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ON COMPACT ASTHENO-KAHLER MANIFOLDS

BY

KOJI MATSUO (Ichinoseki) and TAKAO TAKAHASHI (Hirosaki)

Abstract. We prove that every compact balanced astheno-K&hler manifold is Kéhler,
and that there exists an astheno-Ké&hler structure on the product of certain compact
normal almost contact metric manifolds.

1. Introduction. A complex m-dimensional Hermitian manifold M
endowed with the Kahler form (2 is called an astheno-Kdahler manifold if
22 =0 NA...A2 (m— 2 times) is pluriharmonic, that is, 902™ 2 = 0,
where 9 and 9 are the complex exterior differentials (cf. [7], [9]). S.-T. Yau
says in Open Problem 93 of [13] that such a manifold seems to be partic-
ularly interesting for many analytic arguments to be useful. For example,
it is known that every holomorphic 1-form on a compact astheno-Kéahler
manifold is closed. So a compact complex parallelizable manifold cannot
be astheno-Kéahler unless it is a complex torus, because over such a mani-
fold, there exist, by definition, m linearly independent global holomorphic
1-forms (cf. [15]). On the other hand, it is well known (Boothby [3]) that
a complex parallelizable manifold has a natural Hermitian-flat metric, and
the existence of a Hermitian-flat metric is a somewhat weaker property
than complex parallelizability. Li, Yau, and Zheng [9] conjecture that com-
pact non-Kéhler Hermitian-flat manifolds or similarity Hopf manifolds of
complex dimension > 3 do not admit any astheno-Kéahler metrics.

In this paper, we prove the following theorem.

THEOREM 1.1. Every compact balanced astheno-Kdhler manifold is
Kdhler.

A Hermitian manifold is said to be balanced if the torsion 1-form of its
Hermitian connection vanishes everywhere. As a corollary, since a compact
Hermitian-flat manifold is balanced, we have

COROLLARY 1.1. Every compact Hermitian-flat astheno-Kdahler mani-
fold is Kdahler.
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The only known examples of compact astheno-Kéahler manifolds are triv-
ial ones (cf. [9]). It is also known (cf. [12]) that any product of normal almost
contact manifolds is a complex manifold. Another purpose of this paper is to
prove that there exists a non-trivial astheno-Kéahler structure on the product
of certain compact normal almost contact metric manifolds. Consequently,
by means of the result of the second author [14], we also know that S x S3
admits many astheno-Kahler structures.

Throughout this paper, we always assume the differentiability of class
C*°, and manifolds to be connected and without boundary.

2. Hermitian connections and curvatures. Let M be a complex
manifold of complex dimension m > 3 with the complex structure J. A
Hermitian metric g on M is a Riemannian metric such that g(JX,JY) =
9(X,Y) for all vector fields X,Y on M. The triple (M, J, g) is called a Her-
mitian manifold. The Kdhler form 2 of (M, J,g) is defined by 2(X,Y) =
9(X, JY) for all vector fields X,Y on M. It is well known (cf. [5]) that ev-
ery Hermitian manifold (M, J, g) admits a unique linear connection D such
that DJ = 0, Dg = 0, and the torsion tensor field T" satisfies T'(JX,Y) =
JT(X,Y) for all vector fields X,Y on M. This connection D is called the
Hermitian connection of (M, J, g). The curvature tensor field H of the Her-
mitian connection D, called the Hermitian curvature tensor field, is defined
by

H(X,Y) = [Dx,Dy] — D[X,Y]

for all vector fields X,Y on M.

LEMMA 2.1 (cf. [11]). The Hermitian curvature tensor field H satisfies
the following equations: For all vector fields X,Y, Z,W on M,

g(H(X7Y)Z7 W) = _g(H(YaX)Za W) = _g(H(X7Y)W7 Z)a
H(JX,JY)Z=H(X,Y)Z, H(X,Y)JZ=JH(X,Y)Z,
(first Bianchi’s identity)
Cycxyz[H(X,Y)Z] = Cycxyz[T(T(X,Y),Z) + (DxT)(Y, Z)],
where Cycy y z denotes the cyclic sum over X,Y, and Z.

