COLLOQUIUM MATHEMATICUM

SOME ORTHOGONAL DECOMPOSITIONS OF SOBOLEV SPACES AND APPLICATIONS

BY
H. BEGEHR (Berlin) and Yu. DUBINSKIĬ (Moscow)

Abstract

Two kinds of orthogonal decompositions of the Sobolev space ${ }_{\circ}^{\circ}{ }_{2}^{1}$ and hence also of W_{2}^{-1} for bounded domains are given. They originate from a decomposition of \mathscr{W}_{2}^{1} into the orthogonal sum of the subspace of the Δ^{k}-solenoidal functions, $k \geq 1$, and its explicitly given orthogonal complement. This decomposition is developed in the real as well as in the complex case. For the solenoidal subspace $(k=0)$ the decomposition appears in a little different form.

In the second kind decomposition the Δ^{k}-solenoidal function spaces are decomposed via subspaces of polyharmonic potentials. These decompositions can be used to solve boundary value problems of Stokes type and the Stokes problem itself in a new manner. Another kind of decomposition is given for the Sobolev spaces W_{p}^{m}. They are decomposed into the direct sum of a harmonic subspace and its direct complement which turns out to be $\Delta\left(W_{p}^{m+2} \cap \stackrel{\circ}{W}_{p}^{2}\right)$. The functions involved are all vector-valued.

1. Introduction. A series of decompositions of the Sobolev space $\stackrel{\circ}{W}_{2}^{1}$ and its conjugate W_{2}^{-1} are given which are connected with the solenoidal and potential subspaces. There are two well known such decompositions of the Lebesgue space L_{2} (see [12]), namely if $G \subset \mathbb{R}^{n}, n \geq 1$, is a smooth enough domain then

$$
L_{2}=S_{2} \oplus \nabla \stackrel{\circ}{W}_{2}^{1}
$$

with

$$
S_{2}=\left\{u_{s} \in L_{2}: \operatorname{div} u_{s}=0 \text { in } G\right\},
$$

and

$$
L_{2}=\stackrel{\circ}{S}_{2} \oplus \nabla H_{1} \oplus \nabla \stackrel{\circ}{W}_{2}^{1}
$$

where $\stackrel{\circ}{S}_{2}$ is the closure in L_{2} of the set of solenoidal functions in $C_{0}^{\infty}(G)$ and $H_{1} \subset W_{2}^{1}$ is the subspace of harmonic potentials. Here the derivatives are understood in the distributional sense, i.e. in \mathcal{D}^{\prime}.

[^0]The decompositions given in this paper can be viewed as generalizations of both these decompositions. They are connected with the orthogonality not only to "pure" solenoidal subspaces but also to so-called Δ^{k} solenoidal subspaces. The latter consist of those elements $u \in \dot{W}_{2}^{1}$ which satisfy $\operatorname{div} \Delta^{k} u=0$ in G in the sense of \mathcal{D}^{\prime}. Here k is any natural number. The particular case $k=1$ was briefly discussed in $[4,5]$.

Each type of decomposition leads to a corresponding Stokes type boundary value problem or to the Stokes problem itself. In contrast to the traditional methods of finding the solenoidal vector function here at first the potential is determined and then the solenoidal part found as the solution to a Dirichlet problem. Such type of decompositions have also been developed in Clifford analysis (see $[2,3,6-10,14]$), and applied to boundary value problems of mathematical physics. For decompositions in complex analysis compare [1, 13].
2. Orthogonality to the Δ^{k}-solenoidal subspaces. Let $G \subset \mathbb{R}^{n}$, $n \geq 1$, be a bounded domain with Lipschitz boundary ∂G. Let

$$
\begin{aligned}
\stackrel{\circ}{W}_{2}^{1}=\stackrel{\circ}{W}_{2}^{1}\left(G ; \mathbb{C}^{n}\right)=\{u: G & \rightarrow \mathbb{C}^{n}:\|u\|_{1}^{2}=\int_{G}|\nabla u(x)|^{2} d x \\
& \left.=\sum_{\nu=1}^{n} \int_{G}\left(\nabla u_{\nu}(x), \nabla u_{\nu}(x)\right) d x<\infty,\left.u\right|_{\partial G}=0\right\}
\end{aligned}
$$

be a subspace of the well known Sobolev space W_{2}^{1} of complex vector-valued functions $u=\left(u_{1}, \ldots, u_{n}\right)$ in G, where $\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$ is the gradient operator. For fixed integer $k \geq 1$ let

$$
\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}=\left\{u \in \stackrel{\circ}{W}_{2}^{1}: \operatorname{div} \Delta^{k} u=0 \text { in } G\right\}
$$

Here div and Δ are operators understood in the sense of distributions in $\mathcal{D}^{\prime}=\mathcal{D}^{\prime}(G)$. The set ${\stackrel{\circ}{\Delta^{k}, 2}}_{1}^{\text {i }}$ is called the subspace of Δ^{k}-solenoidal vector functions of W_{2}^{1}. Since both operators div and Δ are closed in \mathcal{D}^{\prime} it follows that $\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ are closed subspaces of $\stackrel{\circ}{W}_{2}^{1}$, and the inclusion

$$
\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1} \subset \stackrel{\circ}{W}_{2}^{1}
$$

is proper. Hence, $\stackrel{\circ}{2}_{2}^{1}$ is representable as the orthogonal sum

$$
\stackrel{\circ}{W}_{2}^{1}=\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1} \oplus\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}
$$

in the sense of the inner product in $\stackrel{\circ}{W}_{2}^{1}$,

$$
\langle u, v\rangle_{1}=\langle\nabla u, \nabla v\rangle_{0}=\sum_{\nu=1}^{n} \int_{G}\left(\nabla u_{\nu}(x), \nabla v_{\nu}(x)\right) d x
$$

First the subspace orthogonal to $\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ will be described. To this end one introduces the following subspace of the scalar Sobolev space $W_{2}^{2 k}=$ $W_{2}^{2 k}(G ; \mathbb{C})$:

$$
\stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}=\left\{p_{0} \in W_{2}^{2 k}:\left.\Delta^{\kappa} p_{0}\right|_{\partial G}=0,\left.\nabla \Delta^{\kappa} p_{0}\right|_{\partial G}=0 \text { for } 0 \leq \kappa \leq k-1\right\}
$$

It is the closure in the $W_{2}^{2 k}$ norm of all scalar functions $p \in C^{\infty}(\bar{G} ; \mathbb{C})$ satisfying the stated boundary conditions.

