SOME REMARKS ON QUASI-COHEN SETS

ВЪ

PASCAL LEFÈVRE and DANIEL LI (Lens)

Abstract. We are interested in Banach space geometry characterizations of quasi-Cohen sets. For example, it turns out that they are exactly the subsets E of the dual of an abelian compact group G such that the canonical injection $C(G)/C_{E^c}(G) \hookrightarrow L^2_E(G)$ is a 2-summing operator. This easily yields an extension of a result due to S. Kwapień and A. Pełczyński. We also investigate some properties of translation invariant quotients of L^1 which are isomorphic to subspaces of L^1 .

0. Introduction. Let G be an infinite metrizable compact abelian group, equipped with its normalized Haar measure dx, and Γ its dual group (discrete and countable).

It is well known that subsets Λ of Γ for which $C_{\Lambda}(G)$ is complemented in C(G) are those for which there exists a measure μ such that $\widehat{\mu} = 1$ on Λ and $\widehat{\mu} = 0$ on $\Gamma \setminus \Lambda$. Due to the characterization of P. Cohen [C] of these sets, S. Kwapień and A. Pełczyński [K-P] called such sets Cohen sets, and introduced quasi-Cohen sets as the subsets Λ of Γ for which there exists a measure μ such that $|\widehat{\mu}| \geq 1$ on Λ and $\widehat{\mu} = 0$ on $\Gamma \setminus \Lambda$. Every Cohen set is then a quasi-Cohen set, but S. Drury's construction [D] shows that the complement of any Sidon set is a quasi-Cohen set, though it is not a Cohen set (if this Sidon set is infinite). S. Kwapień and A. Pełczyński characterized the quasi-Cohen sets Λ by properties of operators acting on the spaces $C_{\Lambda}(G)$ or $L_{\Lambda}^{p}(G)$, p = 1 or 2 ([K-P], Th. 2.1, 2.2) and showed that Λ is a quasi-Cohen set whenever $C_{\Lambda}(G)$ is a quotient of an \mathcal{L}^{∞} -space ([K-P], Prop. 2.2). It seems that these sets have not been investigated since then (see [H-M-P], Chap. III, however).

The purpose of this note is to give some new characterizations of quasi-Cohen sets Λ in terms of factorization properties of the canonical injection from $C_{\Lambda}(G)$ into $L_{\Lambda}^{1}(G)$ and of 2-summing properties of the canonical injection from $C(G)/C_{\Lambda^{c}}(G)$ to $L_{\Lambda}^{2}(G)$.

²⁰⁰⁰ Mathematics Subject Classification: 42A20, 42A55, 42C10, 43A46, 43A77. Key words and phrases: summing operators, quasi-Cohen sets, quotient of \mathcal{L}^1 , GL-spaces.

1. Notations and definitions. In this paper, G will be an infinite metrizable compact abelian group and Γ its dual group (discrete and countable). In the case of the circle group $G = \mathbb{T}$, Γ is identified with \mathbb{Z} by the map $p \mapsto e_p$ with $e_p(x) = e^{2i\pi px}$.

M(G) will denote the space of complex regular Borel measures over G, equipped with the total variation norm. If $\mu \in M(G)$, its Fourier transform at the point γ is defined by

$$\widehat{\mu}(\gamma) = \int_{G} \gamma(-x) \, d\mu(x).$$

As usual, the space C(G) and the Lebesgue spaces $L^p(G)$, $1 \le p \le \infty$, related to the Haar measure, are identified with linear subspaces of M(G) by the map $f \mapsto f dx$.

For $B \subset M(G)$ and $\Lambda \subset \Gamma$, we set

$$B_{\Lambda} = \{ \mu \in B \mid \forall \gamma \notin \Lambda, \ \widehat{\mu}(\gamma) = 0 \}.$$

 B_{Λ} is the set of elements of B whose spectrum is contained in Λ .

The complement $\Gamma \setminus E$ of any subset of Γ will be denoted by E^c . If $x \in X$ and $Y \subset X$, we denote by \dot{x} the class of x in the quotient X/Y.

We recall that a subset Λ of Γ is said to be a *Sidon set* if there exists C > 0 such that $\sum_{\gamma \in \Lambda} |\widehat{f}(\gamma)| \leq C ||f||_{\infty}$ for all $f \in C_{\Lambda}(G)$.

