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Abstract. We study the geometric structure of a Gauduchon manifold of constant
curvature. We give a necessary and sufficient condition for a Gauduchon manifold to be a
Gauduchon manifold of constant curvature, and we classify the Gauduchon manifolds of
constant curvature. Next, we investigate Weyl submanifolds of such manifolds.

1. Introduction. In this paper we assume that all manifolds are con-
nected and smooth and have dimension n ≥ 3. Let M be a manifold with a
conformal structure [g] and a torsion-free affine connection D. A manifold
(M, [g], D) is called a Weyl manifold if Dg = ω⊗ g, for a 1-form ω. A Weyl
manifold M is said to be Einstein–Weyl if the symmetric part of the Ricci
curvature of D is proportional to the metric g at each point of M . The
Einstein–Weyl equation is conformally invariant. It is known that there is a
unique metric g, up to a constant, in the conformal structure of a compact
Weyl manifold with respect to which the corresponding 1-form ω is co-closed.
We call g the Gauduchon metric. Tod showed that if g is the Gauduchon
metric of a compact Einstein–Weyl manifold, then ω♯ is a Killing vector field
with respect to g (cf. [16]). A manifold (M, g,D) with a Gauduchon metric
g is called a Gauduchon manifold . Many examples of and general results
on Einstein–Weyl manifolds have been obtained (cf. [4], [6], [10]–[13], [16]).
In particular, Itoh [6] investigated Einstein–Weyl geometry over compact
manifolds.
It is known thatM is a manifold of constant curvature if and only ifM is

a Weyl conformally flat Einstein manifold. Let S(g) =
T
M
sg dVg be the total

scalar curvature of a compact Riemannian manifold (Mn, g), where sg and
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dVg denote the scalar curvature and the volume element of g, respectively.
For a compact Riemannian manifold (Mn, g) of volume 1, (Mn, g) is Einstein

if and only if g is a critical point of S/vol(n−2)/n.

Now, we consider a Gauduchon manifold (Mn, g,D) with dimMn = n.
As shown in Section 2, (Mn, g,D) is a Gauduchon manifold of constant cur-
vature if and only if it is a Weyl conformally flat Einstein–Weyl manifold
and the scalar curvature of g is constant. This last condition is equivalent
to the Gauduchon metric g being a critical point of S restricted to the set
Conf0(g) of metrics pointwise conformal to g and having the same total vol-
ume. Moreover, from a theorem of Katagiri [8] and the three-dimensional
classification of Tod [16], we know that (Mn, g,D) (n ≥ 3) is a Gaudu-
chon manifold of constant curvature if and only if it is a Weyl confor-
mally flat Einstein–Weyl manifold. Next, we classify the Gauduchon man-
ifolds of constant curvature k with Killing dual 1-form ω. If k > 0 and
n ≥ 4, then ω = 0 and (Mn, g) is an elliptic space form. If k = 0 and
ω 6= 0, then ∇ω = 0, the first Betti number b1(Mn) is 1 and the univer-
sal covering manifold of (Mn, g) is isometric to the Riemannian product
(Sn−1, h)×R

1. If k < 0, then ω = 0 and (Mn, g) is a hyperbolic space form.
From these, we obtain the following result: Let (Mn, [g], D) be a compact
Einstein–Weyl manifold which is Weyl conformally flat for every g ∈ [g].
If n ≥ 4 and ω 6= 0 for every g ∈ [g], then (Mn, [g], D) is a Weyl flat
manifold.

On the other hand, Pedersen, Poon and Swann [12] studied Weyl sub-
manifolds of Weyl manifolds and gave some examples.

The Hopf manifold Hn is a locally conformal Kaehler manifold of di-
mension 2n whose Lee form ω ( 6= 0) is parallel and whose Weyl curvature
is zero. The dual vector field ω♯ of the Lee form ω is Killing. In [2] and [3],
Dragomir investigated submanifolds of Hn.

In Section 3, we study compact Weyl totally umbilical submanifolds
(Mn, g,D) of a Gauduchon manifold (Mm, g,D) of constant curvature k.

In Section 4, we study Weyl submanifolds (Mn, g,D) of a Gauduchon
flat manifold (Mm, g,D) with Killing dual 1-form ω. Let (Mn, g,D) be a
compact Weyl totally umbilical submanifold of (Mm, g,D) which is tangent
to the vector field ω♯ and ω 6= 0. ThenMn is a totally geodesic submanifold
with Einstein–Weyl structure, the first Betti number b1(M

n) is 1 and the
universal covering manifold of (Mn, g) is isometric to the Riemannian prod-
uct (Sn−1, h) × R1. If (Mn, g,D) is a Weyl hypersurface of (Mn+1, g,D)
which is orthogonal to the vector field ω♯, then Mn is a Weyl totally umbil-
ical and totally geodesic submanifold, and (Mn, g) is an elliptic space form.

