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ADDITIVE FUNCTIONS ON TREES

BY

PIROSKA LAKATOS (Debrecen)

Abstract. The motivation for considering positive additive functions on trees was
a characterization of extended Dynkin graphs (see I. Reiten [R]) and applications of
additive functions in representation theory (see H. Lenzing and I. Reiten [LR] and
T. Hübner [H]).

We consider graphs equipped with integer-valued functions, i.e. valued graphs (see
also [DR]). Methods are given for constructing additive functions on valued trees (in
particular on Euclidean graphs) and for characterizing their structure. We introduce the
concept of almost additive functions, which are additive on each vertex of a graph ex-
cept one (called the exceptional vertex). On (valued) trees (with fixed exceptional vertex)
the almost additive functions are unique up to rational multiples. For valued trees a
necessary and sufficient condition is given for the existence of positive almost additive
functions.

Introduction. The Dynkin diagrams and the associated extended
Dynkin diagrams occur in the representation theory of finite-dimensional
algebras. These diagrams can be characterized using additive and subaddi-
tive functions (see [R]). An additive function attached to a finite-dimensional
algebra also characterizes some homological properties of the corresponding
algebra (see [LR]). It is well known that among connected quivers exactly
the extended Dynkin quivers admit a positive additive function. The mo-
tivation for this paper was the characterization of extended Dynkin graphs
given by Reiten [R] and some constructions of additive functions applied in
representation theory given by Lenzing–Reiten [LR] and Hübner [H]. The
main result, Theorem 1.6, shows that for a valued tree there is a positive al-
most additive function with an exceptional vertex if and only if the tree is an
enlarged Dynkin graph. This result answers for valued trees Reiten’s ques-
tion: which graphs admit nontrivial additive functions. Also some inductive
constructions of almost additive functions are given.
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1. Additive and almost additive functions on valued trees.

Throughout, ∆ will always be a finite graph without multiple edges and
without loops (which is a finite set I = {1, . . . , n} of vertices, together with
a set of (unordered) pairs (i, j) ∈ I × I, i 6= j ∈ I, called edges of ∆).
Let V = Zn be a free abelian group of rank n and let V be equipped

with a—usually nonsymmetric—bilinear form

〈−,−〉 : V × V → Z.

We also assume that 〈x,−〉 = 0 ⇔ x = 0; i.e. 〈x, y〉 = xtCy, where C is a
nonsingular integer matrix.
An automorphism C of V is called a Coxeter transformation of V if

〈x, y〉 = −〈y, Cx〉 for all x, y ∈ V.

The matrix Φ of the Coxeter transformation is uniquely determined by the
matrix C, and also by Φ = −C−1Ct, since

〈x, y〉 = xtCy = ytCtx = −ytCC−1Ctx = −〈y,−C−1Ctx〉.

The characteristic polynomial of the matrix of a Coxeter transformation C
is called the Coxeter polynomial of C. A subgroup of Zn is called a radical
if it is the set of fixed points of a Coxeter transformation C, i.e.

rad(C) = {x ∈ Z : Cx = x}.

The spectrum Spec(C) of C is the set of all eigenvalues of the matrix Φ,
and the spectral radius of C is given by

̺(C) = max{|λ| : λ ∈ Spec(C)}.

A valuation v of a graph ∆ is defined as follows (see [DR]). For each

edge
i
•

j
•, there exist two nonnegative integers vi,j and vj,i (we write

i
•
(vi,j ,vj,i) j•) such that

vi,jfj = vj,ifi

for some positive integers fi, fj (i, j ∈ I). Furthermore, set vi,j = vj,i = 0 if
there is no edge between i and j.
A valued graph is a graph ∆ together with a valuation v, denoted by

(∆,v).
Any graph T can be considered as a valued graph (T,v) with a trivial

valuation (vi,j = vj,i = 0 if there is no edge between i and j, and vi,j = 1

otherwise). In case vi,j = vj,i = 1 we write simply
i
•

j
• instead of

i
•
(1,1) j
•

(i.e. we omit the label of the valuation).
The matrix A∆ = (ai,j), where ai,j = vi,j , is called the adjacency matrix

of the valued graph (∆,v). By the definition of the valued graph the matrix
A = A∆ is symmetrizable, which means that DA is a symmetric matrix
where D = (di,j) is the diagonal matrix defined by di,i = fi and di,j = 0
otherwise.
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Let Ω be an orientation of the graph (∆,v). Denote by Q = Q(∆,Ω)
this oriented graph. Suppose there are no oriented cycles in Q. The Coxeter
transformation is defined only for a quiver, i.e. for a finite oriented graph.
Since, for a tree, our considerations will not depend on a particular orienta-
tion (see [BLM]), we may speak about the Coxeter polynomial and spectral
radius of the Coxeter transformation of a valued tree and we always choose

the orientation such that for all i, j ∈ I we have
i
• −→

j
• if i < j. Conse-

quently, we may speak about the Coxeter polynomial and spectral radius of
the Coxeter transformation of a valued tree.