DEFINITION 1.1. A subset Λ of Γ is said to be a *Cohen set* if there exists a measure $\mu \in M_{\Lambda}(G)$ such that

$$\widehat{\mu}(\gamma) = 1$$
 for every $\gamma \in \Lambda$;

or, what is the same, if $C_{\Lambda}(G)$ is complemented in C(G).

DEFINITION 1.2. A subset Λ of Γ is a quasi-Cohen set if there exists a measure $\mu \in M_{\Lambda}(G)$ such that

$$|\widehat{\mu}(\gamma)| \ge 1$$
 for every $\gamma \in \Lambda$.

It should be noticed that we can actually assume that $\widehat{\mu}(\gamma) \geq 1$ for all $\gamma \in E$, by replacing μ by $\mu * \widetilde{\mu}$ (where $\widetilde{\mu}(A) = \overline{\mu(-A)}$).

It is clear that every Cohen set is a quasi-Cohen set. The converse is false: it has been observed by I. Glicksberg [G] that S. Drury's [D] construction shows that the complement S^c of every Sidon set S is a quasi-Cohen set; however, it is not a Cohen set (at least if S is infinite), since ℓ^1 is not isomorphic to any complemented subspace of C(G). In fact, it has been observed by M. Déchamps-Gondim that, as a consequence of the paper of B. Host and F. Parreau [H-P], any subset Λ of Γ for which both Λ and Λ^c are quasi-Cohen sets is actually Cohen (see [K-P], p. 317 or [H-M-P], Chap. III). S. Kwapień and A. Pełczyński also proved that: E is a Sidon set

if and only if every subset of $E \subset \Gamma$ is the complement of a quasi-Cohen set ([K-P], Th. 3.2).

We also recall that a bounded operator T from a Banach space X to a Banach space Y is said to be *p-summing* if there is a constant C > 0 such that for any finite family of vectors (x_n) in X,

$$\left(\sum_{n} \|T(x_n)\|^p\right)^{1/p} \le C \sup_{\substack{\chi \in X^* \\ \|\chi\| = 1}} \left(\sum_{n} |\chi(x_n)|^p\right)^{1/p}.$$

We denote by $\pi_p(T)$ the smallest such constant C.

DEFINITION 1.3. A Banach space X is said to be a GT-space if it satisfies the Grothendieck theorem: every bounded operator from X into a Hilbert space is 1-summing.

REMARK 1.4. It is known (see [P], Prop. 6.2) that X is a GT-space if and only if every bounded operator from X^* into a cotype 2 space is 2-summing.

DEFINITION 1.5. A Banach space X is said to be a GL-space (or to have the GL property) if it has the Gordon–Lewis property: every 1-summing operator from X into an arbitrary Banach space factorizes through an L^1 -space.

The reader has to watch out for the different terminology on GL-spaces that can be found in the literature. Here, we adopt the terminology that can be found in the book of G. Pisier ([P], Def. 8.13).

We introduce the following

DEFINITION 1.6. For $\Lambda \subset \Gamma$, the space $C_{\Lambda}(G)$ will said to be a $\mathrm{GL}^{\mathrm{inv}}$ -space if the canonical injection from $C_{\Lambda}(G)$ to $L_{\Lambda}^{1}(G)$ factorizes through an L^{1} -space.

This definition is different from [K-P], Def. 5.1. Notice that a GL-space is clearly a $\mathrm{GL^{inv}}$ -space.

Finally, we introduce the following notion:

DEFINITION 1.7. Let $E \subset \Gamma$ and X be a Banach space. Let $\varphi: C(G)/C_{E^c}(G) \to X$ be a bounded operator. We say that the pair (E,X) is φ -admissible if there exists a constant $\delta > 0$ such that for all $\gamma \in E$, $\|\varphi(\dot{\gamma})\| \geq \delta$, where $\dot{\gamma}$ is the class of γ in $C(G)/C_{E^c}(G)$.

NOTATION 1.8. We denote by $i_{2,E}$ the projection

$$C(G)/C_{E^c}(G) \to L^2(G), \quad \dot{f} \mapsto \sum_{\gamma \in E} \widehat{f}(\gamma)\gamma.$$

Remark 1.9. For any $E \subset \Gamma$, the pair $(E, L^2(G))$ is $i_{2,E}$ -admissible.