Remark 1. It is clear that

$$
\stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}=\left\{p_{0} \in W_{2}^{2 k}: \Delta^{\kappa} p_{0} \in \stackrel{\circ}{W}_{2}^{2} \text { for } 0 \leq \kappa \leq k-1\right\}
$$

REMARK 2. As the boundary conditions are selfadjoint the bilinear form

$$
\begin{equation*}
\left\langle\Delta^{2 k} p_{1}, p_{0}\right\rangle=\left\langle\Delta^{k} p_{1}, \Delta^{k} p_{0}\right\rangle_{0}=\left\langle p_{1}, \Delta^{2 k} p_{0}\right\rangle, \quad p_{1}, p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k} \tag{1}
\end{equation*}
$$

is well-posed and selfadjoint. By the classical Lax-Milgram lemma (see e.g. [11]), the map

$$
\begin{equation*}
\Delta^{2 k}: \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k} \leftrightarrow\left(\stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}\right)^{*} \tag{2}
\end{equation*}
$$

is an isometric isomorphism.
Lemma 1. Let $q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$. Then the boundary value problems

$$
\begin{equation*}
\nabla \Delta^{k-1} p_{0}=q \quad \text { in } G, \quad p_{0} \in \stackrel{\circ}{\mid}_{\Delta^{k}, 2}^{2 k} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2 k} p_{0}=\operatorname{div} \Delta^{k} q \quad \text { in } G, \quad p_{0} \in \stackrel{ }{W}_{\Delta^{k}, 2}^{2 k} \tag{4}
\end{equation*}
$$

are equivalent.
Proof. (i) If p_{0} is a solution to (3) then by differentation, because of $\operatorname{div} \Delta^{k}\left(\nabla \Delta^{k-1}\right)=\Delta^{2 k}$, the function p_{0} also solves (4).
(ii) Conversely, let p_{0} be a generalized solution to (4) in the sense of the duality (2). Then from (4) follows

$$
\nabla \Delta^{k-1} p_{0}-q \in \operatorname{ker} \operatorname{div} \Delta^{k}
$$

i.e.

$$
\begin{equation*}
\nabla \Delta^{k-1} p_{0}-q \in \stackrel{\circ}{S}_{\Delta^{k}, 2}^{1} \tag{5}
\end{equation*}
$$

On the other hand, for any $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$ and arbitrary $\varphi \in \stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ the relation

$$
\left\langle\operatorname{div} \Delta^{k} \varphi, p_{0}\right\rangle=-\left\langle\varphi, \nabla \Delta^{k} p_{0}\right\rangle_{0}=\left\langle\varphi, \nabla \Delta^{k-1} p_{0}\right\rangle_{1}
$$

holds in the sense of the duality (2). The condition $\operatorname{div} \Delta^{k} \varphi=0$ in the sense of (2) means that $\nabla \Delta^{k-1} p_{0} \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$. Thus as $q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$, also

$$
\begin{equation*}
\nabla \Delta^{k-1} p_{0}-q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp} \tag{6}
\end{equation*}
$$

Together with (5) this implies $\nabla \Delta^{k-1} p_{0}-q=0$, i.e. p_{0} solves (3).

ThEOREM 1. The operator $\nabla \Delta^{k-1}$ establishes an elliptic isomorphism between $\stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$ and $\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$,

$$
\nabla \Delta^{k-1}: \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k} \leftrightarrow\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}
$$

This means that for any $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$ the vector-valued function $\nabla \Delta^{k-1} p_{0}$ is orthogonal to the subspace $\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ and conversely if $q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$ then there exists a unique potential $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$ such that $q=\nabla \Delta^{k-1} p_{0}$. Moreover, there exists some constant $M>0$ such that

$$
\begin{equation*}
\left\|p_{0}\right\|_{\stackrel{D}{\Delta}_{\Delta^{k}, 2}^{2 k}} \leq M\left\|\operatorname{div} \Delta^{k} q\right\|_{\left(\dot{W}_{\Delta^{k}, 2}^{2 k}\right)^{*}} \tag{7}
\end{equation*}
$$

Proof. (i) Let $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$. Then as shown in step (ii) of the preceding proof, $\nabla \Delta^{k-1} p_{0} \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$.
(ii) Let $q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$. Consider the boundary value problem (3). By Lemma 1 it is equivalent to problem (4). The latter problem is uniquely solvable. Its solution satisfies (3).

Finally, the estimate (7) follows from the isometric isomorphism (2).
As a corollary one has
Theorem 2. For any $k \geq 1$ the space $\stackrel{\circ}{W}_{2}^{1}$ can be decomposed as

$$
\begin{equation*}
\stackrel{\circ}{W}_{2}^{1}=\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1} \oplus \nabla \Delta^{k-1}\left(\stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}\right) \tag{8}
\end{equation*}
$$

Example. For $k=1$,

$$
\stackrel{\circ}{W}_{\Delta, 2}^{2}=\left\{p_{0} \in W_{2}^{2}:\left.p_{0}\right|_{\partial G}=0,\left.\nabla p_{0}\right|_{\partial G}=0\right\}
$$

is the usual Sobolev space $\stackrel{\circ}{W}_{2}^{2}$ and formula (8) becomes

$$
\stackrel{\circ}{W}_{2}^{1}=\stackrel{\circ}{S}_{\Delta, 2}^{1} \oplus \nabla\left(\stackrel{\circ}{W}_{2}^{2}\right)
$$

This means that every function $u \in \dot{W}_{2}^{1}$ can be represented as the sum

$$
u=u_{\Delta, s}+\nabla p_{0}
$$

where $(\operatorname{div} \Delta) u_{\Delta, s}=0$ and $p_{0} \in \stackrel{\circ}{W}_{2}^{2}$.
Remark 3. From the representation

$$
u=u_{\Delta^{k}, s}+\nabla \Delta^{k-1} p_{0}
$$

corresponding to the decomposition (8) it is seen that p_{0} is the solution to the boundary value problem

$$
\Delta^{2 k} p_{0}=\operatorname{div} \Delta^{k} u \quad \text { in } G, \quad \Delta^{\kappa} p_{0} \in \stackrel{\circ}{W}_{2}^{2} \quad \text { for } 0 \leq \kappa \leq k-1
$$

Therefore the map $u \mapsto \nabla \Delta^{k-1} p$ is the projector $\nabla \Delta^{k-1}: \stackrel{\circ}{W}_{2}^{1} \rightarrow\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$.

