we choose u : pH1 →֒ H1. Then for
each indecomposable Λ-lattice E, there exists an integer r with ∂uE ∼=(
H1
pH1

)r
⊕E′, where E′ is either zero or an indecomposable representation of

Λ′ :=

(
Λ1 Λ1
RadΛ1 Λ1

)
,

a tiled order of weight two [3]. The 8 indecomposable Λ′-lattices are therefore
all irreducible. The map E 7→ E′ is given by the table

E H1 H2 L1 L2 L3 P1 P2 I1 I2 L

R p R R p R R R

p R R p R R R R
E′ 0 0

R p R p p p R p

p R R p p R p p

Example 2. Next let us consider the local R-order Λ := R ⋄ Σm in
A = K ×K ×K, where m ≥ 1, and Σm is given by the pullback

R R/pm

Σm R

// //
OO OO

// //

OO OO

The maximal order Λ0 = R in the first simple component A0 = K of A is
a generalized over-order of Λ with RadΛ0 ⊆ Λ. Hence Proposition 20 yields
an equivalence Λ-lat/[Λ0]

∼
→ Λ′-lat, where

Λ′ :=

(
Σm Σm
RadΣm Σm

)

is an order of weight two [3]. Hence by [3], Theorem 4.9, the 4m + 3 in-
decomposable Λ′-lattices can be obtained by successive application of the
rejection lemma ([3], 2.9). Therefore, Λ itself has 4(m+1) indecomposables.

Example 3. By [19], Proposition 16, representations of a finite poset
Ω can be regarded as Λ-lattices for a subhereditary tiled order Λ. For such
orders, Theorem 1 becomes equivalent to Zavadskĭı’s algorithm for posets
Ω if and only if (P) is satisfied. Otherwise, we obtain various almost em-
beddings Repk(Ω) → Repk(Ω

′) according to the possible pre-hereditary
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monomorphisms. For example:

Ω : r

r r

r r

1

2 5

4

3

@
@

@ SΛ :
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

�
�

���
�

��

@
@

@@

@
@

@@

@
@

@@

@
@

@@

�
�

���
�

��

�
�

�
�

@
@

@
@

5

4 3 1

2

P

I

pH

H

...

...

Λ =




R R p p p

p R p p p

p p R p p

p R p R R

p p p p R



H =




R

R

R

R

R




Here the poset Ω is realized by the projective Λ-lattices in SΛ (see (55))
between H and pH, and the ≤ relations in Ω are also expressed by the
exponents 0, 1 of p in Λ. The irreducible Λ-lattices, up to isomorphism, are
represented by the half-open interval (pH,H] in SΛ, whereas the closed in-
terval [pH,H] coincides with the (distributive) lattice VΩ of one-dimensional
Ωop-representations.

Now let us consider the pre-hereditary monomorphism

u : P =




R

p

p

R

p



→֒ I =




R

p

R

R

p



.

Then the reduced u-derivative Λ′ = ∂′uΛ together with the interval VΩ′ in
SΛ′ =

⋃
i∈Z

piVΩ′ and the corresponding poset Ω
′ are as follows:

Ω′ :

r r r

r r r

2 1 5

3 4 6

�
�

�

�
�

�

�
�

�

@
@

@
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q

q

q

q

q

q

q

q

q

q

q

q

q
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3

5

6
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�
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�
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�
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�
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�
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@@@
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Λ′ =




R p R R p p

p R R p p p

p p R p p p

p p p R p p

p p R R R R

p p p p p R




Hence, the poset Ω′ should be called the u-derivative of Ω, and Theorem 1
yields a map

indΩ → indΩ′(63)

which is almost injective in the sense that only the Ω-representations cor-
responding to P and I are collapsed. By [17], Satz 4, the indecomposables
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of Ω can be read off from VΩ, namely, there are 16 one-dimensional repre-
sentations, and 5 two-dimensional indecomposables corresponding to the 3
cubes and 2 double cubes in VΩ. For Ω

′ there are 20 one-dimensional and
7 two-dimensional indecomposables, according to the 4 cubes and 3 double
cubes. Hence, apart from the two one-dimensional Ω′-representations as-
sociated with the Λ′-lattices

(
P
P

)
and

(
I
I

)
, there are 5 indecomposable Ω′-

representations not in the image of (63). Two of them are one-dimensional,
and three two-dimensional.

Example 4. In the preceding example, consider instead of u the following
pre-hereditary monomorphism:

v : P =




R p

p p

R R

p R

p R



→֒ I =




R p

R p

R R

R R

p R




between the binomial indecomposables P, I corresponding to the two double
cubes in VΩ = [pH,H]. (Here R R means the dyad R ⋄ R.) In fact, it is
easily verified that v satisfies (C′′). In this example, Λ+ = Λ− = Λ, and we
obtain the v-derivative

Ω′ :
r r

r r

r r r

3 2
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which has 26 one-dimensional, 15 two-dimensional, and 2 three-dimensional
indecomposables. (If Dn denotes a chain of n elements, the 15 two-dimen-
sional indecomposables arise from the six simple cubes D32, six double cubes
D22 × D3, two treble cubes D

2
2 × D4, and one cube isomorphic to D2 × D

2
3.

Moreover, D2×D
2
3 itself yields a pair of three-dimensional indecomposables.)

Since I/P is of length two, the image of (63) consists of |indΩ| − 2 = 19 in-
decomposables. Six of the 24 remaining indecomposable Ω′-representations
correspond to ∂vΛ-lattices in the category H′v of Proposition 15.

