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ON ASSOCIATED AND ATTACHED PRIME IDEALS

OF CERTAIN MODULES

BY

K. DIVAANI-AAZAR (Tehran)

Abstract. Primary and secondary functors have been introduced in [2] and applied
to extend some results concerning asymptotic prime ideals. In this paper, the theory of
primary and secondary functors is developed and examples of non-exact primary and
non-exact secondary functors are presented. Also, as an application, the sets of associated
and of attached prime ideals of certain modules are determined.

1. Introduction and preliminaries. The theory of asymptotic prime
ideals is one of the most widely used theories in commutative algebra and
it has many applications in local cohomology and algebraic geometry. The
subject has started by a question raised by L. J. Ratliff. For an ideal I of a
Noetherian ringR, he conjectured that the two sequences of sets AssR(R/I

n)
and AssR(I

n/In+1) are ultimately constant. M. Brodmann proved this con-
jecture. Since then a lot of research has been done in this field, especially by
Ratliff, S. McAdam, D. Katz and P. Schenzel. For a survey of asymptotic
results and their applications, we refer the reader to [6]. Motivation for the
present work comes from [2], where far-reaching generalizations of some of
the previously known asymptotic results are proved. This has been done by
introducing two classes of linear functors, primary and secondary functors.
We now recall their definition.

Let R be a commutative ring and let CR denote the category of all
R-modules and all R-homomorphisms.

1.1. Definition. Let C be a Serre subcategory of CR and T : C → CR

be a linear functor. The functor T is called primary on C if, for each prime
ideal p of R with R/p ∈ C , the following conditions are equivalent:

(i) T (N) 6= 0 for any p-coprimary R-module N in C .

(ii) T (N) 6= 0 for some p-coprimary R-module N in C .

(iii) T (R/p) 6= 0.
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The theory of secondary representation and attached prime ideals is dual
to that of primary decomposition and associated primes. For a complete
treatment of this theory, we refer the reader to [3, Appendix to Section 6].

1.2. Definition. Let C be a Serre subcategory of CR. A linear functor
T : C → CR is called secondary on C if, for each prime ideal p of R, the
following conditions are equivalent:

(i) T (S) 6= 0 for any p-secondary R-module S in C .

(ii) T (S) 6= 0 for some p-secondary R-module S in C .

Let CN and CA denote the subcategories of Noetherian and Artinian R-
modules respectively. The following result determines a large class of primary
and secondary functors.

1.3. Theorem. (i) ([2, Corollary 1.5]). Let T : CN → CR be an exact

functor. Then T is primary on CN .

(ii) ([2, Lemma 2.7(i)]). Let R be a complete semi-local Noetherian ring
and let T : CA → CR be an exact functor. Then T is secondary on CA.

In [2], we did not present any example of non-exact primary or of non-
exact secondary functors. The aim of this article is to study the theory of
primary and secondary functors systematically and to present such exam-
ples. As an application, we describe the sets of associated and of attached
prime ideals of certain modules which are obtained by applying primary
(resp. secondary) functors to some modules.

Throughout R will denote a commutative ring with identity. All functors
considered are assumed to be linear.

2. Non-exact primary functors. The following result plays an essen-
tial role in this section.

2.1.Theorem (see [7, 4.3]). If M and N are R-modules with N finitely
generated , then M ⊗R N = 0 if and only if M = (AnnRN)M .
2.2. Theorem. Let M be an R-module. Then the functor M ⊗R (·) is

primary on CN .

Proof. Let p be a prime ideal and N be a p-coprimary Noetherian R-
module. Then

√
AnnRN = p . It is enough to show that M ⊗RN = 0 if and

only if M = pM .