2. Quasi-Cohen sets. The main theorem of this section is the following

Theorem 2.1. Let $E \subset \Gamma$. The following assertions are equivalent:

- (i) E is a quasi-Cohen set.
- (ii) The canonical injection from $C_E(G)$ to $L_E^1(G)$ factorizes through the canonical injection from $L^2(G)$ to $L^1(G)$.
- (iii) The canonical injection from $C_E(G)$ to $L_E^1(G)$ factorizes through an operator $T: Y \to Z$, where Z is a GT-space and Y^* has cotype 2.
- (iv) There exists a Banach space X such that the pair (E, X) is φ -admissible, where φ is a 2-summing operator.

As L^2 has cotype 2, every operator which is p-summing for some $p \geq 2$, with range in L^2 , is actually 2-summing; hence an immediate corollary is the following:

THEOREM 2.2. Let $E \subset \Gamma$. The operator $i_{2,E}: C(G)/C_{E^c}(G) \to L^2(G)$ is p-summing for some $p \geq 2$ if and only if E is a quasi-Cohen set.

Proof of Theorem 2.1. (i) \Rightarrow (ii). There exists a measure $\mu \in M_E(G)$ satisfying $|\widehat{\mu}(\gamma)| \geq 1$ for every $\gamma \in E$. Setting $m_{\gamma} = \widehat{\mu}(\gamma)^{-1}$ for every $\gamma \in E$, we have $m = (m_{\gamma})_{\gamma \in E} \in \ell^{\infty}(E)$ with $||m||_{\infty} \leq 1$. Thus m defines a bounded operator $T_m : L_E^2(G) \to L_E^2(G)$ with $T_m(f) = \sum_{\gamma \in E} m_{\gamma} \widehat{f}(\gamma) \gamma$. Now the result follows from the factorization

$$C_E(G) \hookrightarrow L_E^2(G) \xrightarrow{T_m} L_E^2(G) \hookrightarrow L^2(G) \hookrightarrow L^1(G) \xrightarrow{*\mu} L_E^1(G)$$

where $*\mu$ is convolution by μ and the unspecified maps are the natural injections.

- (ii) \Rightarrow (iii) is trivial since L^1 is a GT-space and L^2 has cotype 2.
- (iii) \Rightarrow (iv). By assumption, we have the following factorization for the canonical injection of $C_E(G)$ into $L_E^1(G)$:

$$C_E(G) \xrightarrow{\alpha} Y \xrightarrow{T} Z \xrightarrow{\beta} L_E^1(G)$$

where Y^* has cotype 2, Z is a GT-space and T, α , β are bounded operators. By duality, we get the following factorization for the canonical injection $L^{\infty}(G)/L_{E^c}^{\infty}(G)$ into $M(G)/M_{E^c}(G)$:

$$L^{\infty}(G)/L_{Fc}^{\infty}(G) \xrightarrow{\beta^*} Z^* \xrightarrow{T^*} Y^* \xrightarrow{\alpha^*} M(G)/M_{Fc}(G).$$

Thanks to Remark 1.4, the operator T^* is 2-summing. Hence, the canonical injection from $L^{\infty}(G)/L_{E^c}^{\infty}(G)$ to $M(G)/M_{E^c}(G)$ is also 2-summing. A fortiori, the canonical injection from $C(G)/C_{E^c}(G)$ to $M(G)/M_{E^c}(G)$ is 2-summing. As $\|\dot{\gamma}\|_{M(G)/M_{E^c}(G)}=1$ for any $\gamma\in E$, we have proved (iv) with $X=M(G)/M_{E^c}(G)$.

 $(iv)\Rightarrow(i)$. The argument with the Pietsch domination theorem which simplifies the original one was suggested to us by G. Pisier. There exists a

probability measure ν on the unit ball of the dual of $C(G)/C_{E^c}(G)$, i.e. on the unit ball of $M_E(G)$, such that for any $h \in C(G)/C_{E^c}(G)$,

$$\|\varphi(h)\| \le \pi_2(\varphi) \Big(\int_{B_{M_E(G)}} |\langle \zeta, h \rangle|^2 d\nu(\zeta) \Big)^{1/2}$$

where \langle , \rangle denotes the duality bracket. It should be noted that, for convenience, we actually use $\langle \zeta, f \rangle = f * \zeta(0)$ for the duality between $M_E(G)$ and $C(G)/C_{E^c}(G)$.