Let us remark that the Coxeter transformation C for Q = Q(∆,v) is
defined by the matrix C = D − DA+, where DA+ is the upper triangular
part of the symmetric matrix DA.

The following statement was proved for bipartite finite oriented graphs
without oriented cycles and it determines the relationship between the spec-
trum of a valued tree and the spectrum of its Coxeter transformation.

Lemma 1.1 ([BLM]). Let T = (T,v) be a valued tree.

(a) If λ 6= 0 then λ+ λ−1 ∈ Spec(T ) if and only if λ2 ∈ Spec(CT ).

(b) If T is not Dynkin, then there exists a λ ≥ 1 such that ̺(T ) = λ+λ−1

and ̺(CT ) = λ
2. Moreover , ∆ is Euclidean if and only if λ = 1.

A function ϕ : I → Z is said to be subadditive on an (arbitrary) graph
∆ with adjacency matrix A and set of vertices I if

∑

j∈I

ai,jϕ(j) ≤ 2ϕ(i) for all i ∈ I,

and it is said to be additive on ∆ if

(1)
∑

j∈I

ai,jϕ(j) = 2ϕ(i) for all i ∈ I.

It is known that the existence of a positive subadditive nonadditive function
on a finite connected graph implies the existence of a positive definite associ-
ated quadratic form, and the existence of a positive additive function implies
the existence of a positive semidefinite associated quadratic form (see [R]).
In the first case the graph is Dynkin and in the second it is Euclidean.

A function ϕ : I → Z is said to be almost additive with exceptional vertex
k on an (arbitrary) graph ∆ with set of vertices I and adjacency matrix A if

∑

j∈I

ai,jϕ(j) = 2ϕ(i) for every i 6= k.

An additive function ϕ is called positive if ϕ(i) > 0 for each i ∈ I. Also we
call ϕ nonnegative if ϕ is nonzero and ϕ(i) ≥ 0 for each i, and negative if
−ϕ is positive.
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Let (∆,ϕ) be a graph ∆ together with an (almost) additive function ϕ.
Removing all vertices x ∈ I with ϕ(x) = 0 and all edges containing such
vertices x, we get a subgraph of ∆ with an (almost) additive function with-
out zero values. Since this removal process does not change the additivity
property we may suppose that all of our (almost) additive functions are
without zero values.

The additive functions are uniquely determined up to integer multiples.
To avoid misunderstandings, we always consider so called normalized (al-
most) additive functions with minimal integer values, i.e. the least common
divisor of their values is 1. For the characterization of (almost) additive
functions ϕ sometimes we need functions with rational values, i.e. rational
multiples of (almost) additive functions. To make our calculation easier we
shall, sometimes, fix the value of the function ϕ at the exceptional vertex k
to be 1. Such a function will be called a reduced (almost) additive function.

For a quiver Q without oriented cycles the elements of the radical of
the corresponding Coxeter transformation determine an additive function
on the underlying valued graph.

Lemma 1.2. Let Q be a finite oriented graph without oriented cycles and
with underlying graph (∆,v) and I the set of its vertices. The following
statements are equivalent for an additive function ϕ : I → Z:

(a) ϕ̂ = (ϕ(1), . . . , ϕ(n)) ∈ rad(C).

(b) ϕ̂ is an eigenvector of the Coxeter matrix Φ of Q with eigenvalue 1.

(c) ϕ̂ is an eigenvector of the adjacency matrix (∆,v) with eigenvalue 2.

(d) ϕ is additive on the graph (∆,v).

Proof. The statements (a)⇔(b) and (d)⇔(c) follow from the definitions
of the additive function and the radical of the Coxeter transformation. The
equivalence of (b) and (c) follows from Lemma 1.1.

The Dynkin graphs have no additive functions since for their adjacency
matrix A the matrix 2I − A is nonsingular. It is known (see [R]) that a
connected graph has a positive additive function ϕ if and only if the graph
is extended Dynkin (Euclidean). In this case ϕ is uniquely determined. We
remark that normalized subadditive functions on a graph are, in general,
not uniquely determined.

