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SOME ORTHOGONAL DECOMPOSITIONS OF

SOBOLEV SPACES AND APPLICATIONS

BY

H. BEGEHR (Berlin) and Yu. DUBINSKĬI (Moscow)

Abstract. Two kinds of orthogonal decompositions of the Sobolev space W
◦ 1
2 and

hence also of W−12 for bounded domains are given. They originate from a decomposition

of W
◦ 1
2 into the orthogonal sum of the subspace of the ∆

k-solenoidal functions, k ≥ 1, and
its explicitly given orthogonal complement. This decomposition is developed in the real
as well as in the complex case. For the solenoidal subspace (k = 0) the decomposition
appears in a little different form.

In the second kind decomposition the ∆k-solenoidal function spaces are decomposed
via subspaces of polyharmonic potentials. These decompositions can be used to solve
boundary value problems of Stokes type and the Stokes problem itself in a new manner.
Another kind of decomposition is given for the Sobolev spacesWmp . They are decomposed
into the direct sum of a harmonic subspace and its direct complement which turns out to

be ∆(Wm+2p ∩W
◦ 2
p). The functions involved are all vector-valued.

1. Introduction. A series of decompositions of the Sobolev space W
◦

1
2

and its conjugate W−12 are given which are connected with the solenoidal
and potential subspaces. There are two well known such decompositions of
the Lebesgue space L2 (see [12]), namely if G ⊂ R

n, n ≥ 1, is a smooth
enough domain then

L2 = S2 ⊕∇W
◦

1
2,

with

S2 = {us ∈ L2 : div us = 0 in G},

and

L2 = S
◦

2 ⊕∇H1 ⊕∇W
◦

1
2

where S
◦

2 is the closure in L2 of the set of solenoidal functions in C
∞
0 (G)

and H1 ⊂ W
1
2 is the subspace of harmonic potentials. Here the derivatives

are understood in the distributional sense, i.e. in D′.
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The decompositions given in this paper can be viewed as generaliza-
tions of both these decompositions. They are connected with the orthog-
onality not only to “pure” solenoidal subspaces but also to so-called ∆k-

solenoidal subspaces. The latter consist of those elements u ∈ W
◦

1
2 which

satisfy div∆ku = 0 in G in the sense of D′. Here k is any natural number.
The particular case k = 1 was briefly discussed in [4, 5].

Each type of decomposition leads to a corresponding Stokes type bound-
ary value problem or to the Stokes problem itself. In contrast to the tra-
ditional methods of finding the solenoidal vector function here at first the
potential is determined and then the solenoidal part found as the solution to
a Dirichlet problem. Such type of decompositions have also been developed
in Clifford analysis (see [2, 3, 6–10, 14]), and applied to boundary value
problems of mathematical physics. For decompositions in complex analysis
compare [1, 13].

2. Orthogonality to the ∆k-solenoidal subspaces. Let G ⊂ R
n,

n ≥ 1, be a bounded domain with Lipschitz boundary ∂G. Let

W
◦

1
2 =W

◦

1
2(G;C

n) =
{

u : G→ C
n : ‖u‖21 =

\
G

|∇u(x)|2 dx

=
n
∑

ν=1

\
G

(∇uν(x),∇uν(x)) dx <∞, u|∂G = 0
}

be a subspace of the well known Sobolev spaceW 12 of complex vector-valued
functions u = (u1, . . . , un) in G, where ∇ = (∂x1 , . . . , ∂xn) is the gradient
operator. For fixed integer k ≥ 1 let

S
◦

1
∆k,2 = {u ∈W

◦

1
2 : div∆

ku = 0 in G}.