Testing the previous inequality at $\dot{\gamma}$, with $\gamma \in E$, we obtain

$$0 < \delta^2 \le \|\varphi(\dot{\gamma})\|^2 \le \pi_2(\varphi)^2 \int_{B_{M_E(G)}} |\zeta * \gamma(0)|^2 d\nu(\zeta)$$
$$= \pi_2(\varphi)^2 \int_{B_{M_E(G)}} |\widehat{\zeta}(\gamma)|^2 d\nu(\zeta).$$

We then define the measure μ as the integral (in the weak star sense)

$$\mu = \int\limits_{B_{M_E(G)}} (\zeta * \widetilde{\zeta}) \, d\nu(\zeta)$$

where, as usual, $\widetilde{\zeta}(\Omega) = \overline{\zeta(-\Omega)}$ for any Borel set $\Omega \subset G$. Thus, we have $\widetilde{\zeta} \in M(G)$, $\|\widetilde{\zeta}\| = \|\zeta\|$ and $\widehat{\widetilde{\zeta}} = \overline{\widehat{\zeta}}$ for any $\zeta \in M(G)$.

The measure μ is in $M_E(G)$. Moreover, for any $\gamma \in E$ we have

$$\begin{split} \widehat{\mu}(\gamma) &= \mu * \gamma(0) = \int\limits_{B_{M_E(G)}} \zeta * \widetilde{\zeta} * \gamma(0) \, d\nu(\zeta) = \int\limits_{B_{M_E(G)}} \widehat{\zeta}(\gamma) \cdot \widehat{\widetilde{\zeta}}(\gamma) \, d\nu(\zeta) \\ &= \int\limits_{B_{M_E(G)}} |\widehat{\zeta}(\gamma)|^2 \, d\nu(\zeta). \end{split}$$

This leads to $\pi_2(\varphi)^2 \widehat{\mu}(\gamma) \geq \delta^2$. As the measure $\pi_2(\varphi)^2 \mu$ is in $M_E(G)$, this exactly means that E is a quasi-Cohen set.

3. GL-spaces and quotients of \mathcal{L}^{∞} . Theorem 2.1 allows us to extend a result on quotients of \mathcal{L}^{∞} contained in [H-M-P] and [K-P], which is linked to a problem raised by S. Kwapień and A. Pełczyński:

Let $E \subset \Gamma$ be a quasi-Cohen set. Is $C_E(G)$ isomorphic to a quotient of an \mathcal{L}^{∞} -space?

Concerning the converse, S. Kwapień and A. Pełczyński noticed that if there exists a translation invariant surjection from C(G) to $C_E(G)$ then E is a Cohen set [K-P]. This is based on a result of B. Host and F. Parreau on closed ideals of $L^1(G)$. Without the translation invariance assumption, they proved that E is a quasi-Cohen set if $C_E(G)$ is isomorphic to a quotient of a C(K)-space.

The following result is a corollary of Theorem 2.1.

THEOREM 3.1. Let $E \subset \Gamma$. If $C_E(G)$ is a $\operatorname{GL}^{\operatorname{inv}}$ -space and $M(G)/M_{E^c}(G)$ has cotype 2 then E is a quasi-Cohen set.

Proof. Consider the canonical injection from $C_E(G)$ to $L_E^1(G)$. As $C_E(G)$ is a $\operatorname{GL}^{\operatorname{inv}}$ -space, it factorizes through an L^1 -space by an operator $A:C_E(G)\to L^1$. But $C_E(G)^*$ and L^1 have cotype 2 and L^1 is a GL-space, so by a result of G. Pisier ([P], Th. 8.17), A factorizes through an L^2 -space. Hence the canonical injection from $C_E(G)$ to $L_E^1(G)$ factorizes through an operator from L^2 to L^1 . By Theorem 2.1(iii), E is a quasi-Cohen set.

Theorem 3.1 leads to recovering some known results:

COROLLARY 3.2 ([H-M-P], [K-P]). Let $E \subset \Gamma$. If $C_E(G)$ is isomorphic to a quotient of a C(K)-space then E is a quasi-Cohen set.