Example 1. (I) S1×Sn+1 (n ≥ 1) and Hn admit Gauduchon flat struc-
tures.
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(II) S1 × Sn (n ≥ 2) is a totally geodesic submanifold of S1 × Sn+1

which is tangent to the dual vector field ω♯ of ω on S1 × Sn+1 ([12]).

(III) Sn+1 is a totally geodesic and Weyl totally umbilical submanifold
of S1 ×Sn+1 which is orthogonal to the vector field ω♯ on S1 ×Sn+1 ([12]).

Acknowledgements. The author would like to thank the referee for
his kind advice and useful comments. The author also expresses his sincere
thanks to Professor K. Mikami for his valuable suggestions.

2. Gauduchon manifolds. Let (Mn, [g], D) be a Weyl manifold with
Dg = ω ⊗ g of dimension n ≥ 3. We define a vector field B by g(X,B) =
ω(X). Then

(1) DXY = ∇XY −
1
2ω(X)Y −

1
2ω(Y )X +

1
2g(X,Y )B,

where ∇ denotes the Levi-Civita connection of g.

The curvature tensor R of ∇ is defined by R(X,Y )Z = [∇X ,∇Y ]Z −
∇[X,Y ]Z. Let R

D be the curvature tensor of D. Then

(2) RD(X,Y )Z

= R(X,Y )Z − 12
{[
(∇Xω)Z +

1
2ω(X)ω(Z)

]
Y

−
[
(∇Y ω)Z +

1
2ω(Y )ω(Z)

]
X + ((∇Xω)Y )Z − ((∇Y ω)X)Z

− g(Y, Z)
(
∇XB +

1
2ω(X)B

)
+ g(X,Z)

(
∇YB +

1
2ω(Y )B

)}

− 14 |ω|
2(g(Y, Z)X − g(X,Z)Y ),

where X, Y and Z are any vector fields on Mn (cf. [10]).

For two 2-tensors h and g the 4-tensor h©∧ g is given by

(h©∧ g)(V, Z,X, Y ) = h(V,X)g(Z, Y ) + h(Z, Y )g(V,X)(3)

− h(V, Y )g(Z,X)− h(Z,X)g(V, Y ).

For the Riemannian manifold (Mn, g), we have the decomposition into
irreducible components

(4) R =W +
1

n− 2

(
Ric−

sg
n
g

)
©∧ g +

sg
2n(n− 1)

g©∧ g,

where Ric is the Ricci tensor, sg is the scalar curvature of ∇ and W is
the Weyl conformal curvature. There is no Weyl component W when
n = 3.

The manifold (Mn, g) is called Weyl conformally flat if W = 0.

For the Weyl manifold (Mn, [g], D), we have the decomposition into ir-
reducible components
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RD =W +

[
1

n− 2
Ric0 +

1

2
S0(∇ω) +

1

4
ω ⊗0 ω

]
©∧ g(5)

+

[
1

2n(n− 1)
sg −

n− 2

8n
|ω|2 −

1

2n
d∗ω

]
g©∧ g

−

(
1

2
(dω©∧ g) + g ⊗ dω

)
,

where S(∇ω)(X,Y ) = 1
2 ((∇Xω)Y + (∇Y ω)X), 2dω(X,Y ) = Xω(Y ) −

Y ω(X)− ω([X,Y ]) and Ric0, S0,⊗0 are trace-free parts (cf. [12]).
We set

(6) E(V, Z,X, Y )

= R(V, Z,X, Y ) + 12 (S(∇ω)©∧ g)(V, Z,X, Y )

+ 14 ((ω ⊗ ω)©∧ g)(V, Z,X, Y )−
1
8 |ω|

2(g©∧ g)(V, Z,X, Y )

and

(7) F (V, Z,X, Y ) = −
(
1
2 (dω©∧ g) + g ⊗ dω

)
(V, Z,X, Y ).

Then, from (2), we obtain

(8) RD(V, Z,X, Y ) = E(V, Z,X, Y ) + F (V, Z,X, Y ),

where RD(V, Z,X, Y ) = g(RD(X,Y )Z, V ).
If RD = 0 we say that the Weyl (resp. Gauduchon) manifold is Weyl

(resp. Gauduchon) flat.
By a simple calculation, we have

Lemma 1. (i) RD(V, Z,X, Y ) +RD(V, Z, Y,X) = 0.
(ii) RD(V, Z,X, Y ) +RD(Z, V,X, Y ) = −2dω(X,Y )g(Z, V ).
(iii) RD(V, Z,X, Y ) +RD(V,X, Y, Z) +RD(V, Y, Z,X) = 0.
(iv) E(V, Z,X, Y ) + E(V, Z, Y,X) = 0.
(v) E(V, Z,X, Y ) + E(Z, V,X, Y ) = 0.
(vi) E(V, Z,X, Y ) + E(V,X, Y, Z) + E(V, Y, Z,X) = 0.