Suppose thatM ⊗RN = 0 .Then by 2.1,M = (AnnRN)M , and so M =
pM . Conversely, assume thatM = pM . Let x1, . . . , xt be a set of generators
for N . Define f : R/AnnRN →

⊕t
i=1Rxi by f(r+AnnRN) = (rx1, . . . , rxt)

for all r ∈ R. Clearly, f is an injective R-homomorphism. Since
⊕t

i=1Rxi
is a Noetherian R-module, it follows that R/AnnRN is Noetherian as an
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R-module and so Noetherian as a ring. Hence there exists n ∈ N such that
pn ⊆ AnnRN . Now, we have

M = pM = p
nM ⊆ (AnnRN)M ⊆M.

Thus M = (AnnRN)M and so M ⊗R N = 0 by 2.1, as required.
We shall use the following result.

2.3. Theorem (see [7, Theorem 2.1]). If M and N are R-modules such
that N is finitely generated , then the module HomR(N,M) is zero if and
only if (0 :M AnnRN) = 0.

As an immediate consequence of 2.3, we deduce the following.

2.4. Corollary. Let R be a Noetherian ring and N be a finitely gen-
erated R-module. Then the functor HomR(N, ·) is primary on CR.

Proof. For an R-moduleM , it follows easily from 2.3 that HomR(N,M)
6= 0 if and only if AnnRN ⊂ p for some p ∈ AssRM . This finishes the
proof.

The following example shows that the “finitely generated” assumption
on N is necessary in 2.4.

2.5. Example. Let R be a Noetherian domain which is not a field and
let K denote the quotient field of R. Then the functor HomR(K, ·) is not
primary on CR. To see this, let N1 = R and N2 = K. Then N1 and
N2 are both 0-coprimary. It is easy to see that HomR(K,N1) = 0, while
HomR(K,N2) 6= 0.
2.6. Theorem. Let M be an R-module. Then the functor HomR(·,M)

is primary on CN .

Proof. For a p-coprimary Noetherian R-module N , we show that
HomR(N,M) = 0 if and only if (0 :M p) = 0. This will complete the
proof. As we have seen in the proof of 2.2, there exists n ∈ N such that
pn ⊆ AnnRN . Hence

(0 :M p) ⊆ (0 :M AnnRN) ⊆ (0 :M p
n).

But it is easy to see that (0 :M p) = 0 if and only if (0 :M pn) = 0. Therefore
(0 :M p) = 0 if and only if (0 :M AnnRN) = 0. Now, by 2.3, the conclusion
follows.

The following corollary extends [2, Corollary 1.5] (see 1.3(i)).

2.7. Corollary. Let T : CN → CR be a functor. Suppose that T is
either covariant right exact or contravariant left exact. Then T is primary
on CN .
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Proof. First, we prove the assertion for R Noetherian. In that case, if T is
covariant right exact (resp. contravariant left exact), then there is a natural
equivalence of functors v : (·)⊗R T (R)→ T (resp. w : T → HomR(·, T (R)))
from CN to CR (see e.g. [2, Lemma 1.1]). Hence, by 2.2 and 2.6 the result
follows.

Now, we prove the general case. To this end, let p be a prime ideal of R
and N1 and N2 be two Noetherian p-coprimary R-modules. The ring R′ =
R/AnnRN1 ∩ AnnRN2 is Noetherian and both N1 and N2 are Noetherian
R′-modules. Hence, by the first part of the proof, T (N1) = 0 if and only if
T (N2) = 0. Note that T may be considered as a functor from the subcategory
of Noetherian R′-modules to the category of all R′-modules.

We now set some notations. Let C be a Serre subcategory of CR and
M ∈ C . Let X be a submodule ofM and let i : X →M and π :M →M/X
be the natural maps.

(i) If T : C → CR is a covariant left exact functor, then we identify the
module T (i)T (X) with T (X).

(ii) If T : C → CR is a contravariant left exact functor, then we identify
the module T (π)T (M/X) with T (M/X).

2.8. Lemma. Let C be a Serre subcategory of CR and T : C → CR be a

functor. Let M ∈ C and X1, X2 be submodules of M .