3. Orthogonality to the Δ^{k}-solenoidal subspaces in the complex

 case. In this section the above results are extended to the case of several complex variables. Let G be a domain in $\mathbb{C}^{n}, n \geq 2$. It will be identified with $G \subset \mathbb{R}^{2 n}$ of the real variables $\left\{x_{\nu}, y_{\nu}: 1 \leq \nu \leq n\right\}$ so that $z=$ $\left(z_{1}, \ldots, z_{n}\right), x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right), z_{\nu}=x_{\nu}+i y_{\nu}, 1 \leq \nu \leq n$. The boundary ∂G of the domain $G \subset \mathbb{R}^{2 n}$ is supposed to be a smooth hypersurface. Further, as usual, the basic complex differential operators are denoted by$$
\partial_{z_{\nu}}=\frac{1}{2}\left(\partial_{x_{\nu}}-i \partial_{y_{\nu}}\right), \quad \partial_{\bar{z}_{\nu}}=\frac{1}{2}\left(\partial_{x_{\nu}}+i \partial_{y_{\nu}}\right), \quad 1 \leq \nu \leq n .
$$

With the same notations as in the real case, one defines the Sobolev function spaces of complex vector-valued functions $u=\left(u_{1}, \ldots, u_{n}\right)$ vanishing at the boundary ∂G :

$$
\begin{aligned}
\stackrel{\circ}{W}_{2}^{1}=\left\{u \in W_{2}^{1}\left(G ; \mathbb{C}^{n}\right):\right. & \|u\|_{1}^{2}=\int_{G}\left|\nabla_{z} u(z)\right|^{2} d x d y \\
& \left.=\sum_{\mu, \nu=1}^{n} \int_{G}\left|\partial_{z_{\nu}} u_{\mu}(z)\right|^{2} d x d y<\infty,\left.u\right|_{\partial G}=0\right\}
\end{aligned}
$$

$\nabla_{z}=\left(\partial_{z_{1}}, \ldots, \partial_{z_{n}}\right)$ is the complex gradient with respect to the variable z. Analogously $\nabla_{\bar{z}}=\left(\partial_{\bar{z}_{1}}, \ldots, \partial_{\bar{z}_{n}}\right)$. The space $\stackrel{\circ}{W}_{2}^{1}$ endowed with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{1} & =\int_{G}\left(\nabla_{z} u(z), \overline{\nabla_{z} v(z)}\right) d x d y=\sum_{\mu, \nu=1}^{n} \int_{G} \partial_{z_{\nu}} u_{\mu}(z) \partial_{\bar{z}_{\nu}} \overline{v_{\mu}(z)} d x d y \\
& =\sum_{\nu=1}^{n} \int_{G}\left(\nabla_{z_{\nu}} u_{\nu}(z), \overline{\nabla_{z_{\nu}} v_{\nu}(z)}\right) d x d y
\end{aligned}
$$

becomes a Hilbert space. Let $\Delta=\frac{1}{4} \sum_{\nu=1}^{n} \partial_{z_{\nu}} \partial_{\bar{z}_{\nu}}$ denote the Laplace operator and $\operatorname{div}_{z} u=\sum_{\nu=1}^{n} \partial_{z_{\nu}} u_{\nu}$ the divergence operator with respect to the variable z, both understood in the sense of $\mathcal{D}^{\prime}(G)$ or in the sense of any duality $\langle\cdot, \cdot\rangle$ which is an extension of the usual scalar product in L_{2}. The set

$$
\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}=\left\{u \in \stackrel{\circ}{W}_{2}^{1}: \operatorname{div}_{z} \Delta^{k} u=0\right\}
$$

is a closed subspace of $\stackrel{\circ}{W}_{2}^{1}$ for any integer $k \geq 1$.
Remark 4. Obviously $\operatorname{div}_{z} \Delta^{k} w=0$ if and only if

$$
\operatorname{div}_{x} \Delta^{k} u-\operatorname{div}_{y} \Delta^{k} v=0, \quad \operatorname{div}_{y} \Delta^{k} u+\operatorname{div}_{x} \Delta^{k} v=0
$$

for $w=u+i v$. Hence, the subspaces $\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ are not empty.
As usual for a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ the notation $\partial_{z}^{\alpha}=\partial_{z_{1}}^{\alpha_{1}} \ldots \partial_{z_{n}}^{\alpha_{n}}$
is used. Then

$$
\begin{aligned}
& \stackrel{\circ}{W_{\Delta}^{k}, 2} 2 k \\
& 2 k \\
& p_{0} \in W_{2}^{2 k}(G ; \mathbb{C}):\left\|p_{0}\right\|_{2 k}^{2}=\sum_{|\alpha| \leq 2 k} \int_{G}\left|\partial_{z}^{\alpha} p_{0}(z)\right|^{2} d x d y<\infty \\
& \left.\left.\Delta^{\kappa} p_{0}\right|_{\partial G}=0,\left.\nabla_{z} \Delta^{\kappa} p_{0}\right|_{\partial G}=0, \text { for } 0 \leq \kappa \leq k-1\right\}
\end{aligned}
$$

is the space of scalar "potentials".
ThEOREM 2'. For any integer $k \geq 1$ the space \dot{W}_{2}^{1} has the orthogonal decomposition

$$
\stackrel{\circ}{W}_{2}^{1}=\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1} \oplus \nabla_{\bar{z}} \Delta^{k-1} \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}
$$

Proof. The proof is like the one of Theorem 2.
(i) If a function $q \in \stackrel{W}{W}_{2}^{1}$ has the form $q=\nabla_{\bar{z}} \Delta^{k-1} p_{0}$ for some scalar potential $p_{0} \in \dot{W}_{\Delta^{k}, 2}^{2 k}$, then for any $\varphi \in \stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ one has

$$
\left\langle\operatorname{div}_{z} \Delta^{k} \varphi, p_{0}\right\rangle=-\left\langle\varphi, \nabla_{\bar{z}} \Delta^{k} p_{0}\right\rangle_{0}=\left\langle\varphi, \nabla_{\bar{z}} \Delta^{k-1} p_{0}\right\rangle_{1}
$$