For each plane p in the tangent space Tx(M
n), we have

(9) g(RD(X1, X2)X2, X1) = g(E(X1, X2)X2, X1),

where X1, X2 is an orthonormal basis for p. We set

(10) KDg (p) = g(R
D(X1, X2)X2, X1).

Then KDg (p) is independent of the choice of the orthonormal basis (X1, X2)
of p.
A Gauduchon manifold (Mn, g,D) is called a Gauduchon manifold of

constant curvature k if there is a constant k such that KDg (p) = k for all
planes p in Tx(M

n) and for all points x ∈Mn.
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If (Mn, g,D) is a Gauduchon manifold of constant curvature k, then
g(E(X,Y )Y,X) = k(g(Y, Y )g(X,X)− g(X,Y )g(X,Y )) for all tangent vec-
tors X,Y ∈ Tx(Mn). Thus, from Lemma 1(iv)–(vi) we obtain (cf. [9], [5])

(11) E(V, Z,X, Y ) = k(g(Y, Z)g(X,V )− g(X,Z)g(Y, V )).

Hence we have the following

Lemma 2. Let (Mn, g,D) be a Gauduchon manifold of constant curva-
ture k. Then

RD(V, Z,X, Y ) = k(g(Y, Z)g(X,V )− g(X,Z)g(Y, V ))

−
(
1
2 (dω©∧ g) + g ⊗ dω

)
(V, Z,X, Y ).

Let (Mn, [g], D) be a Weyl manifold and DRic the Ricci tensor of D.
Using (2), we obtain

DRic(X,Y ) = Ric(X,Y ) + 12 (n−1)(∇Xω)Y −
1
2 (∇Y ω)X(12)

+ 14 (n−2)ω(X)ω(Y )+
(
1
2 divB−

1
4 (n−2)|ω|

2
)
g(X,Y ).

The Weyl manifold (Mn, [g], D) is said to have an Einstein–Weyl structure

if there exists a function Λ̃ on Mn such that

(13) DRic(X,Y ) + DRic(Y,X) = Λ̃g(X,Y ).

By using (12), we can rewrite (13) as

(14) Ric(X,Y ) + 14 (n− 2)Dω(X,Y ) = Λg(X,Y ),

where

Dω(X,Y ) = (∇Xω)Y + (∇Y ω)X + ω(X)ω(Y ),

Λ = 12 Λ̃−
1
2

(
divB − 12 (n− 2)|ω|

2
)

(cf. [10], [13]).
We recall the following results.

Lemma 3 ([16]). Let (Mn, [g], D) be an Einstein–Weyl manifold. If the
vector field B dual to ω is a Killing vector field , then the equation (14)
reduces to

(15) Ric(X,Y ) + 14 (n− 2)ω(X)ω(Y ) = Λg(X,Y ).

Lemma 4 ([4], [6]). Let (Mn, g,D) be a compact Einstein–Weyl manifold
with Killing dual 1-form ω. Then

(16) c := sg −
1
4 (n+ 2)|ω|

2

is a constant , called the Gauduchon constant.

Now, we give a necessary and sufficient condition for a Gauduchon man-
ifold to be a Gauduchon manifold of constant curvature.
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Theorem 1. Let (Mn, g,D) be a Gauduchon manifold of dimension
n ≥ 3. Then (Mn, g,D) is a Gauduchon manifold of constant curvature
if and only if it satisfies the following conditions:

(I) (Mn, g,D) is a Weyl conformally flat Einstein–Weyl manifold ;
(II) the scalar curvature sg of the Gauduchon metric g is constant.

Remark 1. (II) of Theorem 1 is equivalent to the Gauduchon metric g
being a critical point of the total scalar curvature S restricted to the set
Conf0(g) of metrics pointwise conformal to g and having the same total
volume (cf. [1], p. 121).

Proof of Theorem 1. Let (Mn, g,D) be a Gauduchon manifold of con-
stant curvature k. From Lemma 2, we obtain

(17) DRic(X,Y ) + DRic(Y,X) = 2k(n− 1)g(X,Y ).

Thus (Mn, g,D) is an Einstein–Weyl manifold. It is easily seen that a
Gauduchon manifold of constant curvature is Weyl conformally flat, that
is, W = 0. Let c be a Gauduchon constant. Since Λ = 12 Λ̃ +

1
4 (n − 2)|ω|

2,
using (15) and (17), we have

Ric(X,Y ) =
(
k(n− 1) + 14 (n− 2)|ω|

2
)
g(X,Y )(18)

− 14 (n− 2)ω(X)ω(Y ).

Thus we get sg = kn(n− 1) +
1
4 (n− 1)(n− 2)|ω|

2. From (16), if n 6= 4, we
have

sg =
n− 1

n− 4

(
− (n+ 2)k +

n− 2

n
c

)
= constant.