Here div and ∆ are operators understood in the sense of distributions in

D′ = D′(G). The set S
◦

1
∆k,2 is called the subspace of ∆

k-solenoidal vector

functions of W
◦

1
2. Since both operators div and ∆ are closed in D

′ it follows

that S
◦

1
∆k,2 are closed subspaces of W

◦

1
2, and the inclusion

S
◦

1
∆k,2 ⊂W

◦

1
2

is proper. Hence, W
◦

1
2 is representable as the orthogonal sum

W
◦

1
2 = S

◦

1
∆k,2 ⊕ (S

◦

1
∆k,2)

⊥

in the sense of the inner product in W
◦

1
2,

〈u, v〉1 = 〈∇u,∇v〉0 =
n
∑

ν=1

\
G

(∇uν(x),∇vν(x)) dx.
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First the subspace orthogonal to S
◦

1
∆k,2 will be described. To this end

one introduces the following subspace of the scalar Sobolev space W 2k2 =
W 2k2 (G;C):

W
◦

2k
∆k,2 = {p0 ∈W

2k
2 : ∆

κp0|∂G = 0, ∇∆
κp0|∂G = 0 for 0 ≤ κ ≤ k − 1}.

It is the closure in the W 2k2 norm of all scalar functions p ∈ C
∞(G;C)

satisfying the stated boundary conditions.

Remark 1. It is clear that

W
◦

2k
∆k,2 = {p0 ∈W

2k
2 : ∆

κp0 ∈W
◦

2
2 for 0 ≤ κ ≤ k − 1}.

Remark 2. As the boundary conditions are selfadjoint the bilinear form

(1) 〈∆2kp1, p0〉 = 〈∆
kp1, ∆

kp0〉0 = 〈p1, ∆
2kp0〉, p1, p0 ∈W

◦

2k
∆k,2,

is well-posed and selfadjoint. By the classical Lax–Milgram lemma (see e.g.
[11]), the map

(2) ∆2k :W
◦

2k
∆k,2 ↔ (W

◦

2k
∆k,2)

∗

is an isometric isomorphism.

Lemma 1. Let q ∈ (S
◦

1
∆k,2)

⊥. Then the boundary value problems

(3) ∇∆k−1p0 = q in G, p0 ∈W
◦

2k
∆k,2,

and

(4) ∆2kp0 = div∆
kq in G, p0 ∈W

◦

2k
∆k,2,

are equivalent.

Proof. (i) If p0 is a solution to (3) then by differentation, because of
div∆k(∇∆k−1) = ∆2k, the function p0 also solves (4).
(ii) Conversely, let p0 be a generalized solution to (4) in the sense of the

duality (2). Then from (4) follows

∇∆k−1p0 − q ∈ ker div∆
k,

i.e.

(5) ∇∆k−1p0 − q ∈ S
◦

1
∆k,2.

On the other hand, for any p0 ∈W
◦

2k
∆k,2 and arbitrary ϕ ∈ S

◦

1
∆k,2 the relation

〈div∆kϕ, p0〉 = −〈ϕ,∇∆
kp0〉0 = 〈ϕ,∇∆

k−1p0〉1

holds in the sense of the duality (2). The condition div∆kϕ = 0 in the sense

of (2) means that ∇∆k−1p0 ∈ (S
◦

1
∆k,2)

⊥. Thus as q ∈ (S
◦

1
∆k,2)

⊥, also

(6) ∇∆k−1p0 − q ∈ (S
◦

1
∆k,2)

⊥.

Together with (5) this implies ∇∆k−1p0 − q = 0, i.e. p0 solves (3).
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Theorem 1. The operator ∇∆k−1 establishes an elliptic isomorphism

between W
◦

2k
∆k,2 and (S

◦

1
∆k,2)

⊥,

∇∆k−1 :W
◦

2k
∆k,2 ↔ (S

◦

1
∆k,2)

⊥.

This means that for any p0 ∈W
◦

2k
∆k,2 the vector-valued function ∇∆

k−1p0 is

orthogonal to the subspace S
◦

1
∆k,2 and conversely if q ∈ (S

◦

1
∆k,2)

⊥ then there

exists a unique potential p0 ∈ W
◦

2k
∆k,2 such that q = ∇∆

k−1p0. Moreover ,
there exists some constant M > 0 such that

(7) ‖p0‖
W
◦

2k

∆k,2

≤M‖div∆kq‖
(W
◦

2k

∆k,2
)∗
.