Proof. If $C_E(G)$ is isomorphic to a quotient of a C(K)-space then $C_E(G)$ is a GL-space and $C_E(G)^*$ is isomorphic to a subspace of an L^1 -space, hence has cotype 2. Theorem 3.1 gives the result. \blacksquare

The second part of the following corollary is well known but usually proved using the Paley inequality.

Corollary 3.3. The disk algebra is not a $\mathrm{GL^{inv}}$ -space, hence is not a GL -space.

Proof. As the quotient $M(\mathbb{T})/H^1$ has cotype 2 (this is due to J. Bourgain, see [P], Th. 6.17), if the disk algebra were a $\operatorname{GL}^{\operatorname{inv}}$ -space, this would imply that $\mathbb N$ is a quasi-Cohen set. This is clearly false by the classical Riesz theorem: every measure with spectrum contained in $\mathbb N$ is absolutely continuous with respect to the Haar-Lebesgue measure, hence its Fourier coefficients tend to zero at infinity ($\mathbb N$ is a so-called Rajchman set).

More generally, we notice the following consequence of Theorem 3.1, which produces examples of spaces without the GL-property:

COROLLARY 3.4. For any $E \subset \Gamma$, which is not a quasi-Cohen set, such that $L^1(G)/L^1_{E^c}(G)$ has cotype 2, the space $C_E(G)$ does not have the GL-property.

For example, this includes the case of the disk algebra.

Remark 3.5. This also leads to the following examples: if A is a $\Lambda(1)$ -set (i.e. L_A^1 is reflexive) but not Sidon, then there exists $B \subset A$ such that B^c is not quasi-Cohen (else A would be Sidon by the result of S. Kwapień and A. Pełczyński quoted in the introduction). Then L^1/L_B^1 has cotype 2 ([P], p. 78) and fails the GL-property. Moreover, if A is chosen $\Lambda(2)$ and still not Sidon then L_B^1 is even isomorphic to a Hilbert space.

4. Some remarks on quotients of L^1 **isomorphic to subspaces of** L^1 **-spaces.** We are interested in this section in results in the spirit of 3.2 in terms of quotients of L^1 . There is a characterization (with summing operators) of the sets $\Lambda \subset \Gamma$ such that $L^1(G)/L^1_{\Lambda^c}(G)$ is isomorphic to a subspace of an L^1 -space:

Theorem 4.1. Let $\Lambda \subset \Gamma$. The following assertions are equivalent:

- (i) $L^1(G)/L^1_A(G)$ is isomorphic to a subspace of an L^1 -space.
- (ii) The canonical injection from $C(G)/C_{\Lambda}(G)$ to $L^{1}(G)/L^{1}_{\Lambda}(G)$ is 1-summing.
- (iii) There is a probability measure ν on the unit ball B of $M_{\Lambda^c}(G)$ such that $L^1(G)/L^1_{\Lambda}(G)$ is isomorphic to a subspace of $L^1(B\times G,\nu\otimes dx)$. Moreover the isomorphism can be taken as T(f)=F with $F(\zeta,\cdot)=f*\zeta$ for all $f\in L^1(G)/L^1_{\Lambda}(G),\ \zeta\in B$.
- *Proof.* (i) \Rightarrow (ii). Thanks to Theorem 9.12.b of [D-J-T] and as the canonical injection from $C(G)/C_{\Lambda}(G)$ to $L^{1}(G)/L^{1}_{\Lambda}(G)$ has a 1-summing adjoint, it is itself 1-summing.
- (ii) \Rightarrow (iii). We use the Pietsch domination theorem: there exists a probability measure ν on B and a constant C such that for any $h \in C(G)/C_{\Lambda}(G)$,

$$||h||_{L^1/L^1_A} \le C \int_B |\zeta * h(0)| \, d\nu(\zeta).$$

Applying this inequality to h_x for every $x \in G$, where $h_x(t) = h(x-t)$ with additive notation of the group operation on G (notice that $||h_x||_{L^1/L^1_A}$) and integrating over G with respect to the Haar measure, we obtain

$$||h||_{L^1/L^1_A} \le C \int_{G} \int_{B} |\zeta * h(x)| d\nu(\zeta) dx = C||H||_{L^1(\nu \otimes dx)}$$

where $H(\zeta, x) = h * \zeta(x)$.