The condition $\operatorname{div}_{z} \Delta^{k} \varphi=0$ then implies that $\nabla_{\bar{z}} \Delta^{k-1} p_{0}$ is orthogonal to $\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$.
(ii) Let $q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$. Then there exists a unique potential $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$ such that $q=\nabla_{\bar{z}} \Delta^{k-1} p_{0}$, i.e. the boundary value problem

$$
\nabla_{\bar{z}} \Delta^{k-1} p_{0}=q, \quad p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}
$$

has a unique solution. In fact, repeating the proof of Lemma 1 one can establish that for $q \in\left(\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}\right)^{\perp}$ this problem is equivalent to the well-posed boundary value problem

$$
\Delta^{2 k} p_{0}=\operatorname{div}_{z} \Delta^{k} q, \quad p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}
$$

The unique solution p_{0} of this problem is the desired potential p_{0}.
4. Orthogonality to the solenoidal subspace. In this section the orthogonal complement of the subspace of all solenoidal functions

$$
\stackrel{\circ}{S}_{2}^{1}=\left\{u_{s} \in \stackrel{\circ}{W}_{2}^{1}: \operatorname{div} u_{s}=0 \text { in } \mathcal{D}^{\prime}\right\}
$$

in $\stackrel{\circ}{W}_{2}^{1}$ is found. The subspace $\stackrel{\circ}{S}_{2}^{1}$ is closed in $\stackrel{\circ}{W}_{2}^{1}$. In order to describe $\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$ one needs the operator

$$
\Delta_{0}^{-1}: W_{2}^{-1} \rightarrow \stackrel{\circ}{W}_{2}^{1}
$$

where $W_{2}^{-1}=\left(\stackrel{\circ}{W}_{2}^{1}\right)^{*}$ and Δ_{0}^{-1} is the inverse operator to $\Delta: \stackrel{\circ}{W}_{2}^{1} \rightarrow W_{2}^{-1}$.
Lemma 2. The equations

$$
\begin{equation*}
\Delta_{0}^{-1} \nabla p_{1}=q_{1} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div} \Delta_{0}^{-1} \nabla p_{1}=\operatorname{div} q_{1} \tag{10}
\end{equation*}
$$

are equivalent in $\stackrel{\circ}{W}_{2}^{1}$ if and only if $q_{1} \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$.
Proof. (i) Applying the div operator to (9) shows that any solution to (9) is a solution of (10).
(ii) Let $p_{1} \in L_{2}(G)$ be a solution to (10). Then

$$
\Delta_{0}^{-1} \nabla p_{1}-q_{1} \in \operatorname{ker}(\operatorname{div})=\stackrel{\circ}{S}_{2}^{1}
$$

On the other hand for any $p_{1} \in L_{2}$ and any $\varphi \in \stackrel{\circ}{S}_{2}^{1}$,

$$
\left\langle\Delta_{0}^{-1} \nabla p_{1}, \varphi\right\rangle_{1}=-\left\langle\nabla p_{1}, \varphi\right\rangle_{0}=\left\langle p_{1}, \operatorname{div} \varphi\right\rangle_{0}=0
$$

Hence, if $q_{1} \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$ then $\Delta_{0}^{-1} \nabla p_{1}-q_{1} \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$. Thus $\Delta_{0}^{-1} \nabla p_{1}=q_{1}$.
Lemma 3. Equation (10) is solvable for any $q_{1} \in \stackrel{\circ}{W}_{2}^{1}$. More precisely, for any $q_{1} \in \stackrel{\circ}{W}_{2}^{1}$ there exists a unique potential $p_{1} \in L_{2} / \mathbb{C}$ such that (10) holds.

Proof. Identifying as usual the factor space L_{2} / \mathbb{C} with the subspace of L_{2} of all functions orthogonal to the unity, a solution to (10) in this subspace is found by the Galerkin method. Let $\left\{v_{\nu}: \nu \geq 1\right\}$ be a basis of L_{2} / \mathbb{C} with smooth functions v_{ν}. The approximate solutions $p_{1}^{N}, N \geq 1$, are defined as

$$
p_{1}^{N}=\sum_{\nu=1}^{N} c_{\nu}^{N} v_{\nu}
$$

where the unknown coefficients $c_{\nu}^{N}, 1 \leq \nu \leq N$, are defined from the Galerkin moment equations

$$
\left\langle\operatorname{div} \Delta_{0}^{-1} \nabla p_{1}^{N}, v_{\nu}\right\rangle_{0}=\left\langle\operatorname{div} q_{1}, v_{\nu}\right\rangle_{0}, \quad \nu=1, \ldots, N
$$

or, what is the same, from

$$
\begin{equation*}
\left\langle\Delta_{0}^{-1} \nabla p_{1}^{N}, \nabla v_{\nu}\right\rangle_{0}=-\left\langle\operatorname{div} q_{1}, v_{\nu}\right\rangle_{0}, \quad 1 \leq \nu \leq N \tag{N}
\end{equation*}
$$

The solvability of this algebraic linear system follows from the a priori estimate which will be deduced next. Multiplying $\left(10_{N}\right)$ by c_{ν}^{N} and summing up gives

$$
\begin{equation*}
\left\langle\Delta_{0}^{-1} \nabla p_{1}^{N}, \nabla p_{1}^{N}\right\rangle_{0}=-\left\langle\operatorname{div} q_{1}, p_{1}^{N}\right\rangle_{0} \tag{11}
\end{equation*}
$$

or

$$
\left\|\nabla p_{1}^{N}\right\|_{-1}^{2}=-\left\langle\operatorname{div} q_{1}, p_{1}^{N}\right\rangle_{0}
$$