Proof. (i) Let p0 ∈ W
◦

2k
∆k,2. Then as shown in step (ii) of the preceding

proof, ∇∆k−1p0 ∈ (S
◦

1
∆k,2)

⊥.

(ii) Let q ∈ (S
◦

1
∆k,2)

⊥. Consider the boundary value problem (3). By

Lemma 1 it is equivalent to problem (4). The latter problem is uniquely
solvable. Its solution satisfies (3).
Finally, the estimate (7) follows from the isometric isomorphism (2).

As a corollary one has

Theorem 2. For any k ≥ 1 the space W
◦

1
2 can be decomposed as

(8) W
◦

1
2 = S

◦

1
∆k,2 ⊕∇∆

k−1(W
◦

2k
∆k,2).

Example. For k = 1,

W
◦

2
∆,2 = {p0 ∈W

2
2 : p0|∂G = 0, ∇p0|∂G = 0}

is the usual Sobolev space W
◦

2
2 and formula (8) becomes

W
◦

1
2 = S

◦

1
∆,2 ⊕∇(W

◦

2
2).

This means that every function u ∈W
◦

1
2 can be represented as the sum

u = u∆,s +∇p0

where (div∆)u∆,s = 0 and p0 ∈W
◦

2
2.

Remark 3. From the representation

u = u∆k,s +∇∆
k−1p0

corresponding to the decomposition (8) it is seen that p0 is the solution to
the boundary value problem

∆2kp0 = div∆
ku in G, ∆κp0 ∈W

◦

2
2 for 0 ≤ κ ≤ k − 1.

Therefore the map u 7→ ∇∆k−1p is the projector ∇∆k−1 :W
◦

1
2 → (S

◦

1
∆k,2)

⊥.
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3. Orthogonality to the ∆k-solenoidal subspaces in the complex
case. In this section the above results are extended to the case of several
complex variables. Let G be a domain in C

n, n ≥ 2. It will be identified
with G ⊂ R

2n of the real variables {xν , yν : 1 ≤ ν ≤ n} so that z =
(z1, . . . , zn), x = (x1, . . . , xn), y = (y1, . . . , yn), zν = xν + iyν , 1 ≤ ν ≤ n.
The boundary ∂G of the domain G ⊂ R

2n is supposed to be a smooth
hypersurface. Further, as usual, the basic complex differential operators are
denoted by

∂zν =
1
2 (∂xν − i∂yν ), ∂zν =

1
2 (∂xν + i∂yν ), 1 ≤ ν ≤ n.

With the same notations as in the real case, one defines the Sobolev function
spaces of complex vector-valued functions u = (u1, . . . , un) vanishing at the
boundary ∂G:

W
◦

1
2 =
{

u ∈W 12 (G;C
n) : ‖u‖21 =

\
G

|∇zu(z)|
2 dx dy

=

n
∑

µ,ν=1

\
G

|∂zνuµ(z)|
2 dx dy <∞, u|∂G = 0

}

.

∇z = (∂z1 , . . . , ∂zn) is the complex gradient with respect to the variable z.

Analogously ∇z = (∂z1 , . . . , ∂zn). The space W
◦

1
2 endowed with the inner

product

〈u, v〉1 =
\
G

(∇zu(z),∇zv(z)) dx dy =
n
∑

µ,ν=1

\
G

∂zνuµ(z)∂zνvµ(z) dx dy

=

n
∑

ν=1

\
G

(∇zνuν(z),∇zνvν(z)) dx dy

becomes a Hilbert space. Let ∆ = 14
∑n
ν=1 ∂zν∂zν denote the Laplace oper-

ator and divz u =
∑n
ν=1 ∂zνuν the divergence operator with respect to the

variable z, both understood in the sense of D′(G) or in the sense of any
duality 〈·, ·〉 which is an extension of the usual scalar product in L2. The set

S
◦

1
∆k,2 = {u ∈W

◦

1
2 : divz∆

ku = 0}

is a closed subspace of W
◦

1
2 for any integer k ≥ 1.