As obviously $||H||_{L^1(\nu \otimes dx)} \leq ||h||_{L^1/L^1_A}$, the quotient $L^1(G)/L^1_A(G)$ is then isomorphic to the space $Z = \{H \in L^1(\nu \otimes dx) \mid \exists h \in L^1(G)/L^1_A(G), H(\zeta, \cdot) = h * \zeta, \zeta \in B\}.$

(iii)⇒(i) is trivial. ■

REMARK 4.2. Suppose that we are in the situation of the preceding theorem. Then, by duality, $L_{\Lambda^c}^{\infty}(G)$ is isomorphic to the quotient $L^{\infty}(B\times G)/Z^{\perp}$ by the map $F(\zeta,x)\in L^{\infty}(B\times G)\mapsto \int_B \zeta*F_{\zeta}\,d\nu(\zeta)\in L_{\Lambda^c}^{\infty}(G)$ where $F_{\zeta}(x)=F(\zeta,x)$. Hence, by approximation, $C_{\Lambda^c}(G)$ is isomorphic to a quotient of $C(B\times G)$.

The following corollary shows the link between this section and quasi-Cohen sets. Corollary 4.3. Suppose that $L^1(G)/L^1_{\Lambda}(G)$ is isomorphic to a subspace of an L^1 -space. Then Λ^c is a quasi-Cohen set.

Proof. The preceding remark and Corollary 3.2 suffice to prove the claim. Another argument is: the preceding theorem asserts that the canonical injection from $C(G)/C_{\Lambda}(G)$ to $L^{1}(G)/L^{1}_{\Lambda}(G)$ is 1-summing, hence 2-summing. Theorem 2.1(iv) then gives the result.

We now state some properties of such sets.

Theorem 4.4. Let $\Lambda \subset \Gamma$ be such that $L^1(G)/L^1_{\Lambda}(G)$ is isomorphic to a subspace of an L^1 -space. Then every $f \in C_{\Lambda^c}(G)$ has a decomposition $f = \sum_j \mu_j * y_j$, where $\mu_j \in L^1_{\Lambda^c}(G)$, $y_j \in C(G)$ and $\sum_j \|\mu_j\| \cdot \|y_j\| < \infty$. Hence, any Fourier multiplier $m = (m_\gamma)_{\gamma \in \Gamma}$ from C(G) to $C(G)/C_{\Lambda}(G)$ is induced by a measure: there exists a measure $\mu \in M(G)$ such that $\widehat{\mu}(\gamma) = m_\gamma$ for all $\gamma \notin \Lambda$.

Proof. First, we can factorize f as $f_1 * f_2$ where $f_1 \in L^1(G)$ and $f_2 \in C_{\Lambda^c}(G)$. By Theorem 4.1(ii), the canonical injection from $C(G)/C_{\Lambda}(G)$ to $L^1(G)/L^1_{\Lambda}(G)$ is 1-summing, hence its composition T_2 with the operator from $L^1(G)/L^1_{\Lambda}(G)$ to C(G) of convolution by f_2 is also 1-summing. By [D-J-T], Th. 5.7, T_2 is 1-integral. As the operator T_1 from C(G) to C(G) of convolution by f_1 is compact, the composition $T = T_1 \circ T_2$ is nuclear. Notice that T is in fact convolution by f from $C(G)/C_{\Lambda}(G)$ to C(G).

Therefore, there exists some measure $\mu_j \in M_{\Lambda^c}(G)$ (the dual space of $C(G)/C_{\Lambda}(G)$) and $y_j \in C(G)$ such that for every $h \in C(G)/C_{\Lambda}(G)$, $T(h) = \sum_j \mu_j * h(0)y_j$, where $\sum_j \|\mu_j\| \cdot \|y_j\| < \infty$. The last condition implies that $\sigma = \sum_j \mu_j * y_j \in C_{\Lambda^c}(G)$. Thus, $\widehat{T(\gamma)}(\gamma) = \sum_j \widehat{\mu}_j(\gamma)\widehat{y}_j(\gamma) = \widehat{\sigma}(\gamma)$ for all $\gamma \notin \Lambda$. Hence $f = \sigma$.

The second part is standard: for all Fourier multipliers m from C(G) to $C(G)/C_{\Lambda}(G)$, $f*m = \sum_{j} \mu_{j} * y_{j} * m$ does define a function in C(G) and even in $C_{\Lambda^{c}}(G)$. Hence, by duality, m belongs to the dual $M(G)/M_{\Lambda}(G)$ of $C_{\Lambda^{c}}(G)$. So it is induced by a measure.