A Hermitian manifold (M, J, g) is said to be Hermitian-flat if the Her-
mitian curvature tensor field H vanishes everywhere on M.

We define three tensor fields S; (i = 1,2,3) which are analogous to the
Ricci tensor field in Kéhler geometry:

S1(X,Y) = L trace[Z — H(X,JY)JZ],
So(X,Y) = & g(trace H*(X),Y),
S3(X,Y) = s tracelZ — H(Z,X)Y + H(Z,Y)X]
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for all vector fields X,Y on M, where H*(X) : (Z,W) — H(Z,JW)JX.
Then, by Lemma 2.1, we have

LEMMA 2.2 (cf. [11]). The Ricci-type tensor fields S; (i = 1,2, 3) defined
above are symmetric and compatible with J, i.e.,

for all vector fields X,Y on M.

We moreover define two scalar curvatures s and § which are analogous
to the scalar curvature in Kéhler geometry:

s = trace S; = trace So, S5 = traceSs.

On a compact Hermitian manifold (M, J,g), it is well known (Gauduchon
[5]) that

(2.1) s—5=01+|7|%
where 7 denotes the torsion 1-form defined by 7(X) = trace[Y — T(X,Y)],
0 the codifferential, i.e., § = — % d %, and ||7|| the g-norm of 7.

3. Proof of Theorem 1.1. We shall use the following real differential
operator d¢ (cf. [1]) to judge whether the manifolds are astheno-Kéhler.
Extend the complex structure J to p-forms ¢ on M as follows:

Jpop=¢ forp=0,
Jo(X1, ..., Xp) = (—1)"p(JX1,...,JXp) forp>0,
where X7, ..., X, are vector fields on M. Then the operator d° is given by
dp=—J 'dJp = (-1)PJdJp for any p-form ¢ on M.

It is well known that dd® = 2v/—1 8. Therefore an astheno-Kéahler manifold
may be defined as follows.

DEFINITION 3.1. A complex m-dimensional Hermitian manifold (M, J, g)
endowed with the Kahler form {2 is called an astheno-Kdhler manifold if
dd°f2m—2 = 0.

With the help of the Kéahler form (2, we have two linear operators L and
A acting on forms. L is defined by Ly = 2 A ¢ for any form ¢, and A is
the adjoint operator of L with respect to the global scalar product defined
on M by (¢, 1) = p!§,,(¢,¥) vy for any p-forms ¢, 1) on M, where (¢,) is
the pointwise g-scalar product, and vy is the volume element of g. Then A
can be locally written as follows: For any p-form ¢ on M,

0 for p =0,1,

2m
= ! N
A= ﬁ ) "i(ea)i(Jea)p for p > 2,

a=1
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where i(X) denotes the interior product by X, and {e,}>™, is a local
adapted g-orthonormal frame field of M such that e;4; = Je; for j =
1,...,m. For any p-form ¢, we have

(3.1) ALp = LAp + 4(m — p)e.
Moreover, we inductively obtain
(3.2) ALPo = LFAp + 4k(m —p — k + 1) LF 1.

LEMMA 3.1. Let r be a positive integer such that r < k. Then, for any
p-form ¢ on M,

o (N T\ (m—p—k+r\ i
ArLk :LkAr 47 !2 Lk i gr—t
omstwes S () () ("7

where (:) 18 a binomial coefficient.
Proof. This is easily proved by induction on r. =

In particular, we have, from Lemma 3.1,

k
P kE\ (E\ fm—0p P
AkLk’ :Lk/lk 4° !2 Lkz/lkl.
0 Wr; @), ”
Moreover, we obtain
(3.3)  AFP3LFy

k—1
i k k+3 m—p+3 i i
= e (G) () (7T o

=1
k+3)! /m— 3
+4’“+3k!(3%)< ]f+ >/13<p.
Now, if m > 3, then
(3.4)  dd°2™2 = (m — 2)d[d° 2 A 273
(m — 2)[dd°Q2 A 273 — d°0 A dR™ )
(m —2)[dd°Q2 A 2+ (m — 3)d2 AN d° Q) A Q™4
= (m — 2)L™ 4dd°Q2 A 2 + (m — 3)d02 A d°Q2].