Remark 4. Obviously divz∆
kw = 0 if and only if

divx∆
ku− divy∆

kv = 0, divy∆
ku+ divx∆

kv = 0

for w = u+ iv. Hence, the subspaces S
◦

1
∆k,2 are not empty.

As usual for a multiindex α = (α1, . . . , αn) the notation ∂
α
z = ∂

α1
z1
. . . ∂αnzn
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is used. Then

W
◦

2k
∆k,2 =

{

p0 ∈W
2k
2 (G;C) : ‖p0‖

2
2k =

∑

|α|≤2k

\
G

|∂αz p0(z)|
2 dx dy <∞,

∆κp0|∂G = 0, ∇z∆
κp0|∂G = 0, for 0 ≤ κ ≤ k − 1

}

is the space of scalar “potentials”.

Theorem 2′. For any integer k ≥ 1 the space W
◦

1
2 has the orthogonal

decomposition

W
◦

1
2 = S

◦

1
∆k,2 ⊕∇z∆

k−1W
◦

2k
∆k,2.

Proof. The proof is like the one of Theorem 2.

(i) If a function q ∈ W
◦

1
2 has the form q = ∇z∆

k−1p0 for some scalar

potential p0 ∈W
◦

2k
∆k,2, then for any ϕ ∈ S

◦

1
∆k,2 one has

〈divz ∆
kϕ, p0〉 = −〈ϕ,∇z∆

kp0〉0 = 〈ϕ,∇z∆
k−1p0〉1.

The condition divz ∆
kϕ = 0 then implies that ∇z∆

k−1p0 is orthogonal

to S
◦

1
∆k,2.

(ii) Let q ∈ (S
◦

1
∆k,2)

⊥. Then there exists a unique potential p0 ∈ W
◦

2k
∆k,2

such that q = ∇z∆
k−1p0, i.e. the boundary value problem

∇z∆
k−1p0 = q, p0 ∈W

◦

2k
∆k,2,

has a unique solution. In fact, repeating the proof of Lemma 1 one can

establish that for q ∈ (S
◦

1
∆k,2)

⊥ this problem is equivalent to the well-posed
boundary value problem

∆2kp0 = divz∆
kq, p0 ∈W

◦

2k
∆k,2.

The unique solution p0 of this problem is the desired potential p0.

4. Orthogonality to the solenoidal subspace. In this section the
orthogonal complement of the subspace of all solenoidal functions

S
◦

1
2 = {us ∈W

◦

1
2 : div us = 0 in D

′}

inW
◦

1
2 is found. The subspace S

◦

1
2 is closed inW

◦

1
2. In order to describe (S

◦

1
2)
⊥

one needs the operator

∆−10 :W
−1
2 →W

◦

1
2

where W−12 = (W
◦

1
2)
∗ and ∆−10 is the inverse operator to ∆ :W

◦

1
2 →W

−1
2 .

Lemma 2. The equations

(9) ∆−10 ∇p1 = q1
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and

(10) div∆−10 ∇p1 = div q1

are equivalent in W
◦

1
2 if and only if q1 ∈ (S

◦

1
2)
⊥.

Proof. (i) Applying the div operator to (9) shows that any solution to
(9) is a solution of (10).
(ii) Let p1 ∈ L2(G) be a solution to (10). Then

∆−10 ∇p1 − q1 ∈ ker(div) = S
◦

1
2.

On the other hand for any p1 ∈ L2 and any ϕ ∈ S
◦

1
2,

〈∆−10 ∇p1, ϕ〉1 = −〈∇p1, ϕ〉0 = 〈p1, divϕ〉0 = 0.

Hence, if q1 ∈ (S
◦

1
2)
⊥ then ∆−10 ∇p1 − q1 ∈ (S

◦

1
2)
⊥. Thus ∆−10 ∇p1 = q1.