Therefore, using the Cauchy-Schwarz-Bunyakovskiĭ inequality and the known inequality

$$
\begin{equation*}
\left\|p_{1}^{N}\right\|_{0} \leq M\left\|\nabla p_{1}^{N}\right\|_{-1} \tag{12}
\end{equation*}
$$

with some $M>0$ for $p_{1}^{N} \in L_{2} / \mathbb{C}$ (Ladyzhenskaya-Babuška-Brezzi-Nečas, see [12], $\S 1, ~ p .17)$ from (11) for $N \geq 1$ the estimate

$$
\begin{equation*}
\left\|\nabla p_{1}^{N}\right\|_{-1} \leq M\left\|\operatorname{div} q_{1}\right\|_{0} \tag{13}
\end{equation*}
$$

follows. By (12), for any $N \geq 1$,

$$
\begin{equation*}
\left\|p_{1}^{N}\right\|_{0} \leq M^{2}\left\|\operatorname{div} q_{1}\right\|_{0} \tag{14}
\end{equation*}
$$

In particular the constant $M>0$ does not depend on N. These estimates imply the weak compactness of the sequence $\left(p_{1}^{N}\right)$ in L_{2} / \mathbb{C}. Assuming without loss of generality that the sequence itself converges weakly to some $p_{1} \in L_{2} / \mathbb{C}$, then also $\left(\nabla p_{1}^{N}\right)$ weakly converges in W_{2}^{-1} to ∇p_{1}. Obviously, p_{1} is a solution of (10). The uniqueness is obvious too.

Theorem 3. The map

$$
\Delta_{0}^{-1} \nabla: L_{2} / \mathbb{C} \leftrightarrow\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}
$$

is an elliptic isomorphism, and

$$
\stackrel{\circ}{W}_{2}^{1}=\stackrel{\circ}{S}_{2}^{1} \oplus \Delta_{0}^{-1} \nabla\left(L_{2} / \mathbb{C}\right)
$$

Proof. It has to be shown that for any $p_{1} \in L_{2} / \mathbb{C}$ the image $q_{1} \equiv$ $\Delta_{0}^{-1} \nabla p_{1}$ is orthogonal to $\stackrel{\circ}{S}_{2}^{1}$ and that on the other hand for any $q_{1} \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$ there exists a (unique) potential $p_{1} \in L_{2} / \mathbb{C}$ such that $\Delta_{0}^{-1} \nabla p_{1}=q_{1}$. Moreover,

$$
\begin{equation*}
\left\|p_{1}\right\|_{0} \leq M\left\|\operatorname{div} q_{1}\right\|_{0} \tag{15}
\end{equation*}
$$

for some constant $M \geq 0$.
(i) For any $p_{1} \in L_{2}(G)$ and any $\varphi \in \stackrel{\circ}{S}_{2}^{1}$,

$$
\left\langle\Delta_{0}^{-1} \nabla p_{1}, \varphi\right\rangle_{1}=-\left\langle\nabla p_{1}, \varphi\right\rangle_{0}=\left\langle p_{1}, \operatorname{div} \varphi\right\rangle_{0}=0
$$

Thus $\Delta_{0}^{-1} \nabla p_{1} \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$. This argument was already used in the proof of Lemma 2.
(ii) Let $q \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$. It has to be shown that there exists a function $p_{1} \in$ L_{2} / \mathbb{C} satisfying (9) in $\stackrel{\circ}{W}_{2}^{1}$. Indeed, from Lemma 3 combined with Lemma 2 a solution $p_{1} \in L_{2} / \mathbb{C}$ can be obtained. Finally, if $\operatorname{div} q_{1}=0$ then

$$
\operatorname{div} \Delta_{0}^{-1} \nabla p_{1}=0
$$

immediately yields $\left\langle\nabla p_{1}, \nabla p_{1}\right\rangle_{-1}=0$, so that $\nabla p_{1}=0$ and hence $p_{1}(x)=0$. This could also be seen from the estimate (15).

The a priori estimate (15) follows from inequality (13) together with (14).
REmARK 5. If $u \in L_{2}(G)$ satisfies $\operatorname{div} u=\operatorname{div} q_{1}$ then the equation

$$
\operatorname{div} \Delta_{0}^{-1} \nabla p_{1}=\operatorname{div} u
$$

has the same solution p_{1} for all such u. This means that the mapping $u \mapsto p_{1}$ defines a projection $u \mapsto \Delta_{0}^{-1} \nabla p_{1}$ of $\stackrel{\circ}{W}_{2}^{1}$ onto $\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$.
5. Orthogonal decomposition of Δ^{k}-solenoidal subspaces. Next a detailed representation of the subspace of the Δ-solenoidal functions and of the Δ^{k}-solenoidal functions for any positive integer k are given. According to Theorem 2 every function $u \in \stackrel{\circ}{S}_{\Delta, 2}^{1} \ominus \stackrel{\circ}{S}_{2}^{1}$ can be written as $u=\Delta_{0}^{-1} \nabla p_{1}$ for some $p_{1} \in L_{2} / \mathbb{C}$. However, in this case p_{1} is a harmonic potential, i.e. $\Delta p_{1}=0$ in \mathcal{D}^{\prime}.

Theorem 4. Denote the subspace of harmonic potentials in $L_{2}(G)$ by H_{1}. Then

$$
\stackrel{\circ}{S}_{\Delta, 2}^{1}=\stackrel{\circ}{S}_{2}^{1} \oplus \Delta_{0}^{-1} \nabla\left(H_{1} / \mathbb{C}\right)
$$

Proof. (i) If $p_{1} \in H_{1} \subset L_{2}$ then of course $q_{1}=\Delta_{0}^{-1} \nabla p_{1}$ is orthogonal to $\stackrel{\circ}{S}_{2}^{1}$ (see the proof of Theorem 2).
(ii) If $q_{1} \in\left(\stackrel{\circ}{S}_{2}^{1}\right)^{\perp}$ and u is a solution of $\operatorname{div} \Delta u=0$ satisfying $\operatorname{div} u=$ $\operatorname{div} q_{1}$, then the corresponding potential p_{1}, satisfying $\Delta_{0}^{-1} \nabla p_{1}=q_{1}$, is an L_{2}-solution to the equation

$$
\operatorname{div} \Delta_{0}^{-1} \nabla p_{1}=\operatorname{div} u
$$

(see Remark 5). Applying the Laplace operator Δ to this equation leads to $\Delta p_{1}=0$. Hence, $p_{1} \in H_{1}$.