By (3.3) and the fact that A"[dd°02 A 2+ (m — 3)d2 A d°2] = 0 for r > 3,
we then get

(3.5)  A™tdacom?
(m—1)!
3!

_ e (m —2) A%[dd°2 A 2+ (m — 3)dR N d°02).

On the other hand, by the direct calculation using the Hermitian con-
nection D, we have the following lemma.
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LEMMA 3.2. On a Hermitian manifold (M, J,g),
(3.6) 12(X,Y, Z) = L Cyex y IQ(T(X,Y), 2),
(3.7) d°Q(X,Y,Z) = —5 Cycx y z[9(T(X,Y), Z)],
(38) dd°2(X,Y,Z,W)=—¢Cycxyz[9g(T(X,Y), T(Z,W))
+9(H(X,Y)Z, W)+ g(H(Z,W)X,Y)]
for all vector fields X, Y, Z, W on M.
Then, by means of Lemmas 2.1, 2.2, 3.2, and (2.1), we obtain
H(dd2 A 2) = 96(m — 2) [2(67 + |711%) — T2,
AR N Q) = 96 [T — 2712,
Therefore, by (3.5), we conclude
LEMMA 3.3. On a Hermitian manifold (M, J,g) of dim¢ M =m > 3,
AT AC ™2 = 4™ 73 (m — 1) (m — 2)[2(m — 2)d7 + 2||7|]* — || T
Similarly, we have
LEMMA 3.4. On a Hermitian manifold (M, J,g) of dimc M =m = 3,
A2dde Q™2 = A%dd°Q = 8[2(67 + ||7]1?) — || T|].
Let (M, J,g) be a compact Hermitian manifold of complex dimension
m > 3. Integrate the equality in Lemma 3.3 or Lemma 3.4 under the condi-

tions 7 = 0 and dd®2™ 2 = 0. Then we conclude that 7" = 0. This completes
the proof of Theorem 1.1.

4. Examples of compact astheno-Kahler manifolds. Let M be a
(2n+1)-dimensional almost contact manifold with the structure tensor fields
(p,&,m), that is, ¢ is a (1, 1)-tensor field, n a 1-form, and £ a vector field on
M such that

77(5):17 ¢2:_I+n®£7

where I denotes the identity transformation of the tangent spaces and
n > 1. An almost contact structure (¢,&,n) is said to be normal (cf. [2])
if [¢, ¢] + 2dn ® £ = 0, where [¢, ¢] denotes the Nijenhuis tensor field of ¢,
ie., [0,0](X,Y) = [0X, ¢Y] + #?[X,Y] — ¢[X, ¢Y] — ¢[¢X, Y] for all vector
fields X,Y on M. A Riemannian metric g on M is said to be compatible if

for any vector fields X,Y on M. An almost contact manifold M with a
compatible Riemannian metric g is said to have an almost contact metric
structure (¢,&,m,g). It is known that there always exists an almost contact
metric structure on an almost contact manifold. The fundamental 2-form @
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on an almost contact metric manifold M is defined by
P(X,Y) = g(X,9Y)

for all vector fields X,Y on M. Then we have n A " # 0. If & = dn,
then M is, by definition, a contact manifold. Such an almost contact metric
structure is called a contact metric structure. Moreover, if a contact metric
structure is normal, then it is called a Sasakian structure. It is well known
(cf. [2]) that there is the standard Sasakian structure on the unit sphere
S§2n+1in C"*1. On the other hand, if d® = 0 and dn = 0, then M is said to
have an almost cosymplectic structure. Moreover, if an almost cosymplectic
structure is normal, then it is called a cosymplectic structure. If N is a
compact Kihler manifold, then N x S! is the trivial example of compact
cosymplectic manifolds. The non-trivial examples of compact cosymplectic
manifolds are found in [4] and [10].