Example 1.1. Let us write the values of functions at the corresponding

vertices. On the Dynkin graphA3 the functions
1
•

2
•

1
• and

1
•

2
•

3
•

are different almost additive and subadditive functions. The exceptional
vertex is the middle vertex in the first case, and the right vertex in the
second case.
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Let (∆,v) be a valued tree, k ∈ I and ϕ be an almost additive function
on I with exceptional vertex k ∈ I with ϕ(k) 6= 0. Define the deviation
dk ∈ Q of ϕ at the vertex k by the equation

(2) ϕ(k)(2− dk) =
∑

j∈I

ak,jϕ(j).

Clearly, dk is uniquely determined and dk = 0 if and only if ϕ is additive at
the vertex k, i.e.

∑
j∈I ak,jϕ(j) = 2ϕ(k).

In Example 1.1 the deviation of ϕ̂1 = (1, 2, 1) at the middle vertex is
1 and the deviation of ϕ̂2 = (1, 2, 3) at the right vertex is 4/3, i.e. on a
tree we can define different almost additive functions by choosing different
exceptional vertices. The following theorem gives an answer to the question
about the uniqueness of an almost additive function with fixed exceptional
vertex.

We denote by T \ {k} the tree obtained from T by deleting the vertex k
and all adjacent edges.

Theorem 1.3. Let (T,v) be a valued tree. Let k ∈ I be the exceptional
vertex of an almost additive function ϕ on T without zero values. Then ϕ is
uniquely determined up to a rational multiple.

Proof. We argue by induction on the number n of vertices of T. For n = 1
the statement is obvious. If n > 1 then remove the exceptional vertex k and
all adjacent edges from T. By the induction hypothesis we have unique
almost additive functions on the connected components of T \ {k}. The
exceptional vertices of these almost additive functions are the vertices which
were connected to k. This implies the uniqueness of our additive functions
on T with exceptional vertex k and our statement follows.

Note that if the underlying graph is not a tree then, as the next coun-
terexample shows, the uniqueness does not hold.
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Example 1.2. Consider the graph on the preceding page where the la-
bels of the vertices are the values of a function ϕ on the graph. If a and b
are arbitrary relatively prime numbers then, as one can easily check, ϕ is an
almost additive function with exceptional vertex labeled by 2b.

It is easy to see that if a graph with a strictly positive almost additive
function has positive deviation then the function can be extended to a pos-
itive almost additive function. This is possible by connecting a new vertex
to the exceptional vertex.

Theorem 1.4. Let ϕ be an almost additive function on the valued tree
(T,v) with exceptional vertex k. Suppose ϕ(k) 6= 0. Denote by χT (x) the
Coxeter polynomial of T . Then the deviation of ϕ at k is

(3) dk =
χT (1)

χT\{k}(1)
,

thus dk is uniquely determined.

Proof. Denote by A the adjacency matrix of T and let ek be the kth row
vector of the n× n identity matrix. We may suppose that ϕ is reduced, i.e.
ϕ(k) = 1. For the almost additive function ϕ and the deviation dk of the
exceptional vertex k we have

(4) (2I −A− dke
t
kek)ϕ̂

t = 0

where ϕ̂ is the vector introduced in Lemma 1.2.

If |2I −A| = 0 then ϕ is additive on T , which by Lemma 1.2 implies the
equalities χT (1) = 0 and dk = 0. As ϕ(k) 6= 0 the restriction of ϕ to T \ {k}
is not additive and χT\{k}(1) 6= 0. Thus, in case |2I −A| = 0 the statement
follows.

Assume that |2I − A| 6= 0. Suppose that the almost additive function ϕ
is reduced, i.e. ϕ(k) = 1. This implies that (2I − A)ϕ̂t = dke

t
kekϕ̂

t, hence
ϕ̂t = dk(2I − A)

−1etkekϕ̂
t and (1/dk)ϕ̂

t = (2I − A)−1etk. Moreover, since
ϕ(k) = 1 we have ϕ̂−1 = ek and 1/dk = ek(2I − A)

−1etk, which is the
(k, k) entry of the inverse of the nonsingular matrix 2I −A. Thus, we have
1/dk = fT\{k}(2)/fT (2), where fΓ (x) is the characteristic polynomial of the
graph Γ and fT (2) 6= 0 since ϕ is not additive.