Definition 1. A potential p_{0} is called polyharmonic of order $k \geq 1$ if it satisfies the equation $\Delta^{k} p_{0}=0$ in \mathcal{D}^{\prime}. The set of all polyharmonic potentials of order k is denoted by H_{k}.

Theorem 5. For any positive integer k,

$$
\stackrel{\circ}{S}_{\Delta^{k+1}, 2}^{1}=\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1} \oplus \nabla \Delta^{k-1}\left(\stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k} \cap H_{2 k+1}\right)
$$

In other words, a function $u \in \stackrel{\circ}{W}_{2}^{1}$ belongs to the subspace $\stackrel{\circ}{S}_{\Delta^{k+1}, 2}^{1} \ominus \stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ if and only if it has the form $u=\nabla \Delta^{k-1} p_{0}$ with a potential $p_{0} \in \dot{W}_{\Delta^{k}, 2}^{2 k}$ which is polyharmonic of order $2 k+1$, i.e. $\Delta^{2 k+1} p_{0}=0$.

Proof. (i) For any $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k} \cap H_{2 k+1}$ the function $\nabla \Delta^{k-1} p_{0}$ is obviously orthogonal to $\stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$.
(ii) Let $u \in \stackrel{\circ}{W}_{2}^{1}$ be such that $\operatorname{div} \Delta^{k} u \neq 0$ but $\operatorname{div} \Delta^{k+1} u=0$. Then in accordance with Theorem 2,

$$
u=u_{\Delta^{k}, s}+q
$$

with $u_{\Delta^{k}, s} \in \stackrel{\circ}{S}_{\Delta^{k}, 2}^{1}$ and $q=\nabla \Delta^{k-1} p_{0}$ where the potential $p_{0} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$ is the solution to the problem

$$
\begin{equation*}
\Delta^{2 k} p_{0}=\operatorname{div} \Delta^{k} u, \quad \Delta^{\nu} p_{0} \in \stackrel{\circ}{W}_{2}^{2}, \quad \nu=0,1, \ldots, k-1 \tag{16}
\end{equation*}
$$

Applying the Laplace operator Δ yields $\Delta^{2 k+1} p_{0}=0$ in \mathcal{D}^{\prime}.

Corollary 1. Any function $u \in \stackrel{W}{W}_{2}^{1}$ can be written as

$$
u=u_{s}+\Delta_{0}^{-1} p_{-1}+\sum_{\nu=0}^{k-1} \nabla \Delta^{\nu} p_{\nu}+\nabla \Delta^{k} q_{k}
$$

where p_{-1} is a harmonic potential and $p_{\nu}, 0 \leq \nu \leq k-1$, are polyharmonic potentials of order $2 \nu+1$ and q_{k} is the unique solution to (15) where k is replaced by $k+1$.
6. Harmonic decompositions. For $p>1$ and nonnegative integer m let

$$
W_{p}^{m}=\left\{u: G \rightarrow \mathbb{C}^{n}:\|u\|_{m, p}^{p}=\sum_{|\alpha| \leq m} \int_{G}\left|D^{\alpha} u(x)\right|^{p} d x<\infty\right\}
$$

be the Sobolev space for a bounded domain $G \subset \mathbb{R}^{n}$ with smooth boundary. Further let $H_{p}^{m} \subset W_{p}^{m}$ be the subspace of harmonic functions,

$$
H_{p}^{m}=\left\{u \in W_{p}^{m}: \Delta u=0 \text { in } \mathcal{D}^{\prime}\right\}
$$

Theorem 6. The space W_{p}^{m} can be decomposed into the direct sum

$$
W_{p}^{m}=H_{p}^{m} \dot{+} \Delta\left(W_{p}^{m+2} \cap \stackrel{\circ}{W}_{p}^{2}\right)
$$

i.e. $u=u_{h}+\Delta p_{0}$ with $u_{h} \in H_{p}^{m}, p_{0} \in W_{p}^{m+2} \cap \stackrel{\circ}{W}_{p}^{2}$. For $p=2$ this is an orthogonal decomposition.

Proof. For given $u \in W_{p}^{m}$ let $p_{0} \in W_{p}^{m+2} \cap \stackrel{\circ}{W}_{p}^{2}$ be the solution of the boundary value problem

$$
\Delta^{2} p_{0}=\Delta u \quad \text { in } G, \quad p_{0}=0, \nabla p_{0}=0 \quad \text { on } \partial G
$$

This is a well-posed boundary value problem in the whole scale W_{p}^{m} : for any $u \in W_{p}^{m}$ with $m \geq 0, p>1$ the problem has a unique solution $p_{0} \in$ $W_{p}^{m+2} \cap \stackrel{\circ}{W}_{p}^{2}$. Then

$$
u=u_{h}+\Delta p_{0}
$$

where u_{h} is defined by this relation. It is clear that $u_{h} \in H_{p}^{m}$ because

$$
\Delta u_{h}=\Delta u-\Delta^{2} p_{0}=0
$$

due to the choice of p_{0}.
It remains to show that the decomposition is direct, that is, u_{h} and p_{0} are uniquely determined. Let $0=u_{h}+\Delta p_{0}$ with $u_{h} \in H_{p}^{m}$ and $p_{0} \in W_{p}^{m+2} \cap \dot{W}_{p}^{2}$. Then the function $v=\Delta p_{0}=-u_{h}$ is harmonic as u_{h} is. Thus $\Delta v=\Delta^{2} p_{0}$ $=0$. As $p_{0} \in \stackrel{\circ}{W}_{p}^{2}$, i.e. $p_{0}=0$ and $\nabla p_{0}=0$ on ∂G, it follows that $p_{0}=0$. Hence, also $u_{h}=0$. This shows the sum is direct.

Remark 6. From the boundary value problem one has the a priori estimates

$$
\left\|p_{0}\right\|_{W_{p}^{m+2}} \leq M\|\Delta u\|_{W_{p}^{m-2}}
$$

Example. For $p=2$ and $m=0$ the last decomposition reads

$$
\begin{equation*}
L_{2}=H_{2} \oplus \Delta \stackrel{\circ}{W}_{2}^{2} \tag{17}
\end{equation*}
$$

This orthogonal decomposition will be applied to solving the following variational problem.