Let M; (i = 1,2) be a (2m; + 1)-dimensional compact normal almost
contact metric manifold with the structure tensor fields (¢;,&;,7;). On the
product manifold M = M; x Ms, we consider an almost complex structure
J defined by

J=¢1—me@& +d2+m @& (see [12]).
This almost complex structure J is integrable since each almost contact
structure is normal. Thus M endowed with J is a compact complex manifold
of complex dimension m = m; + mg + 1. Moreover, if g; is the compatible
Riemannian metric on M; for each i = 1,2, then the Riemannian product
metric ¢ = g1 + g2 on M is compatible with J, that is, ¢ is a Hermitian
metric on M. Then its Kéhler form {2 is given by

(4.1) Q:¢1+@2—2771/\772,
where @; denotes the fundamental 2-form on M; for each ¢ = 1, 2.

Now, in the case where M; and M5 are more special, we investigate the
Hermitian structure (4.1) of M = M; x M.

THEOREM 4.1. Let (M;, g;) be a 3-dimensional compact Sasakian man-
ifold for each i = 1,2. Then the product manifold M = My x My with the
Hermitian structure (4.1) is astheno-Kdhler.

Proof. Since M and My are both Sasakian, we have
df2 = =2(P1 Ama — P2 A1),
and
d°Q = Jd02 = =2(JP1 A Jng — JPa A Jn1) = 2(P1 Ay + Do A ).

Here we used the fact that {2 and @; are J-invariant, and Jn; =2, Jno=—mn;.
Thus we get
dd° 2 = 2(d3 + P3).
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Since dime¢ M = m = 3, i.e., dim M; = m; = 1 for each ¢ = 1,2, @? =0
on M;, and hence we obtain

dd°Qm™? = dd°Q = 2(? +P3) =0 on M.

Therefore we conclude that the Hermitian structure (4.1) on M is astheno-
Kahler. =

REMARK 4.1. Let (M;, g;) be a Sasakian manifold for each i = 1,2. If
dim¢c M = m > 3, then

dd° Q™2 = (m — 2)[dd°Q A 2 + (m — 3)dR2 AN d°Q) A 2™
2(m — 2)(@% + @%) VAN [@1 + &9 + 2(m — 4)7]1 VAN 772] A QT4
2(m — 2) (P2 4+ P2) A (D1 + Py)™ 3

m—1
=2(m—2) Y C(m k)" ™" n @k,
k=0

where C(m, k) are given as follows:
C(m,0)=C(m,m—-1)=0, C(m,1)=C(m,m—2)=m—3,

C(m,k) = <mk—3> + <TZ__23> for 2 <k <m-—3.

Since ¢ = 0 on M; for p > m,, @gm_l)_k =0on M; if 0 < k < mg, and
Q5§:OOHM2 if mg < k <m — 1. Thus
STVTENGE =0 on M if k # ma,
and hence we obtain
dd° ™2 = 2(m — 2)C(m, ma)®" APY2 #0 on M.

Therefore if m > 3, then the Hermitian structure (4.1) on M is not astheno-
Kahler.

THEOREM 4.2. Let (Mji,g1) be a 3-dimensional compact Sasakian man-
ifold, and (Ma, g2) a compact cosymplectic manifold of dimension > 3. Then
the product manifold M = My x My with the Hermitian structure (4.1) is
astheno-Kdhler.

Proof. Since M is Sasakian and My cosymplectic, we have
A2 = —-2P1 Any and d°f2 =2P1 Any.
Thus we get
dd° 2 = 283
Since my = 1, #2 = 0 on My, that is, dd°2 = 0 and d2 A d°f2 = 0 on M,
and hence we obtain
dd°Q2 N Q24 (m —3)d2 Nd°2 =0.
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Therefore, by (3.4), we conclude that the Hermitian structure (4.1) on M is
astheno-Kahler. m

REMARK 4.2. Let (M, g91) be a Sasakian manifold of dimension > 3,
and (Ma, g2) a cosymplectic manifold. Then

dd° ™2 = 2(m — 2)P3 A (D1 + Py)" 3

m—3
=2(m—-2) ) <mk_ 3) IR N gk
k=0

Since m — 3 > msg, @gm_l)_k =0on M; if 0 < k < mg, and ¢I§ =0 on My

if mo < k <m — 3. Thus
dsgmfl)*k ADE =0 on M if k # ma,

and hence we obtain

m—3

dd Q™2 =2(m — 2)< )qﬁ{”l APT?£0  on M.

ma
Therefore if my > 1, then the Hermitian structure (4.1) on M is not astheno-
Kahler.
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