From the uniqueness of (2I −A)−1 the uniqueness of dk follows. In view
of the correspondence between the spectrum of the graph and the spectrum
of the corresponding Coxeter transformation by Lemma 1.1 we have

fT\{k}(2)/fT (2) = χT\{k}(1)/χT (1).

Corollary 1.5. The deviation of each almost additive function on a
Dynkin graph is strictly positive, and on a Euclidean graph it is zero.
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Proof. Let T be a Dynkin graph. With the notation of Theorem 1.4 we
have

dk =
χT (1)

χT\{k}(1)
.

It is known that the Coxeter polynomial of a Dynkin graph has only cy-
clotomic polynomials as irreducible factors. The sum of the coefficients of
a product of cyclotomic polynomials is positive and 1 is a root of the Cox-
eter polynomial of a Euclidean graph. The Coxeter polynomial of a Dynkin
graph decomposes into irreducible cyclotomic factors (see [BLM]), and at 1
it has a positive value. Since T is Dynkin, so is T \ {k}. It follows that dk is
positive.

The question about the sign of the deviation in the case of wild graphs
is much more complicated. A graph T is said to be enlarged Dynkin if it can
be decomposed into Dynkin graphs by removing exactly one vertex and all
edges adjacent to it in T . Clearly, Dynkin graphs with n > 2 vertices are
also enlarged Dynkin graphs.

Theorem 1.6. Let T be a valued tree. Then there exists a positive almost
additive function ϕ with an exceptional vertex k ∈ I if and only if T is an
enlarged Dynkin graph. For fixed k ∈ I, the almost additive function ϕ with
exceptional vertex k is unique.

Proof. The existence of an almost additive function is clear. Let ϕ be a
positive almost additive function on T with exceptional vertex k. Suppose ϕ
is reduced, i.e. ϕ(k) = 1. By (4), ϕ̂ is an eigenvector of the matrix A−dke

t
kek

corresponding to the eigenvalue 2.

We may assume that |2I − A| 6= 0, since otherwise ϕ is additive on T
by Lemma 1.2, and by Corollary 1.5, T is Euclidean and hence enlarged
Dynkin, and the statement holds for such graphs.

By the Perron–Frobenius Theorem the positive eigenvector ϕ̂ corre-
sponds to the maximal eigenvalue 2 of the matrix A− dke

t
kek. By the inter-

lacing property the maximal eigenvalue of the adjacency matrix of T \{k} is
less than 2. Thus, by Lemma 1.1 the maximum of the absolute values of the
eigenvalues of the Coxeter transformation is less than 1 and the connected
components of the graph T \ {k} are Dynkin graphs, i.e. T is an enlarged
Dynkin graph.

Conversely, suppose T is an enlarged Dynkin graph, i.e. it can be decom-
posed into Dynkin graphs by removing a vertex k and the corresponding
edges. It is easy to check that for every Dynkin graph and for each of its
vertices k ∈ I there exists at least one positive almost additive function ϕ
with exceptional vertex k. Let dk be the deviation of the almost additive
function with exceptional vertex k.
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The uniqueness follows from Perron–Frobenius theory since ϕ is (strictly)
positive, thus ϕ̂ is the only eigenvector of the matrix A−dke

t
kek correspond-

ing to the unique maximal eigenvalue 2.

2. Inductive constructions of almost additive functions. Since
the vertices of Dynkin graphs are well characterized by the deviation of
uniquely determined positive almost additive functions corresponding to the
vertices, below we give a list of these graphs labeling the vertices with the
deviation values.
n+1
n

•

n+1
2(n−1)

•

n+1
3(n−2)

•

n+1
i(n−i+1)

•

n+1
(i+1)(n−i)

•

n+1
2(n−1)

•

n+1
n

•.................................................................... ........ .................................................................... ........ . . . .................................................................... ........ . . . .................................................................... ........ An, n ≥ 1

2
n

•

1
n−1
•

1
n−2
•

1
n−i+1
•

1
n−i
•

1
2
•

1
•.................................................................... ........

(1, 2)
.................................................................... ........ . . . .................................................................... ........ . . . .................................................................... ........ Bn, n ≥ 2

2
n

•

1
n−1
•

1
n−2
•

1
n−i+1
•

1
n−i
•

1
2
•

1
•.................................................................... ........

(2, 1)
.................................................................... ........ . . . .................................................................... ........ . . . .................................................................... ........ Cn, n ≥ 3

•

•
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n

4
n
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•
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•

1
n−i
•
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1
•

...................................................................................

........
.......
........
.......
........
........
.......
........
..............
........
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1
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1
2
•

1
6
•

1
6
•

1
2
•.................................................................... ........ .................................................................... ........