Suppose n = 4. Since (Mn, g,D) is a Weyl conformally flat Einstein–Weyl
manifold, by a result of Pedersen and Swann ([14], Cor. 3.2) we obtain ω = 0
or sD = 0, where sD is the scalar curvature of D. From Lemma 2 we obtain
sD = kn(n − 1). If k 6= 0, then ω = 0. Thus RD = R so that (Mn, g) is
a space of constant curvature. If k = 0, from (18), Ric(ω) = 0. Since the
dual of ω is Killing, we have ∇∗∇ω = Ric(ω) (cf. [1], p. 41). We integrate
over Mn the scalar product of ∇∗∇ω with ω to obtain

T
M
|∇ω|2 dVg = 0,

where dVg denotes the volume element with respect to g. This implies that
ω is parallel. Since ∇X |ω|2 = 2g(∇XB,B) = 0, |ω| = constant. Hence
sg =

1
4 (n− 1)(n− 2)|ω|

2 = constant.
Conversely, suppose (I) and (II). From (5), we have

RD(V, Z,X, Y ) = α(g©∧ g)(V, Z,X, Y )

−
(
1
2 (dω©∧ g) + g ⊗ dω

)
(V, Z,X, Y ),

where

α =
1

2n(n− 1)
sg −

n− 2

8n
|ω|2.
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Since the scalar curvature sg is constant and c = sg−
1
4 (n+2)|ω|

2 = constant,
|ω| is constant. Thus α is constant. Therefore (Mn, g,D) is a Gauduchon
manifold of constant curvature 2α.

We set

C(X,Y ) = (∇XQ)Y − (∇YQ)X −
1

2(n− 1)
[(∇Xsg)Y − (∇Y sg)X],

where g(QX,Y ) = Ric(X,Y ). A Riemannian manifold (Mn, g) is called
conformally flat if W = 0 for n ≥ 4 and C = 0 for n = 3.
In [8], Katagiri proved that a compact conformally flat Einstein–Weyl

manifold (Mn, g,D) (n ≥ 3) with Gauduchon metric g has constant scalar
curvature sg.

Let (M3, g,D) be a Gauduchon manifold with Einstein–Weyl structure.
In [16] Tod gave all local forms of Gauduchon metrics in dimension three
together with their corresponding one-forms and a classification. In this clas-
sification, the corresponding one-forms ω have constant length. Thus, from
Lemma 4, the scalar curvature sg of the Gauduchon metric g is constant.
Hence we have the following result.

Corollary 1. Let (Mn, g,D) be a Gauduchon manifold of dimension
n ≥ 3. Then (Mn, g,D) is a Gauduchon manifold of constant curvature if
and only if (Mn, g,D) is a Weyl conformally flat Einstein–Weyl manifold.

Next, we classify Gauduchon manifolds of constant curvature k.

Theorem 2. Let (Mn, g,D) be a Gauduchon manifold of constant cur-
vature k with Killing dual 1-form ω and n ≥ 3.

(I) If k > 0 and n ≥ 4, then ω = 0 and so (Mn, g) is an elliptic space
form.

(II) If k = 0 and moreover
(a) ω = 0, then g is a flat metric,
(b) ω 6= 0, then ∇ω = 0, the first Betti number b1(Mn) is 1 and
the universal covering manifold of (Mn, g) is isometric to the
Riemannian product (Sn−1, h)× R

1.

(III) If k < 0, then ω = 0 and so (Mn, g) is a hyperbolic space form.

Proof. When k > 0 and n ≥ 4, we assume that ω 6= 0. From (II) of
Theorem 1, we have sg = constant. Moreover from (18) for any tangent
vector X orthogonal to B at a point x of Mn,

(19)
Ric(B,B) = k(n− 1)|ω|2, Ric(B,X) = 0,

Ric(X,X) =
(
k(n− 1) + 14 (n− 2)|ω|

2
)
g(X,X).

Thus the Ricci curvature is positive definite. SinceW = 0 and n ≥ 4, (Mn, g)
is conformally flat. Thus, from a theorem of Tani [15], (Mn, g) is a space of
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constant curvature k̃. Let X1 = B/|B|, X2, . . . , Xn be an orthonormal basis

of Tx(M). Since (M
n, g) is a space of constant curvature k̃, Ric(X1, X1) =

. . . = Ric(Xn, Xn) = k̃(n − 1). On the other hand, from (18) we have
Ric(X1, X1) = k(n − 1) and Ric(Xi, Xi) = k(n − 1) +

1
4 (n − 2)|ω|

2 for
i = 2, 3, . . . , n. This is a contradiction. Therefore we get ω = 0. Hence
(Mn, g) is an elliptic space form.

Next we assume that k = 0. If ω = 0, then g is a flat metric. If ω 6= 0,
from (18) for any tangent vector X orthogonal to B at a point x of Mn,

(20)
Ric(B,B) = 0, Ric(B,X) = 0,

Ric(X,X) = 14 (n− 2)|ω|
2g(X,X).