Lemma 3. Equation (10) is solvable for any q1 ∈ W
◦

1
2. More precisely ,

for any q1 ∈ W
◦

1
2 there exists a unique potential p1 ∈ L2/C such that (10)

holds.

Proof. Identifying as usual the factor space L2/C with the subspace of
L2 of all functions orthogonal to the unity, a solution to (10) in this subspace
is found by the Galerkin method. Let {vν : ν ≥ 1} be a basis of L2/C with
smooth functions vν . The approximate solutions p

N
1 , N ≥ 1, are defined as

pN1 =
N
∑

ν=1

cNν vν

where the unknown coefficients cNν , 1 ≤ ν ≤ N , are defined from the Galerkin
moment equations

〈div∆−10 ∇p
N
1 , vν〉0 = 〈div q1, vν〉0, ν = 1, . . . , N,

or, what is the same, from

(10N ) 〈∆−10 ∇p
N
1 ,∇vν〉0 = −〈div q1, vν〉0, 1 ≤ ν ≤ N.

The solvability of this algebraic linear system follows from the a priori es-
timate which will be deduced next. Multiplying (10N ) by c

N
ν and summing

up gives

(11) 〈∆−10 ∇p
N
1 ,∇p

N
1 〉0 = −〈div q1, p

N
1 〉0

or

‖∇pN1 ‖
2
−1 = −〈div q1, p

N
1 〉0.

Therefore, using the Cauchy–Schwarz–Bunyakovskĭı inequality and the
known inequality

(12) ‖pN1 ‖0 ≤M‖∇p
N
1 ‖−1
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with some M > 0 for pN1 ∈ L2/C (Ladyzhenskaya–Babuška–Brezzi–Nečas,
see [12], §1, p. 17) from (11) for N ≥ 1 the estimate

(13) ‖∇pN1 ‖−1 ≤M‖div q1‖0

follows. By (12), for any N ≥ 1,

(14) ‖pN1 ‖0 ≤M
2‖div q1‖0.

In particular the constant M > 0 does not depend on N . These estimates
imply the weak compactness of the sequence (pN1 ) in L2/C. Assuming with-
out loss of generality that the sequence itself converges weakly to some
p1 ∈ L2/C, then also (∇p

N
1 ) weakly converges in W

−1
2 to ∇p1. Obviously,

p1 is a solution of (10). The uniqueness is obvious too.

Theorem 3. The map

∆−10 ∇ : L2/C↔ (S
◦

1
2)
⊥

is an elliptic isomorphism, and

W
◦

1
2 = S

◦

1
2 ⊕∆

−1
0 ∇(L2/C).

Proof. It has to be shown that for any p1 ∈ L2/C the image q1 ≡

∆−10 ∇p1 is orthogonal to S
◦

1
2 and that on the other hand for any q1 ∈ (S

◦

1
2)
⊥

there exists a (unique) potential p1 ∈ L2/C such that ∆
−1
0 ∇p1 = q1. More-

over,

(15) ‖p1‖0 ≤M‖div q1‖0

for some constant M ≥ 0.
(i) For any p1 ∈ L2(G) and any ϕ ∈ S

◦

1
2,

〈∆−10 ∇p1, ϕ〉1 = −〈∇p1, ϕ〉0 = 〈p1, divϕ〉0 = 0.

Thus ∆−10 ∇p1 ∈ (S
◦

1
2)
⊥. This argument was already used in the proof of

Lemma 2.
(ii) Let q ∈ (S

◦

1
2)
⊥. It has to be shown that there exists a function p1 ∈

L2/C satisfying (9) in W
◦

1
2. Indeed, from Lemma 3 combined with Lemma 2

a solution p1 ∈ L2/C can be obtained. Finally, if div q1 = 0 then

div∆−10 ∇p1 = 0

immediately yields 〈∇p1,∇p1〉−1 = 0, so that ∇p1 = 0 and hence p1(x) = 0.
This could also be seen from the estimate (15).
The a priori estimate (15) follows from inequality (13) together with (14).