Example 5. Generalized Brauer tree orders of “defect p” type [15, 18]
give rise to complete splittings. More generally, we define [18] a cycle hyper-
graph H by a surjective map ε : C ։ E between finite sets, together with a
permutation π on C. The cycles of π are then the vertices of H, the elements
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of E the edges, and ε gives the rule of attachment between vertices and edges.
If every edge has exactly two vertices (with multiplicities counted), thenH is
equivalent to a Brauer graph [15]. Now let Γ be a hereditary R-order corre-
sponding to π, i.e. there is a bijection P : C

∼
→ indΓ onto a complete system

of indecomposable Γ -lattices such that RadPc = Pπc for all c ∈ C. For sim-
plicity, suppose Γ is totally split, i.e. Γ/RadΓ ∼= k × . . . × k = Map(C, k).
Then ε induces an embedding of rings

ε∗ : Map(E, k) →֒ Map(C, k),(64)

and the R-order ΛH associated with H is given by the pullback

Γ Map(C, k)

ΛH Map(E, k)

// //

// //
�/OO ε∗�/OO

Hence ΛH is a Bäckström order, i.e. RadΛH = RadΓ , and the embedding
(64) shows that there is a one-to-one correspondence between the indecom-
posable projective ΛH-lattices and the edges of H. In particular, ΛH is local
if and only if H has only one edge. Hence, every ΛH allows a complete split-
ting into R-orders ΛH′ and ΛH′′ with cycle hypergraphs H

′ and H ′′ such
that ΛH′ is local.

Example 6. Consider the following R-order Λ with a splitting pre-
hereditary monomorphism u:

Λ =



R p2 p2

p
rrrrrrrrr
R p

p p R


, u : P =




p

R

R


 →֒ I =



R

R

R


,

where the dyad R ⋄R is again indicated by a connecting line. Then

Λ+ =



R p p

p
rrrrrrrrr
R p

p p R


, Λ− =



R p2 p2

R
rrrrrrrrr
R p

R p R




and

pIP ∗ =



R p p

R p p

R p p


 6⊆



R p p

R
rrrrrrrrr
R p

R p R


 = Λ+Λ−

shows that Proposition 18 is not valid for δuΛ instead of ∂uΛ.

Example 7. The order

Λ =

(
R R R R

p×p R R

)
⊆M2(K)×M2(K)
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has 4 irreducibles, namely P :=
(
R
p

)
and I :=

(
R
R

)
in the first rational compo-

nent, and the corresponding irreducibles P ′ and I ′ in the second component.
Moreover, there are 3 binomial indecomposables

P1 :=

(
R R

p×p

)
, I2 :=

(
R×R

R R

)
, B :=

(
R R

R R

)
,

where the latter is bijective. The splitting pre-hereditary monomorphism
u : P →֒ I yields Λ+ = Λ and

Λ− =

(
R R R×R

p×p R×R

)
= Λ−+ = Λ+−, Λ− =

(
R R R R

p×p p×p

)
.

Hence, the reduced u-derivative is

∂′uΛ =



R R p×p R×R

R R R R R×R

p×p p×p R×R


,

a twofold trivial extension of the order
(
R R p×p

R R R R

)
∼= Λ. Therefore, counting

indecomposables shows that apart from
(
I
I

)
and

(
P
P

)
, there must be one

more indecomposable ∂uΛ-lattice which is not obtained by the differentiation
functor. In fact, this ∂uΛ-representation is given by the ∂

′
uΛ-lattice



R R

R×R

p×p


.

(By the remark following Proposition 19, such ∂uΛ-lattices are not possible
if Λ is tiled.)

Example 8. Finally, let us illustrate Theorem 4 by a simple example.
To this end, let D be an unramified quadratic extension of K with maximal
order ∆ and Π := Rad∆. With the R-order Ω := R+Π we form the dyad
Ω ⋄R and consider the R-order

Λ :=



R Ω ΠΠ

Π ∆Π

∆Π Ω R




in K ×M3(D)×K. By [19], Proposition 14,

u : P =



Π

Π

∆


 →֒ I =



Π

∆

∆



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is pre-hereditary, and u satisfies the splitting condition (53). For the maximal
order Θ := M3(∆), the Θ-lattice H := ΘI satisfies HΠ ⊆ P ⊆ I ⊆ H and
RadΘ ⊆ Λ. Moreover, there is a decomposition Λ = P1 ⊕ P0 ⊕ P2 with

P1 :=



R Ω

Π

∆


, P0 :=



Π

∆

Π


, P2 :=



Π

Π

Ω R




satisfying the assumption of Theorem 4. Hence, Λ has a pair of splitting
over-orders

Λ1 =



R Ω ΠΠ

Π ∆Π

∆∆∆


, Λ2 =



∆ΠΠ

∆∆Π

∆Π Ω R




with

Λ1Λ2 = Λ2Λ1 =



∆ΠΠ

∆∆Π

∆∆∆


.

Furthermore, Λ1 and Λ2 are trivial extensions of the order

Ξ :=

(
∆Π

Π Ω R

)

in M2(D) × K. By Proposition 20, the indecomposable Ξ-lattices except
R can be obtained from the indecomposables of an order in M4(D) Morita
equivalent to the order

Ξ0 :=



Ω Π Ω

Π ∆Π

ΠΠ Ω




which corresponds to a Schurian vector space category of type F′′4 listed in
[7]. The 19 indecomposable Ξ0-lattices are given (as representations of the
corresponding k-structure) in [2], §3. Therefore, Λ1 and Λ2 have 21 indecom-
posables each, and consequently, there are 2 · 21 − 3 = 39 indecomposable
Λ-lattices. Alternatively, a twofold application of Proposition 20 to Λ yields
an order Morita equivalent to a subhereditary order Λ′ in M5(D), and Sim-
son’s splitting theorem applies to Λ′.
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