Since the dual of ω is Killing, using∇∗∇ω=Ric(ω), we get
T
M
|∇ω|2 dVg=0.

This implies that ω is parallel and hence harmonic. Since the Ricci curva-
ture is nonnegative, using the Weitzenböck formula, we have b1(M

n) = 1
(cf. [6], [14]).

Since dω = 0, the foliation N defined by ω = 0 is integrable. Let N be
a leaf of N . Let M̃n be the universal covering manifold of (Mn, g). Since

∇B = 0, by the de Rham decomposition theorem, M̃n with the lifted metric
is isometric to the Riemannian product Ñ × R

1, where Ñ is the universal
covering manifold of N . Since Mn is a Gauduchon flat manifold and N
is orthogonal to the vector field B, from Theorem 7 in Section 4, N is
a totally geodesic submanifold with constant positive sectional curvature.
Furthermore, sinceMn is complete and N is totally geodesic, N is complete
with respect to the induced metric. Thus Ñ is isometric to the sphere Sn−1.

Finally, we assume that k < 0. Using ∇∗∇ω = Ric(ω) and Ric(ω) =
k(n− 1)ω, we have

(21)
\
M

|∇ω|2 dVg = k(n− 1)
\
M

|ω|2 dVg.

Thus we obtain ω = 0. By using (6) and (11), we obtain R(V, Z,X, Y ) =
k(g(Y, Z)g(X,V )− g(X,Z)g(Y, V )). Thus (Mn, g) is a manifold of constant
negative sectional curvature k, that is, (Mn, g) is a hyperbolic space form.

Remark 2. (a) The sign of k is related to the sign of c− 14n(n− 4)|ω|
2

in [6].

(b) In Theorem 2, we assume that k > 0 and n = 3 and ω 6= 0. Let
X1 = B/|B|, X2, X3 be an orthonormal basis of Tx(M) and pij be the plane
spanned by Xi and Xj (i 6= j). Using (18), we have Ric(X1, X1) = 2k,
Ric(X2, X2) = 2k +

1
4 |ω|

2 and Ric(X3, X3) = 2k +
1
4 |ω|

2. Thus we obtain
K(p12) = k, K(p23) = k+

1
4 |ω|

2 and K(p13) = k, where K(pij) denotes the
sectional curvature of g determined by the plane pij . Therefore (M, g) is not
a space of constant curvature.
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In the case where k > 0 and n = 3 and ω = 0, (M, g) is a space of
constant curvature.

Theorem 3. Let (Mn, [g], D) be a compact Einstein–Weyl manifold
which is Weyl conformally flat for every g ∈ [g]. If n ≥ 4 and ω 6= 0
for every g ∈ [g], then (Mn, [g], D) is a Weyl flat manifold.

Proof. Let g be a Gauduchon metric. From Corollary 1, (Mn, g,D) is
a Gauduchon manifold of constant curvature k. Since n ≥ 4 and ω 6= 0,
by Theorem 2, we have k = 0 and dω = 0. Thus, from Lemma 2, we get
RD = 0. Since RD = 0 is conformally invariant, (Mn, [g], D) is a Weyl flat
manifold.

Remark 3. From the following Example 2, we see that a compact Weyl
conformally flat Einstein–Weyl manifold (M3, [g], D) of dimension three is
not necessarily Weyl flat.

Example 2. Let π : S2n+1 → Pn(C) be the Hopf fibration. Let g̃ be
the Fubini–Study metric on Pn(C) and η a canonical connection whose
curvature form is proportional to the Kaehler form of the Fubini–Study
metric. For a real number a with 0 < a ≤ 1, we define a Riemannian metric
ga on S

2n+1 by ga = π
∗g̃ + a2η ⊗ η. We set

f2 =
8(n+ 1)

2n− 1
a2(1− a2) and ωa = fη.

We define a connection D by

DXY = ∇
a
XY −

1
2ωa(X)Y −

1
2ωa(Y )X +

1
2ga(X,Y )B,

where ∇a denotes the Levi-Civita connection of ga and B is the dual vector
field of ωa. Then

DRic(X,Y ) + DRic(Y,X) = 4na2ga(X,Y ).

Therefore (S2n+1, ga, D) is an Einstein–Weyl manifold (cf. [11]). Moreover,
the scalar curvature sD = 2n(2n+ 1)a2 = constant.
We assume n = 1. Then the Weyl conformal curvature W of (S3, ga) is

flat. From (5), using sD = sga − 2d
∗ωa −

1
2 |ωa|

2, we obtain

RD = 1
12s
D(ga©∧ ga)−

(
1
2 (dωa©∧ ga) + ga ⊗ dωa

)
.

Thus, we have KDga(p) = a
2. If 0 < a < 1, then ωa is not closed (cf. [5]). The

Weyl curvature RD is

RD(V, Z,X, Y ) = a2(ga(Y, Z)ga(X,V )− ga(X,Z)ga(Y, V ))

−
(
1
2 (dωa©∧ ga) + ga ⊗ dωa

)
(V, Z,X, Y ).