(i) If T is covariant left exact , then T (X1 ∩X2) = T (X1) ∩ T (X2).
(ii) If T is contravariant right exact , then T (π)T (M/X1 ∩ X2) =

T (π1)T (M/X1) + T (π2)T (M/X2), where πi : M → M/Xi, i = 1, 2, and
π :M →M/X1 ∩X2 are the natural epimorphisms.

Proof. (i) Let

0→ X1 ∩X2 i→M
π→M/X1 ∩X2 → 0,

0→ Xj

ij→M
πj→M/Xj → 0, j = 1, 2,

be the canonical exact sequences, and let

T̃ (π) : T (M)/T (i)T (X1 ∩X2)→ T (M/X1 ∩X2),
˜T (πj) : T (M)/T (ij)T (Xj)→ T (M/Xj), j = 1, 2,

be the induced monomorphisms. Let lj :M/Xj →M/X1⊕M/X2, j = 1, 2,
be the natural injections. Then the map

λ : T (M)/T (i1)T (X1)⊕ T (M)/T (i2)T (X2)→ T (M/X1 ⊕M/X2),

defined by λ(x1+T (i1)T (X1), x2+T (i2)T (X2)) =
∑2
j=1 T (lj)T (πj)(xj) for

all x1, x2 ∈ T (M) is a monomorphism. Let g :M/X1∩X2 →M/X1⊕M/X2
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be the natural monomorphism. From the commutative diagram

T (M)/T (i)T (X1 ∩X2) T (M)/T (i1)T (X1)⊕ T (M)/T (i2)T (X2)

T (M/X1 ∩X2) T (M/X1 ⊕M/X2)

T̃ (π)

��

θ //

λ

��
T (g)

//

in which θ is the natural map, we deduce that θ is a monomorphism. Hence

T (i)T (X1 ∩X2) = T (i1)T (X1) ∩ T (i2)T (X2)
as required.

(ii) Let
⊕2

i=1M/Xi
pi→M/Xi, i = 1, 2, be the natural projections. Then

the map

ϕ :
2⊕

i=1

T (M/Xi)→ T
( 2⊕

i=1

M/Xi

)

defined by ϕ((x1, x2)) =
∑2
i=1 T (pi)(xi) for all x1 ∈ T (M/X1) and x2 ∈

T (M/X2) is an isomorphism. Set ψ = T (gπ)ϕ. Since T (g) is an epimor-
phism, it follows that Imψ = T (π)T (M/X1 ∩X2). On the other hand, it is
easy to see that Imψ =

∑2
i=1 T (πi)T (M/Xi). Now, the result follows.

2.9. Lemma. Let C be a Serre subcategory of CR and let T : C → CR

be a covariant left exact functor. If p ∈ SpecR and M is a p-coprimary

R-module such that T (M) 6= 0, then T (M) is also p-coprimary.

Proof. Let a ∈ p. There is a positive integer n such that an idM = 0.
Since T is linear, it follows that

an idT (M) = a
nT (idM ) = T (a

n idM ) = 0.

Hence anT (M) = 0. Now, let a 6∈ p. Then the map M
a→ M is injective.

This yields that the map T (M)
a→ T (M) is also injective, because T is linear

and left exact.

2.10. Theorem. Let C be a Serre subcategory of CR and T : C → CR

be a primary functor on C . Let M ∈ C and let 0 =
⋂k
i=1Qi be a minimal

primary decomposition of the zero submodule of M , where M/Qi is pi-

coprimary. Suppose that R/pi ∈ C for i = 1, . . . , k and that T (R/pi) 6= 0
for i = 1, . . . , r, while this does not hold for i = r + 1, . . . , k.

(i) If T is covariant left exact , then 0 =
⋂r
i=1 T (Qi) is a minimal pri-

mary decomposition of the zero submodule of T (M) and the quotient mod-
ules T (M)/T (Qi) are pi-coprimary for i = 1, . . . , r.
(ii) If T is contravariant right exact , then T (M) =

∑r
i=1 T (πi)T (M/Qi)

is a minimal secondary representation of T (M), where πi : M → M/Qi,
i = 1, . . . , r, are the natural epimorphisms.
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Proof. (i) By applying the functor T to the exact sequence

0→ Qi →M →M/Qi → 0,
we get the exact sequence

0→ T (Qi)→ T (M)→ T (M/Qi).