Variational Problem. Let $0<a_{0} \leq A_{0}$ be constants and a be measurable in G such that

$$
a_{0} \leq a(x) \leq A, \quad x \in G
$$

Moreover, let $h \in L_{2}$. Determine

$$
\inf _{u \in H_{2}} \operatorname{Re} \int_{G}\left[\frac{1}{2} a(x)|u(x)|^{2}-h(x) u(x)\right] d x
$$

If $u \in H_{2}$ is minimal then

$$
\begin{equation*}
\int_{G}[a(x) u(x)-h(x)] \overline{\varphi(x)} d x=0 \tag{18}
\end{equation*}
$$

for all $\varphi \in H_{2}$. In accordance with the decomposition (17) this leads to the next problem.

Problem. Find $u \in H_{2}$ and $v \in \stackrel{\circ}{W}_{2}^{2}$ such that $a u+\Delta v=h$ in the sense of L_{2} and $\Delta u=0$.

Proposition 1. For any $h \in L_{2}$ there exists a unique pair (u, v) solving the above Problem.

Proof. (i) In order to find $u \in H_{2}$ such that

$$
\langle a u, \varphi\rangle_{0}=\langle h, \varphi\rangle \quad \text { for all } \varphi \in H_{2}
$$

the standard Galerkin method is used. Let $\left\{v_{k}: k \in \mathbb{N}\right\}$ be a basis of H_{2}. An approximate solution

$$
u^{N}=\sum_{j=1}^{N} c_{j}^{N} v_{j}, \quad N=1,2, \ldots
$$

is determined from the Galerkin moment equations

$$
\begin{equation*}
\left\langle a u^{N}, v_{j}\right\rangle_{0}=\left\langle h, v_{j}\right\rangle_{0}, \quad 1 \leq j \leq N \tag{19}
\end{equation*}
$$

fixing the coefficients $c_{j}^{N}, 1 \leq j \leq N$. Multiplying (19) by c_{j}^{N} and summing up gives

$$
\left\langle a u^{N}, u^{N}\right\rangle_{0}=\left\langle h, u^{N}\right\rangle_{0}
$$

leading to

$$
a_{0}\left\|u^{N}\right\|_{0}^{2} \leq\left\langle h, u^{N}\right\rangle_{0} \leq\|h\|_{0}\left\|u^{N}\right\|_{0}
$$

and hence to the a priori estimate

$$
\left\|u^{N}\right\|_{0} \leq \frac{1}{a_{0}}\|h\|_{0}, \quad N=1,2, \ldots
$$

Therefore the sequence $\left(u^{N}\right)$ of approximate solutions has at least one weak limit point $u \in H_{2}$. This function u is a solution of the Problem.
(ii) The function $v \in \stackrel{\circ}{W}_{2}^{2}$ is found from the decomposition (17). Identity (18) means $a u-h \in H_{2}^{\perp}$ in L_{2}. Then from (17) it is seen that there exists a unique $v \in W_{2}^{2}$ such that

$$
a u+\Delta v=h \quad \text { in } L_{2} .
$$

To prove the uniqueness of this solution to the Problem, let $h=0$. Multiplying $a u+\Delta v=0$ by $u \in H_{2}$ and integrating over G gives $\langle a u, u\rangle_{0}=0$ because Δv is orthogonal to u in L_{2}. Thus $u=0$ as also follows directly from the a priori estimate. Hence, $v=0$ follows.
7. Applications. The spaces W_{2}^{1} and W_{2}^{-1} are connected by the one-to-one map

$$
\Delta: \mathscr{W}_{2}^{1} \leftrightarrow W_{2}^{-1} .
$$

Hence, in the sense of the inner product

$$
\langle u, v\rangle_{-1}=\left\langle\Delta_{0}^{-1} u, v\right\rangle_{0}=\left\langle u, \Delta_{0}^{-1} v\right\rangle_{0}
$$

the orthogonal decompositions of the space W_{2}^{-1} are automatically obtained from those of $\stackrel{W}{2}_{2}^{1}$. In particular, according to Section 2, one has the chain of decompositions

$$
W_{2}^{-1}=\Delta \stackrel{S}{S}_{\Delta^{k}, 2}^{1} \oplus \nabla \Delta^{k} \dot{W}_{\Delta^{k}, 2}^{2 k}, \quad k=1,2, \ldots
$$

Thus, any function $h \in W_{2}^{-1}$ can be represented as

$$
h=\Delta u_{\Delta^{k}, s}+\nabla \Delta^{k} p_{k},
$$

where div $\Delta^{k} u_{\Delta^{k}, s}=0$ in \mathcal{D}^{\prime} and $p_{k} \in \stackrel{\circ}{W}_{\Delta^{k}, 2}^{2 k}$. This suggests the following problem.

Boundary Value Problem 1. Let $h \in W_{2}^{-1}$. Find functions $u_{\Delta^{k}, s}, p_{k}$ satisfying

$$
\begin{aligned}
& \Delta u_{\Delta^{k}, s}+\nabla \Delta^{k} p_{k}=h, \quad \operatorname{div} \Delta^{k} u_{\Delta^{k}, s}=0 \quad \text { in } G, \\
& \left.u_{\Delta^{k}, s}\right|_{\partial G}=0,\left.\quad \Delta^{\nu} p_{k}\right|_{\partial G}=0,\left.\quad \nabla \Delta^{\nu} p_{k}\right|_{\partial G}=0, \quad \nu=0,1, \ldots, k-1 .
\end{aligned}
$$

For any k this problem is well-posed and the solution $u_{\Delta^{k}, s}, p_{k}$ can be found from the decompositions given in Section 2.

In connection with Sections 4 and 5 , one also has the chain of decompositions

$$
\begin{align*}
& W_{2}^{-1}=\Delta \stackrel{\circ}{S}_{2}^{1}+\nabla\left[H_{1} / \mathbb{C} \oplus \Delta \stackrel{\circ}{W}_{2}^{2}\right], \tag{20}\\
& W_{2}^{-1}=\Delta \stackrel{\circ}{S}_{2}^{1}+\nabla\left[H_{1} / \mathbb{C}+\Delta\left(\stackrel{\circ}{W}_{2}^{2} \cap H_{3} \oplus \Delta{\stackrel{\circ}{W_{\Delta}}, 2}_{4}^{4}\right)\right] \tag{21}
\end{align*}
$$

etc. Hence, any $h \in W_{2}^{-1}$ can be represented as

$$
\begin{align*}
& h=\Delta u_{s}+\nabla\left(p_{-1}+\Delta p_{0}\right) \\
& h=\Delta u_{s}+\nabla\left[p_{-1}+\Delta\left(p_{0}+\Delta p_{1}\right)\right]
\end{align*}
$$

etc. Any of these representations again corresponds to a boundary value problem.