3. Weyl submanifolds of Gauduchon manifolds. Let (M, [g],D)
be a Weyl manifold with Dg = ω⊗ g and i :M →M an immersed subman-
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ifold. We pull back the conformal structure from M to M . A torsion-free
connection D on M is given by DXY = π(DXY ), where π is the orthog-
onal projection from i∗TM to TM and X,Y are vector fields on M . Since
Dg = ω⊗ g, we obtain Dg = ω⊗ g, where g = i∗g and ω = i∗ω. The second
fundamental form β of the Weyl structure is defined by

(22) DXY = DXY + β(X,Y ).

Let B be the vector field dual to ω. The vector field B dual to ω satisfies
the decomposition

(23) B = B +B⊥,

where B⊥ is the normal component with respect to M . Let α be the second
fundamental form of the isometric immersion i : (M, g)→ (M, g). From (1)
and (22), we obtain β = α+ 12g ⊗B

⊥. Let ξ be a normal vector field on M
and X be a vector field on M . We have the Weingarten equation

(24) DXξ = −A
β
ξX +D

N
Xξ,

where −AβξX and D
N
Xξ are the tangential and normal components of DXξ,

respectively. The mean curvature vector Hα of M is defined to be
Hα = 1

n trα, n = dimM . Since β = α +
1
2g ⊗ B

⊥, the corresponding
mean curvature vectors are related by Hβ = Hα + 12B

⊥.

A Weyl submanifold (M, [g], D) is said to be Weyl totally geodesic if

β = 0. For a normal section ξ on (M, [g], D), if Aβξ = λI for some func-

tion λ, then ξ is called a Weyl umbilical section on (M, [g], D). If the Weyl
submanifold (M, [g], D) is Weyl umbilical with respect to every local normal
section of (M, [g], D), then (M, [g], D) is said to be Weyl totally umbilical .
A Weyl submanifold (M, [g], D) is said to beWeyl minimal ifHβ = 0. These
notions are conformally invariant.

Proposition 1. Let (Mn, [g], D) be a Weyl minimal submanifold of a

Weyl manifold (Mm, [g ],D). Assume that B is a Killing vector field with
respect to g. Then B is a Killing vector field with respect to g if and only if
Mn satisfies one of the following two conditions:

(a) (Mn, g) is minimal ;

(b) Mn is tangent to the vector field B .

Proof. Let ∇ and ∇ be the Levi-Civita connections of g and g respec-
tively. Since B is a Killing vector field, for any tangent vector fields X and
Y on Mn, we have

0 = (∇Xω)Y + (∇Y ω)X(25)

= (∇Xω)Y + (∇Y ω)X − 2ω(α(X,Y )).
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We assume that B is a Killing vector field. From (25), this is equivalent to
α(X,Y ) ⊥ B⊥, and, consequently, Hα is orthogonal to B⊥. On the other
hand, since Hβ = 0, Hα = −12B

⊥. Hence we obtain Hα = 0 and B⊥ = 0.
As Hβ = 0 we have Hα = −12B

⊥ and conditions (a) and (b) are equiv-
alent. In particular, they each imply B⊥ = 0 and we have ω(α(X,Y )) =
g(α(X,Y ), B ) = 0. From (25), B is a Killing vector field.

Let (Mn, [g], D) be a Weyl submanifold of a Weyl manifold (Mm, [g],D),

and n ≥ 3. Let RD and RD be the curvature tensors ofD andD respectively.
Then we have the equation of Gauss

RD(V, Z,X, Y ) = RD(V, Z,X, Y ) + g(β(X,Z), β(Y, V ))(26)

− g(β(Y, Z), β(X,V )).

Next, we consider Weyl totally umbilical submanifolds of a Gauduchon
manifold of constant curvature.

Theorem 4. Let (Mm, g,D) be a Gauduchon manifold of constant
curvature k and (Mn, g,D) be a Weyl totally umbilical submanifold of
(Mm, g,D). Then (Mn, g,D) is an Einstein–Weyl manifold.

Proof. Let {ξ1, . . . , ξm−n} be an orthonormal basis in TxM⊥. Since

(Mn, g,D) is a Weyl totally umbilical submanifold, Aβξi = λiI. Moreover,

β(X,Y ) = g(X,Y )
∑
λiξi = g(X,Y )H

β. By using Lemma 2 and (26), we
have

(27) DRic(X,Y ) = (n− 1)(k + |Hβ |2)g(X,Y ) + 12ndω(X,Y ).

Thus

(28) DRic(X,Y ) + DRic(Y,X) = 2(n− 1)(k + |Hβ |2)g(X,Y ).

That is, Mn is an Einstein–Weyl manifold.