Then by 2.9, T (Qi) is a pi-primary submodule of T (M) for i = 1, . . . , r.
Also,

T (Qi) = T (M) for i = r + 1, . . . , k.

It follows that 0 =
⋂r
i=1 T (Qi) is a primary decomposition of the zero sub-

module of T (M). Suppose that
r⋂

i=1
i6=j

T (Qi) ⊆ T (Qj)

for some 1 ≤ j ≤ r. Set Qj =
⋂k
i=1, i6=j Qi. Then Qj is a pj-coprimary

module as can be easily seen. Now, we have

T (Qj) =
r⋂

i=1
i6=j

T (Qi) =
r⋂

i=1

T (Qi) = 0.

This contradicts the choice of pj , and hence this decomposition is minimal.
(ii) T (M/Qi) is pi-secondary for i = 1, . . . , r and T (M/Qi) = 0 for

i = r+1, . . . , k. Hence T (πi)T (M/Qi) is a pi-secondary submodule of T (M)
for i = 1, . . . , r. Let Si = T (πi)T (M/Qi). It follows from 2.8(ii) that T (M) =∑r
i=1 Si is a secondary representation of T (M). Now, we show that this
representation is minimal. Suppose Sj ⊆

∑r
i=1, i6=j Si for some 1 ≤ j ≤ r.

By 2.8(ii),

T
(
M
/ k⋂

i=1
i6=j

Qi

)
=

r∑

i=1
i6=j

Si = T (M).

Therefore, it follows from the canonical exact sequence

0→
k⋂

i=1
i6=j

Qi →M →M
/ k⋂

i=1
i6=j

Qi → 0

that T (
⋂k
i=1, i6=j Qi) = 0. This yields a contradiction because the module⋂k

i=1, i6=j Qi is pj-coprimary and T is primary.

Suppose that T : CN → CR (resp. T : CA → CR) is a covariant (resp.
contravariant) left exact functor. It follows from [2, Remarks 1.3(i) and
2.4] that for a Noetherian (resp. Artinian) R-module N (resp. A), the set
of prime ideals which appears in a minimal primary decomposition of the
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zero submodule of T (N) (resp. T (A)) coincides with AssR(T (N)) (resp.
AssR(T (A))). Hence we deduce the following, which improves Theorem 1.4
of [2].

2.11. Corollary. Let T : CN → CR be a primary functor on CN . Let

N be a Noetherian R-module.

(i) If T is covariant left exact , then AssR(T (N)) = {p ∈ AssRN :
T (R/p) 6= 0}.
(ii) If T is contravariant right exact , then AttR(T (N)) = {p ∈ AssRN :

T (R/p) 6= 0}.
In view of the proof of 2.4, we deduce the following result.

2.12. Corollary. Let R be a Noetherian ring and M be an R-module.
Let N be a finitely generated R-module. Suppose that 0 =

⋂n
i=1Qi is a

minimal primary decomposition of the zero submodule of M . Then⋂
AnnRN⊆pi

HomR(N,Qi) is a minimal primary decomposition of the zero

submodule of HomR(N,M).

As an application, we establish [1, p. 267, Proposition 10].

2.13. Corollary. Let R be a Noetherian ring and let N be a finitely
generated R-module. Then for any R-module M ,

AssR(HomR(N,M)) = SuppN ∩AssRM.

Proof. We may express M as M =
⋃
i∈IMi, where {Mi}i∈I is the set of

finitely generated submodules of M . As N is finitely generated, the image
of any homomorphism f : N →M is finitely generated. It therefore follows
easily that

HomR(N,M) =
⋃

i∈I

HomR(N,Mi).

Now, AssRM =
⋃
i∈I AssRMi and

AssR(HomR(N,M)) =
⋃

i∈I

AssR(HomR(N,Mi)).

Hence the claim follows from 2.12.