Remark 5. If u ∈ L2(G) satisfies div u = div q1 then the equation

div∆−10 ∇p1 = div u

has the same solution p1 for all such u. This means that the mapping u 7→ p1
defines a projection u 7→ ∆−10 ∇p1 of W

◦

1
2 onto (S

◦

1
2)
⊥.
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5. Orthogonal decomposition of ∆k-solenoidal subspaces. Next
a detailed representation of the subspace of the ∆-solenoidal functions and
of the∆k-solenoidal functions for any positive integer k are given. According

to Theorem 2 every function u ∈ S
◦

1
∆,2 ⊖ S

◦

1
2 can be written as u = ∆

−1
0 ∇p1

for some p1 ∈ L2/C. However, in this case p1 is a harmonic potential , i.e.
∆p1 = 0 in D

′.

Theorem 4. Denote the subspace of harmonic potentials in L2(G) by
H1. Then

S
◦

1
∆,2 = S

◦

1
2 ⊕∆

−1
0 ∇(H1/C).

Proof. (i) If p1 ∈ H1 ⊂ L2 then of course q1 = ∆
−1
0 ∇p1 is orthogonal to

S
◦

1
2 (see the proof of Theorem 2).

(ii) If q1 ∈ (S
◦

1
2)
⊥ and u is a solution of div∆u = 0 satisfying div u =

div q1, then the corresponding potential p1, satisfying ∆
−1
0 ∇p1 = q1, is an

L2-solution to the equation

div∆−10 ∇p1 = div u

(see Remark 5). Applying the Laplace operator ∆ to this equation leads to
∆p1 = 0. Hence, p1 ∈ H1.

Definition 1. A potential p0 is called polyharmonic of order k ≥ 1 if it
satisfies the equation ∆kp0 = 0 in D

′. The set of all polyharmonic potentials
of order k is denoted by Hk.

Theorem 5. For any positive integer k,

S
◦

1
∆k+1,2 = S

◦

1
∆k,2 ⊕∇∆

k−1(W
◦

2k
∆k,2 ∩H2k+1).

In other words, a function u ∈ W
◦

1
2 belongs to the subspace S

◦

1
∆k+1,2 ⊖ S

◦

1
∆k,2

if and only if it has the form u = ∇∆k−1p0 with a potential p0 ∈ W
◦

2k
∆k,2

which is polyharmonic of order 2k + 1, i.e. ∆2k+1p0 = 0.

Proof. (i) For any p0 ∈W
◦

2k
∆k,2∩H2k+1 the function∇∆

k−1p0 is obviously

orthogonal to S
◦

1
∆k,2.

(ii) Let u ∈ W
◦

1
2 be such that div∆

ku 6= 0 but div∆k+1u = 0. Then in
accordance with Theorem 2,

u = u∆k,s + q

with u∆k,s ∈ S
◦

1
∆k,2 and q = ∇∆

k−1p0 where the potential p0 ∈ W
◦

2k
∆k,2 is

the solution to the problem

(16) ∆2kp0 = div∆
ku, ∆νp0 ∈W

◦

2
2, ν = 0, 1, . . . , k − 1.

Applying the Laplace operator ∆ yields ∆2k+1p0 = 0 in D
′.
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Corollary 1. Any function u ∈W
◦

1
2 can be written as

u = us +∆
−1
0 p−1 +

k−1
∑

ν=0

∇∆νpν +∇∆
kqk

where p−1 is a harmonic potential and pν , 0 ≤ ν ≤ k− 1, are polyharmonic
potentials of order 2ν + 1 and qk is the unique solution to (15) where k is
replaced by k + 1.

6. Harmonic decompositions. For p > 1 and nonnegative integer m
let

Wmp =
{

u : G→ C
n : ‖u‖pm,p =

∑

|α|≤m

\
G

|Dαu(x)|p dx <∞
}

be the Sobolev space for a bounded domain G ⊂ R
n with smooth boundary.