4. Weyl submanifolds of a Gauduchon flat manifold.We now con-
sider compact Einstein–Weyl hypersurfaces in a Gauduchon flat manifold.

Theorem 5. Let (Mn+1, g,D) be a Gauduchon flat manifold with
Killing dual 1-form ω and (Mn, g,D) be a compact Einstein–Weyl (that
is, Ric = Λg − 14 (n− 2)Dω) hypersurface in (M

n+1, g,D) which is tangent

to the vector field B .

(I) If ω = 0, then (Mn, g) is an Einstein manifold.
(II) If ω 6= 0, then Λ = 1

4 (n − 2)|ω|
2 and Λ is constant. Moreover

(Mn, g) is totally geodesic or it has two principal curvatures, one nonzero
of multiplicity 1, and the other zero. In addition, the first Betti number
b1(M

n) is 1 and the universal covering manifold of (Mn, g) is isometric to
the Riemannian product (Sn−1, h)× R

1.
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Proof. Since (Mn+1, g,D) is a Gauduchon flat manifold, from (ii) of
Lemma 1, ω is closed. Thus the induced 1-form ω is also closed. Since Mn

is tangent to the vector field B , using (25), we see that the vector field B
is a Killing vector field. Hence the 1-form ω is parallel. Since ∇X |ω|2 =
∇X(g(B,B)) = 2g(∇XB,B) = 0, |ω| = constant. Since Ric = Λg −
1
4 (n − 2)ω ⊗ ω, we get Λ =

1
n

(
sg +

1
4 (n − 2)|ω|

2
)
. By using the Bianchi’s

second identity and ∇ω = 0, we obtain (n− 2)∇sg = 0. Thus sg is constant
and so Λ is constant. Since the dual of ω is Killing, we have ∇∗∇ω = Ric(ω).
Using Ric = Λg − 14 (n− 2)ω ⊗ ω, we have

(29) ∇∗∇ω =
(
Λ− 14 (n− 2)|ω|

2
)
ω.

From this equation, we have

(30) |∇ω|2 =
(
Λ− 14 (n− 2)|ω|

2
)
|ω|2.

Since ω is parallel, we obtain Λ = 14 (n− 2)|ω|
2 or ω = 0.

If ω = 0, then (Mn, g) is an Einstein manifold.

If ω 6= 0, we have Λ = 14 (n − 2)|ω|
2. Since Mn is tangent to the vector

field B , using (12) and (26), we have

Ric(X,Y ) = tr(A)g(AX, Y )− g(A2X,Y )(31)

− 14 (n− 2)ω(X)ω(Y ) +
1
4 (n− 2)|ω|

2g(X,Y ).

We take an orthonormal basis {e1, . . . , en} of Tx(Mn) such that each ei
is an eigenvector of A, that is, Aei = λiei for i = 1, . . . , n. From Ric =
Λg − 14 (n− 2)ω ⊗ ω and (31), for each i, we have

(32) λ2i − tr(A)λi + Λ−
1
4 (n− 2)|ω|

2 = 0.

Since Λ = 14 (n− 2)|ω|
2, each λi satisfies

(33) t2 − tr(A)t = 0.

Thus, at any point ofMn there are at most two distinct principal curvatures,
say λ, µ. From (33), we obtain λµ = 0. Hence either λ = µ = 0, that is,
(Mn, g) is totally geodesic, or λ 6= 0, µ = 0. In the last case lλ = tr(A) =
λ+ µ = λ. Thus l = 1.

In the case where (Mn, g) is totally geodesic, for any tangent vector X
orthogonal to B at a point x,

(34)
Ric(B,B) = 0, Ric(B,X) = 0,

Ric(X,X) = 14 (n− 2)|ω|
2g(X,X).

When λ 6= 0, µ = 0, we take an orthonormal basis {e1, . . . , en} of Tx(Mn)
such that each ei is an eigenvector of A, that is, Ae1 = λe1, Aei = 0 for
i = 2, . . . , n. We set B =

∑n
i=1 biei. For any tangent vector X orthogonal

to B at a point x,
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(35)
Ric(B,B) = λ2b21 − λ

2b21 = 0, Ric(B,X) = 0,

Ric(X,X) = 14 (n− 2)|ω|
2g(X,X).

Since the form ω is parallel and the Ricci curvature is nonnegative, using
the Weitzenböck formula, we have b1(M

n) = 1.

Using the equation of Gauss, we obtain RD = 0. By the same method as
in the proof of Theorem 2, we conclude that the universal covering manifold
of (Mn, g) is isometric to the Riemannian product (Sn−1, h)× R

1.

Next, we consider compact Weyl totally umbilical submanifolds of a
Gauduchon flat manifold.

Theorem 6. Let (Mm, g,D) be a Gauduchon flat manifold with Killing
dual 1-form ω and (Mn, g,D) be a compact Weyl totally umbilical subman-
ifold of (Mm, g,D). Then (Mn, g,D) is an Einstein–Weyl manifold with
scalar curvature sg ≥ 0. In particular , assume that Mn is tangent to the
vector field B .