The following result may be considered as a tool for determining primary
functors.

2.14. Proposition. Let C be a Serre subcategory of CR and let T , U
and V be functors from C to CR. Let ϕ : T → U and ψ : U → V be natural
transformations of functors. Suppose that T and V are primary on C and

that , for any p-coprimary R-module N in C with R/p ∈ C , the sequence

0→ T (N)
ϕN−→ U(N)

ψN−→ V (N)→ 0
is exact. Then U is also primary on C .
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Proof. Suppose the contrary is true. Then there exists a prime ideal p
with R/p ∈ C and p-coprimary R-modules N1, N2 ∈ C such that U(N1) = 0
and U(N2) 6= 0. From the exact sequence

0→ T (N2)→ U(N2)→ V (N2)→ 0,
we deduce that T (N2) 6= 0 or V (N2) 6= 0. But T and V are primary, so that
T (N1) 6= 0 or V (N1) 6= 0. Now, it follows from the exact sequence

0→ T (N1)→ U(N1)→ V (N1)→ 0
that in any case U(N1) 6= 0. This yields a contradiction.
Let T : C→C be a covariant (resp. contravariant) functor. We say that T

commutes with direct limits if for any direct system {Mi}i∈I of R-modules,
T (lim−→

i∈I

Mi) ∼= lim−→
i∈I

T (Mi)

(resp.
T (lim−→

i∈I

Mi) ∼= lim←−
i∈I

T (Mi)).

2.15. Theorem. Let R be a Noetherian ring and T : CR → CR be either

a covariant left exact or a contravariant right exact functor which commutes

with direct limits. Suppose T is primary on CN . Then T is also primary
on CR.

Proof. Suppose the contrary is true. Then there are a prime ideal p and
p-coprimary modulesM andM ′ such that T (M) 6= 0, while T (M ′) = 0. We
may write M = lim−→i∈IMi, where Mi’s are finitely generated submodules of
M . Hence T (M) ∼= lim−→i∈I T (Mi) or T (M) ∼= lim←−i∈I T (Mi) according as T is
covariant or contravariant. Therefore there exists i ∈ I such that T (Mi) 6= 0.
Since T is primary on CN , it follows that T (R/p) 6= 0. AsM ′ is p-coprimary,
it has a submodule isomorphic to R/p. Thus there exists an exact sequence

0→ R/p→M ′.

Now, by applying T to this sequence, we get T (M ′) 6= 0, which is a contra-
diction.

2.16. Example. Let R be a Noetherian ring. Let E and F be an injective
and a flat R-module respectively. The functors HomR(·, E) and F ⊗R (·) are
primary on CR. Note that these functors are primary on CN , by 2.7.

3. Non-exact secondary functors. All examples of secondary func-
tors which we considered up to now are exact. [2, Example 2.2] provides
examples of exact functors which are not secondary. In this section, we give
some examples of non-exact secondary functors.
One may prove the following extended version of [2, Lemma 2.3], by the

same proof.
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3.1. Lemma. Let C be a Serre subcategory of CR and T : C → CR be a

functor. Let M ∈ C and X1, X2 be submodules of M .

(i) If T is covariant right exact , then T (i)T (X1 +X2) = T (i1)T (X1) +
T (i2)T (X2), where ij : Xj → M , j = 1, 2, and i : X1 + X2 → M are the
natural monomorphisms.

(ii) If T is contravariant left exact , then T (M/X1 +X2) = T (M/X1)∩
T (M/X2).

With the comment preceding 2.11 in mind, one may deduce the following
improvement of [2, Theorem 2.5], by employing arguments similar to the
proof of 2.10 and applying 3.1.

3.2. Theorem. Let T : CA → CR be a secondary functor on CA. Let

A =
∑k
i=1 Si be a minimal secondary representation of the Artinian R-

module A, where Si is pi-secondary. Suppose that T (Si) 6= 0 for i = 1, . . . , r,
while T (Si) = 0 for i = r + 1, . . . , k.