Further let Hmp ⊂W
m
p be the subspace of harmonic functions,

Hmp = {u ∈W
m
p : ∆u = 0 in D

′}.

Theorem 6. The space Wmp can be decomposed into the direct sum

Wmp = H
m
p +̇ ∆(W

m+2
p ∩W

◦

2
p),

i.e. u = uh +∆p0 with uh ∈ H
m
p , p0 ∈ W

m+2
p ∩W

◦

2
p. For p = 2 this is an

orthogonal decomposition.

Proof. For given u ∈ Wmp let p0 ∈ W
m+2
p ∩W

◦

2
p be the solution of the

boundary value problem

∆2p0 = ∆u in G, p0 = 0, ∇p0 = 0 on ∂G.

This is a well-posed boundary value problem in the whole scale Wmp : for
any u ∈ Wmp with m ≥ 0, p > 1 the problem has a unique solution p0 ∈

Wm+2p ∩W
◦

2
p. Then

u = uh +∆p0

where uh is defined by this relation. It is clear that uh ∈ H
m
p because

∆uh = ∆u−∆
2p0 = 0

due to the choice of p0.

It remains to show that the decomposition is direct, that is, uh and p0 are

uniquely determined. Let 0 = uh+∆p0 with uh ∈ H
m
p and p0 ∈W

m+2
p ∩W

◦

2
p.

Then the function v = ∆p0 = −uh is harmonic as uh is. Thus ∆v = ∆
2p0

= 0. As p0 ∈ W
◦

2
p, i.e. p0 = 0 and ∇p0 = 0 on ∂G, it follows that p0 = 0.

Hence, also uh = 0. This shows the sum is direct.
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Remark 6. From the boundary value problem one has the a priori es-
timates

‖p0‖Wm+2p
≤M‖∆u‖Wm−2p

.

Example. For p = 2 and m = 0 the last decomposition reads

(17) L2 = H2 ⊕∆W
◦

2
2.

This orthogonal decomposition will be applied to solving the following
variational problem.

Variational Problem. Let 0 < a0 ≤ A0 be constants and a be mea-
surable in G such that

a0 ≤ a(x) ≤ A, x ∈ G.

Moreover , let h ∈ L2. Determine

inf
u∈H2
Re
\
G

[

1
2a(x)|u(x)|

2 − h(x)u(x)
]

dx.

If u ∈ H2 is minimal then

(18)
\
G

[a(x)u(x)− h(x)]ϕ(x)dx = 0

for all ϕ ∈ H2. In accordance with the decomposition (17) this leads to the
next problem.

Problem. Find u ∈ H2 and v ∈ W
◦

2
2 such that au + ∆v = h in the

sense of L2 and ∆u = 0.

Proposition 1. For any h ∈ L2 there exists a unique pair (u, v) solving
the above Problem.

Proof. (i) In order to find u ∈ H2 such that

〈au, ϕ〉0 = 〈h, ϕ〉 for all ϕ ∈ H2

the standard Galerkin method is used. Let {vk : k ∈ N} be a basis of H2.
An approximate solution

uN =
N
∑

j=1

cNj vj , N = 1, 2, . . . ,

is determined from the Galerkin moment equations

(19) 〈auN , vj〉0 = 〈h, vj〉0, 1 ≤ j ≤ N,

fixing the coefficients cNj , 1 ≤ j ≤ N . Multiplying (19) by c
N
j and summing

up gives

〈auN , uN 〉0 = 〈h, u
N 〉0,
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leading to
a0‖u

N‖20 ≤ 〈h, u
N 〉0 ≤ ‖h‖0‖u

N‖0

and hence to the a priori estimate

‖uN‖0 ≤
1

a0
‖h‖0, N = 1, 2, . . .

Therefore the sequence (uN ) of approximate solutions has at least one weak
limit point u ∈ H2. This function u is a solution of the Problem.