(I) If ω = 0, then (Mn, g) is an Einstein manifold.

(II) If ω 6= 0, then (Mn, g) is a totally geodesic submanifold. In addition,
the first Betti number b1(M

n) is 1 and the universal covering manifold of
(Mn, g) is isometric to the Riemannian product (Sn−1, h)× R

1.

Proof. From Theorem 4, (Mn, g,D) admits an Einstein–Weyl structure.
By using (14) and (28), we obtain

Ric(X,Y ) = − 14 (n− 2)((∇Xω)Y + (∇Y ω)X + ω(X)ω(Y ))(36)

+
{
(n− 1)|Hβ|2 − 12

(
divB − 12 (n− 2)|ω|

2
)}
g(X,Y ).

Since (Mn, g,D) is a Weyl totally umbilical submanifold, we have β(X,Y ) =
g(X,Y )

∑
λiξi = g(X,Y )H

β . We set µi = λi −
1
2g(B

⊥, ξi). Since β =
α+ 12g ⊗B

⊥, we have α(X,Y ) = g(X,Y )
∑
µiξi = g(X,Y )H

α.

Since B is a Killing vector field, using (25) we have

(37)
(∇Xω)Y + (∇Y ω)X − 2g(H

α, B⊥)g(X,Y ) = 0,

divB − ng(Hα, B⊥) = 0.

It follows from (36) that

(38) Ric(X,Y )

= − 14 (n− 2)ω(X)ω(Y )

+
{
1
4 (n− 2)|ω|

2 + (n− 1)|Hα|2 + 14 (n− 1)|B
⊥|2
}
g(X,Y ).

The scalar curvature sg of (M
n, g) is

(39) sg =
1
4 (n− 1){(n− 2)|ω|

2 + n|B⊥|2}+ n(n− 1)|Hα|2 ≥ 0.
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Assume, that Mn is tangent to the vector field B . From (38), we obtain

(40) Ric(X,Y ) =
(∑

µ2i (n−1)+
1
4 (n−2)|ω|

2
)
g(X,Y )−14 (n−2)ω(X)ω(Y ).

We set Λ =
∑
µ2i (n − 1) +

1
4 (n − 2)|ω|

2. Then Ric = Λg − 14 (n − 2)ω ⊗ ω.
As in the proof of Theorem 5, we obtain Λ = 14 (n− 2)|ω|

2 or ω = 0.
If ω = 0, then (Mn, g) is an Einstein manifold.
If ω 6= 0, then Λ = 14 (n − 2)|ω|

2 and µi = 0 for i = 1, . . . ,m − n, that
is, (Mn, g) is totally geodesic. Since B⊥ = 0, (Mn, g,D) is Weyl totally
geodesic. Thus RD = 0. Moreover we obtain the equation (20). The proof
of the remaining statement may be given as in the proof of Theorem 2.

Finally, we consider Weyl hypersurfaces M orthogonal to the vector
field B .

Theorem 7. Let (Mn+1, g,D) be a Gauduchon flat manifold with
Killing dual 1-form ω 6= 0 and (Mn, g,D) be a Weyl hypersurface of
(Mn+1, g,D) which is orthogonal to the vector field B . Then (Mn, g,D)
is Weyl totally umbilical and (Mn, g) is a totally geodesic submanifold with
constant positive sectional curvature, that is, (Mn, g) is an elliptic space
form.

Proof. Since B is normal to Mn, we have B = B⊥. Since B is parallel,
we obtain g(∇XY,B⊥) = −g(Y,∇XB ) = 0 for any tangent vector fields X
and Y on Mn. Thus (Mn, g) is totally geodesic. Then we have β(X,Y ) =
1
2g(X,Y )B . For a unit normal vector field ξ = B/|B |, we have g(A

β
ξX,Y ) =

g(β(X,Y ), ξ) = 12 |ω|g(X,Y ). This implies A
β
ξ =

1
2 |ω|I, that is, (M

n, g,D) is

Weyl totally umbilical. By using (26), RD = R and β(X,Y ) = 12g(X,Y )B ,

we obtain R(V, Z,X, Y ) = 14 |ω|
2(g(Y, Z)g(X,V )−g(X,Z)g(Y, V )). Since B

is parallel, |ω| is constant.

Note. (a) We have recently learned of the following result from a letter
of M. Itoh (Tsukuba Univ.): Let M be a compact, connected oriented Rie-

mannian manifold with dimM = 2n + 1. Let M̃ be the universal covering
manifold of M . If M̃ is isometric to S2n × R

1, then M is an S2n-bundle
over S1.

(b) We have recently learned of the existence of the paper [7] which
slightly overlaps the first part of this paper and in particular gives a classi-
fication of conformally flat Einstein–Weyl manifolds.
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