(i) If T is covariant right exact , then T (A) =
∑r
j=1 T (ij)T (Sj), where

ij : Sj → A, j = 1, . . . , k, are inclusion maps, is a minimal secondary
representation of T (A) and so

AttR(T (A)) = {p ∈ AttRA : T (S) 6= 0 for some
(equivalently all) p-secondary Artinian R-modules S}.

(ii) If T is contravariant left exact , then 0 =
⋂r
i=1 T (A/Si) is a minimal

primary decomposition of the zero submodule of T (A) and so

AssR(T (A)) = {p ∈ AttRA : T (S) 6= 0 for some
(equivalently all) p-secondary Artinian R-modules S}.

The next result may be regarded as a slight generalization of [4, Propo-
sition 5.2].

3.3. Corollary. Let N be a finitely generated R-module. Then the
functor N⊗R(·) is secondary on CA and hence, for any Artinian R-module A,

AttR(N ⊗R A) = AttRA ∩ SuppN.
Proof. First, we will show that for a p-secondary Artinian R-module S,

N⊗RS 6= 0 if and only if AnnRN ⊆ p. This will prove the first assertion. By
2.1,N⊗RS 6= 0 if and only if S 6= (AnnRN)S. It follows from [5, Proposition
3.4] that S = (AnnRN)S if and only if S = xS for some x ∈ AnnRN .
(Note that in the proof of [5, Proposition 3.4], there is no need for R to be
Noetherian.) Hence N ⊗R S 6= 0 if and only if AnnRN ⊆ p. The second
assertion follows from the first one and 3.2(i).

By using the same method as in the proof of 2.14, one may prove the
following result.
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3.4. Proposition. Let C be a Serre subcategory of CR and let T , U
and V be functors from C to CR. Let ϕ : T → U and ψ : U → V be natural
transformations of functors. Suppose that T and V are secondary on C and

that , for any p-secondary R-module S in C , the sequence

0→ T (S)
ϕS−→ U(S)

ψS−→ V (S)→ 0
is exact. Then U is also secondary on C .

In the remainder of this section, we assume that R is a semi-local Noethe-
rian complete ring and that E is the minimal injective cogenerator of R. Put
D(·) = HomR(·, E).

3.5. Proposition. Let R be a semi-local Noetherian complete ring. Sup-
pose that T : CN → CR is a primary functor on CN . Then both functors

U = T (D(·)) : CA → CR and V = D(T (D(·))) : CA → CR are secondary

on CA.

Proof. Let S1 and S2 be Artinian p-secondaryR-modules. Then it follows
from [5, Theorem 1.6] that Ni = D(Si), i = 1, 2, are Noetherian p-coprimary
R-modules. Thus T (N1) = 0 if and only if T (N2) = 0. Therefore U(S1) = 0
if and only if U(S2) = 0. Similarly, V (S1) = 0 if and only if V (S2) = 0. Note
that for an R-module M , D(M) = 0 if and only if M = 0.

3.6. Example. Let R be a semi-local Noetherian complete ring. Let M
be an R-module. Then the functor HomR(M, ·) is secondary on CA. To see
this, note that A = D(D(A)) for any Artinian R-module A.

The next result generalizes [2, Lemma 2.7(i)] (see 1.3(ii)).

3.7. Proposition. Let the situation be as in 3.5. Let T : CA → CR be

a functor which is either contravariant right exact or covariant left exact.

Then T is secondary on CA.

Proof. Put U = T (D(·)). Then U is a functor from CN to CR and it
is either covariant right exact or contravariant left exact. In each case U is
primary on CN , by 2.7. Let p be a prime ideal of R and S1 and S2 be two
Artinian p-secondary R-modules. Then Ni = D(Si), i = 1, 2, are Noetherian
p-coprimary R-modules, and so U(N1) = 0 if and only if U(N2) = 0. But
U(Ni) = T (Si), i = 1, 2 (see [5, Theorem 1.6]). Therefore T (S1) = 0 if and
only if T (S2) = 0.
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