(ii) The function v ∈W
◦

2
2 is found from the decomposition (17). Identity

(18) means au− h ∈ H⊥2 in L2. Then from (17) it is seen that there exists

a unique v ∈W
◦

2
2 such that

au+∆v = h in L2.

To prove the uniqueness of this solution to the Problem, let h = 0. Multi-
plying au + ∆v = 0 by u ∈ H2 and integrating over G gives 〈au, u〉0 = 0
because ∆v is orthogonal to u in L2. Thus u = 0 as also follows directly
from the a priori estimate. Hence, v = 0 follows.

7. Applications. The spaces W
◦

1
2 and W

−1
2 are connected by the one-

to-one map

∆ :W
◦

1
2 ↔W

−1
2 .

Hence, in the sense of the inner product

〈u, v〉−1 = 〈∆
−1
0 u, v〉0 = 〈u,∆

−1
0 v〉0

the orthogonal decompositions of the spaceW−12 are automatically obtained

from those of W
◦

1
2. In particular, according to Section 2, one has the chain

of decompositions

W−12 = ∆S
◦

1
∆k,2 ⊕∇∆

kW
◦

2k
∆k,2, k = 1, 2, . . .

Thus, any function h ∈W−12 can be represented as

h = ∆u∆k,s +∇∆
kpk,

where div∆ku∆k,s = 0 in D
′ and pk ∈ W

◦

2k
∆k,2. This suggests the following

problem.

Boundary Value Problem 1. Let h ∈W−12 . Find functions u∆k,s, pk
satisfying

∆u∆k,s +∇∆
kpk = h, div∆

ku∆k,s = 0 in G,

u∆k,s|∂G = 0, ∆
νpk|∂G = 0, ∇∆

νpk|∂G = 0, ν = 0, 1, . . . , k − 1.

For any k this problem is well-posed and the solution u∆k,s, pk can be
found from the decompositions given in Section 2.
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In connection with Sections 4 and 5, one also has the chain of decompo-
sitions

W−12 = ∆S
◦

1
2 +∇[H1/C⊕∆W

◦

2
2],(20)

W−12 = ∆S
◦

1
2 +∇[H1/C+∆(W

◦

2
2 ∩H3 ⊕∆W

◦

4
∆2,2)](21)

etc. Hence, any h ∈W−12 can be represented as

h = ∆us +∇(p−1 +∆p0),(20′)

h = ∆us +∇[p−1 +∆(p0 +∆p1)](21′)

etc. Any of these representations again corresponds to a boundary value
problem.

Boundary Value Problem 2. For given h ∈W−12 find three functions
us, p−1, p0 such that

(20′′)
∆us +∇(p−1 +∆p0) = h, div us = 0, ∆p−1 = 0 in G,

us|∂G = 0, p0|∂G = 0, ∇p0|∂G = 0.

Boundary Value Problem 3. For given h ∈W−12 find four functions
us, p−1, p0, p1 satisfying

(21′′)

∆us +∇(p−1 +∆p0 +∆
2p1) = h,

div us = 0, ∆p−1 = 0, ∆
3p0 = 0 in G,

us|∂G = 0, p0|∂G = 0, ∇p0|∂G = 0,

p1|∂G = 0, ∇p1|∂G = 0, ∆p1|∂G = 0, ∇∆p1|∂G = 0.

All these problems are well-posed. The solutions can be found by using
the decompositions of W−12 given in (20), (21). Obviously, these problems
are some versions of the classical Stokes problem

∆us +∇p = h, div us = 0 in G,

us|∂G = 0,

revealing the structure of the potential p ∈ L2/C in more detail. Contrary to
the classical procedure of finding the divergence part us, here the potential
is found first e.g. in the form p = p−1 +∆p0 by solving the problems

∆2p0 = div h in G, p0 ∈W
◦

2
2,

and
div(∆−10 p−1) = div(∆

−1
0 h) in G, p1 ∈ L2/C.

In the second step the divergence part us can be found as the solution to
the Dirichlet problem

∆us = h−∇p in G, us|∂G = 0

(compare [4, 5]).
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