(1, 2)
.................................................................... ........ F4

1
2
•

1
2
•.................................................................... ........

(1, 3)
G2

The connection between the existence of an additive function on a graph
and existence of positive almost additive functions on its subgraphs seems to
be an interesting problem. The following statement characterizes the almost
additive functions on trees which consist of trees (with almost additive func-
tions at their exceptional vertices) hanging on a new vertex at their excep-
tional vertices. We shall call such trees one-point extensions of the original
trees.

Theorem 2.1. Let T1 = (T1,v1), . . . , Ts = (Ts,vs) be valued trees. Let
ϕ1, . . . , ϕs be almost additive functions on T1, . . . , Ts with exceptional ver-
tices k1 ∈ (T1)0, . . . , ks ∈ (Ts)0 and with deviations dk1 , . . . , dks . Let T be
a graph obtained from T1, . . . , Ts by one-point (k) extension at the vertices
k1, . . . , ks. Then the extended almost additive function on T with exceptional
vertex k has deviation 2− (1/dk1 + . . .+ 1/dks).

Proof. We may suppose without restricting generality that ϕ1, . . . , ϕs
are reduced almost additive functions, i.e. ϕ(kl) = 1 for all 1 ≤ l ≤ s. Let
Skl =

∑
j∼kl
ϕkl(j), where j ∼ kl means that the vertices j ∈ (Tl)0 are

connected to the vertex kl. By definition of the deviation, 2−Skl = dkl . On
the graph T , the extension of the almost additive functions ϕ2, . . . , ϕs will
be almost additive at the vertex kl if (preserving the values except for the
values at the corresponding exceptional vertices) there exists rl ∈ Z such
that ϕ(k) + rlSkl = 2rlϕ(kl) = 2rl for 1 ≤ kl ≤ s. Thus

ϕ(k)

rl
= 2− Skl = dkl .

For the deviation dk at the vertex k we have

dk = 2−
r1 + . . .+ rs
ϕ(k)

= 2−

(
1

dk1
+ . . .+

1

dks

)
.
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Theorem 2.1 explains how we can construct Dynkin and Euclidean (in
other words extended Dynkin) graphs from Dynkin’s by using almost ad-
ditive functions. Extending the Dynkin graph by one vertex at any vertex
with deviation 1/2 we get a Euclidean graph since the deviation of A1 (a
simple graph with one vertex) is equal to 2. Taking a Dynkin graph and any
of its vertices k with dk > 0.5 we may enlarge our graph with a new vertex
connected to k so that the enlarged graph remains Dynkin. For example E6
and E7 can be enlarged (to E7 and E8 respectively) by connecting a new
vertex to the vertices with deviations 3/4 and 2/3. Also Bn, Cn, Dn can be
enlarged by a new vertex at the vertices with deviation 1.

In this way we have a new method to find a complete list of Euclidean
graphs.

The following statement presents the solution of the problem of deter-
mining additive functions on a tree in a special case.

Theorem 2.2. Let T1 = (T1,v1) and T2 = (T2,v2) be valued trees with
i ∈ (T1)0 and j ∈ (T2)0. Let ϕ1 and ϕ2 be almost additive functions with
exceptional vertices i and j with ϕ(i), ϕ(j) 6= 0 and with the corresponding
deviations di and dj . Let T be the graph obtained from T1 and T2 by connect-

ing them by an edge with
i
•

j
•. Then there exists a uniquely determined

additive function on T if and only if didj = 1.

Proof. We require almost additivity with exceptional vertices i and j.
Therefore we should find integers l1 and l2 such that

(5) l1di = l2ϕ2(i) and l2dj = l1ϕ1(j).

Since ϕ2(i) = 1 and ϕ2(j) = 1 the system of equations (5) has a solution if
and only if didj = 1.

The following example shows how to construct an additive function from
two suitable almost additive functions with deviations di and dj (by Theo-
rem 2.2).

Example 2.1.
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[H] T. Hübner, Rank additivity for quasitilted algebras of canonical type, Colloq.
Math. 75 (1998), 183–193.

[LR] H. Lenzing and I. Reiten, Additive functions for quivers with relations, ibid. 82
(1999), 85–103.

[R] I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices
Amer. Math. Soc. 44 (1997), 546–556.

Institute of Mathematics and Informatics
University of Debrecen
P.O. Box 12
4010 Debrecen, Hungary
E-mail: lapi@math.klte.hu

Received 23 August 2000;

revised 13 November 2000 (3965)