Remark 4.5. By duality, the same conclusion holds in the second part of the theorem for every Fourier multiplier from $M_{A^c}(G)$ into itself.

Therefore, the Paley projection viewed from H^1 (i.e. $M_{\mathbb{N}}$) into itself produces an immediate example of a multiplier (by the characteristic function of the set $\{2^n\}$) which is surely not induced by a measure. This shows the known fact that L^1/H^1 is not isomorphic to a subspace of L^1 .

REMARK 4.6. If one showed that L^1/L_S^1 is not isomorphic to a subspace of L^1 when S is a Sidon set, it "would suffice", together with the previous results, to produce a Fourier multiplier from $M_{S^c}(G)$ into itself which is not induced by a measure.

5. Descriptive point of view. The difficulty of the study of classes of subsets of Γ can be viewed through descriptive set theory (see [K-L], [T], [Go]). We have

PROPOSITION 5.1. The set \mathcal{QC} of all quasi-Cohen subsets of Γ is analytic in the set $\mathcal{P}(\Gamma)$ of all subsets of Γ , equipped with the product topology on $\{0,1\}^{\Gamma}$.

Proof. Let $\Lambda \in \mathcal{QC}$. This means that there exists $\mu \in M_{\Lambda}(G)$ such that $\widehat{\mu}(\gamma) \geq 1$ for every $\gamma \in \Lambda$. Let us introduce the sets

$$D_K = \{ (\Lambda, \mu) \in \mathcal{P}(\Gamma) \times M_{\Lambda}(G) \mid ||\mu|| \leq K; \ \forall \gamma \in \Lambda, \ \widehat{\mu}(\gamma) \geq 1 \}$$
$$\subset \mathcal{P}(\Gamma) \times M(G).$$

Bounded subsets of M(G) are w^* -metrizable. We will show that D_K is closed. Indeed, if (Λ_n, μ_n) converges to (Λ, μ) , then for every $\gamma \in \Gamma$, there exists some n_{γ} such that for all $n \geq n_{\gamma}$, $\gamma \in \Lambda \Leftrightarrow \gamma \in \Lambda_n$. Moreover $\widehat{\mu}_n(\gamma) \to \widehat{\mu}(\gamma)$ as $n \to \infty$; so we conclude that $\mu \in M_{\Lambda}(G)$.

On the other hand, if $\gamma \in \Lambda$, then $\gamma \in \Lambda_n$ for all $n \geq n_{\gamma}$, hence $\widehat{\mu}_n(\gamma) \geq 1$. Letting n tend to infinity gives $\widehat{\mu}(\gamma) \geq 1$.

We conclude that \mathcal{QC} is a projection of the F_{σ} set $\bigcup_{K\geq 1} D_K$, hence it is analytic. \blacksquare

Of course, it would be interesting to know whether or not QC is a Borel set.

REFERENCES

- [C] P. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199–205.
- [D] S. Drury, Sur les ensembles de Sidon, C.R. Acad. Sci. Paris 271 (1970), 162–163.
- [D-J-T] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, 1995.
- [G] I. Glicksberg, Fourier-Stieljes transforms with an isolated value, in: Lecture Notes in Math. 266, Springer, 59–72.
- [Go] G. Godefroy, On coanalytic families of sets in harmonic analysis, Illinois J. Math 35 (1991), 241–249.
- [H-P] B. Host et F. Parreau, Sur un problème de I. Glicksberg: les idéaux fermés de type fini de M(G), Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 143–164.
- [H-M-P] B. Host, J. F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135–136 (1986).
- [K-L] A. Kechris and G. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987.
- [K-P] S. Kwapień and A. Pełczyński, Absolutely summing operators and translation invariant spaces of functions on compact abelian groups, Math. Nachr. 94 (1980), 303–340.

- [P] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986.
- [T] V. Tardivel, Ensembles de Riesz, Trans. Amer. Math. Soc. 305 (1988), 167–174.

Faculté Jean Perrin Université d'Artois rue Jean Souvraz S.P. 18 62307 Lens Cedex, France

E-mail: lefevre@euler.univ-artois.fr daniel.li@euler.univ-artois.fr

Received 3 November 2000

(3992)