Boundary Value Problem 2. For given $h \in W_{2}^{-1}$ find three functions u_{s}, p_{-1}, p_{0} such that

$$
\begin{align*}
& \Delta u_{s}+\nabla\left(p_{-1}+\Delta p_{0}\right)=h, \quad \operatorname{div} u_{s}=0, \quad \Delta p_{-1}=0 \quad \text { in } G, \\
& \left.u_{s}\right|_{\partial G}=0,\left.\quad p_{0}\right|_{\partial G}=0,\left.\quad \nabla p_{0}\right|_{\partial G}=0
\end{align*}
$$

Boundary Value Problem 3. For given $h \in W_{2}^{-1}$ find four functions $u_{s}, p_{-1}, p_{0}, p_{1}$ satisfying

$$
\begin{align*}
& \Delta u_{s}+\nabla\left(p_{-1}+\Delta p_{0}+\Delta^{2} p_{1}\right)=h \\
& \operatorname{div} u_{s}=0, \quad \Delta p_{-1}=0, \quad \Delta^{3} p_{0}=0 \quad \text { in } G \\
& \left.u_{s}\right|_{\partial G}=0,\left.\quad p_{0}\right|_{\partial G}=0,\left.\quad \nabla p_{0}\right|_{\partial G}=0 \\
& \left.p_{1}\right|_{\partial G}=0,\left.\quad \nabla p_{1}\right|_{\partial G}=0,\left.\quad \Delta p_{1}\right|_{\partial G}=0,\left.\quad \nabla \Delta p_{1}\right|_{\partial G}=0
\end{align*}
$$

All these problems are well-posed. The solutions can be found by using the decompositions of W_{2}^{-1} given in (20), (21). Obviously, these problems are some versions of the classical Stokes problem

$$
\begin{aligned}
& \Delta u_{s}+\nabla p=h, \quad \operatorname{div} u_{s}=0 \quad \text { in } G \\
& \left.u_{s}\right|_{\partial G}=0
\end{aligned}
$$

revealing the structure of the potential $p \in L_{2} / \mathbb{C}$ in more detail. Contrary to the classical procedure of finding the divergence part u_{s}, here the potential is found first e.g. in the form $p=p_{-1}+\Delta p_{0}$ by solving the problems

$$
\Delta^{2} p_{0}=\operatorname{div} h \quad \text { in } G, \quad p_{0} \in \stackrel{\circ}{W}_{2}^{2}
$$

and

$$
\operatorname{div}\left(\Delta_{0}^{-1} p_{-1}\right)=\operatorname{div}\left(\Delta_{0}^{-1} h\right) \quad \text { in } G, \quad p_{1} \in L_{2} / \mathbb{C}
$$

In the second step the divergence part u_{s} can be found as the solution to the Dirichlet problem

$$
\Delta u_{s}=h-\nabla p \quad \text { in } G,\left.\quad u_{s}\right|_{\partial G}=0
$$

(compare $[4,5]$).

REFERENCES

[1] H. Begehr, Orthogonal decompositions of the function space $L_{2}(\bar{D} ; \mathbb{C})$, preprint, FU Berlin, 2000.
[2] H. Begehr and Yu. Dubinskiĭ, Orthogonal decompositions of Sobolev spaces in Clifford analysis, Ann. Mat. Pura Appl., to appear.
[3] S. Bernstein, Elliptic boundary value problems in unbounded domains, in: Clifford Algebras Appl. in Math. Phys., F. Brackx et al. (eds.), Kluwer, Dordrecht, 1993, 45-53.
[4] Yu. Dubinskiĭ, Some decompositions of Sobolev spaces and Stokes type problems, Dokl. Ross. Akad. Nauk 373 (2000), 727-730 (in Russian).
[5] -, Some orthogonal decompositions of the Sobolev spaces $\stackrel{\circ}{W}_{2}^{1}$ and W_{2}^{-1} and their applications to the Stokes problem, ibid. 374 (2000), 13-16 (in Russian).
[6] K. Gürlebeck, U. Kähler, J. Ryan, and W. Sprößig, Clifford analysis over unbounded domains, Adv. in Appl. Math. 19 (1997), 216-239.
[7] K. Gürlebeck and W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems, Akademie-Verlag, Berlin, 1989; Birkhäuser, Basel, 1990.
[8] —, 一, Quaternionic and Clifford Calculus for Engineers and Physicists, Wiley, Chichester, 1997.
[9] U. Kähler, Elliptic boundary value problems in bounded and unbounded domains, in: Dirac Operators in Analysis, J. Ryan and D. Stuppa (eds.), Addison-Wesley Longman, Harlow, 1998, 122-140.
[10] -, On a direct decomposition of the space $L_{p}(\Omega)$, Z. Anal. Anwendungen 18 (1999), 839-848.
[11] M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, 2nd corr. printing, Springer, New York, 1996.
[12] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.
[13] J. Witte, A reflection principle and its applications, in: Complex Methods for Partial Differential Equations, H. Begehr et al. (eds.), Kluwer, Dordrecht, 1999, 1-19.
[14] -, A reflection principle and an orthogonal decomposition in Clifford algebras, preprint, FU Berlin, 1998.
I. Math. Institut

Freie Universität Berlin
Arnimallee 3
D-14195 Berlin, Germany
E-mail: begehr@math.fu-berlin.de

Moscow Power Engineering Institute
Krasnokazarmennaja 14
Moscow 111250, Russia
E-mail: dubinskii@mm.mpei.ac.ru

[^0]: 2000 Mathematics Subject Classification: Primary 46E35, 46E30; Secondary 35Q30, 31B30, 32F99.

 Paper prepared during the sojourn of the second-named author in spring 2000 at the Freie Universität Berlin on the basis of a DFG guest professorship.

