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ON COMPACT ASTHENO-KÄHLER MANIFOLDS

BY

KOJI MATSUO (Ichinoseki) and TAKAO TAKAHASHI (Hirosaki)

Abstract. We prove that every compact balanced astheno-Kähler manifold is Kähler,
and that there exists an astheno-Kähler structure on the product of certain compact
normal almost contact metric manifolds.

1. Introduction. A complex m-dimensional Hermitian manifold M
endowed with the Kähler form Ω is called an astheno-Kähler manifold if
Ωm−2 = Ω ∧ . . . ∧Ω (m− 2 times) is pluriharmonic, that is, ∂∂Ωm−2 = 0,
where ∂ and ∂ are the complex exterior differentials (cf. [7], [9]). S.-T. Yau
says in Open Problem 93 of [13] that such a manifold seems to be partic-
ularly interesting for many analytic arguments to be useful. For example,
it is known that every holomorphic 1-form on a compact astheno-Kähler
manifold is closed. So a compact complex parallelizable manifold cannot
be astheno-Kähler unless it is a complex torus, because over such a mani-
fold, there exist, by definition, m linearly independent global holomorphic
1-forms (cf. [15]). On the other hand, it is well known (Boothby [3]) that
a complex parallelizable manifold has a natural Hermitian-flat metric, and
the existence of a Hermitian-flat metric is a somewhat weaker property
than complex parallelizability. Li, Yau, and Zheng [9] conjecture that com-
pact non-Kähler Hermitian-flat manifolds or similarity Hopf manifolds of
complex dimension ≥ 3 do not admit any astheno-Kähler metrics.
In this paper, we prove the following theorem.

Theorem 1.1. Every compact balanced astheno-Kähler manifold is
Kähler.

A Hermitian manifold is said to be balanced if the torsion 1-form of its
Hermitian connection vanishes everywhere. As a corollary, since a compact
Hermitian-flat manifold is balanced, we have

Corollary 1.1. Every compact Hermitian-flat astheno-Kähler mani-
fold is Kähler.
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The only known examples of compact astheno-Kähler manifolds are triv-
ial ones (cf. [9]). It is also known (cf. [12]) that any product of normal almost
contact manifolds is a complex manifold. Another purpose of this paper is to
prove that there exists a non-trivial astheno-Kähler structure on the product
of certain compact normal almost contact metric manifolds. Consequently,
by means of the result of the second author [14], we also know that S3×S3
admits many astheno-Kähler structures.

Throughout this paper, we always assume the differentiability of class
C∞, and manifolds to be connected and without boundary.

2. Hermitian connections and curvatures. Let M be a complex
manifold of complex dimension m ≥ 3 with the complex structure J . A
Hermitian metric g on M is a Riemannian metric such that g(JX, JY ) =
g(X,Y ) for all vector fields X,Y on M . The triple (M,J, g) is called a Her-
mitian manifold. The Kähler form Ω of (M,J, g) is defined by Ω(X,Y ) =
g(X, JY ) for all vector fields X,Y on M . It is well known (cf. [5]) that ev-
ery Hermitian manifold (M,J, g) admits a unique linear connection D such
that DJ = 0, Dg = 0, and the torsion tensor field T satisfies T (JX, Y ) =
JT (X,Y ) for all vector fields X,Y on M . This connection D is called the
Hermitian connection of (M,J, g). The curvature tensor field H of the Her-
mitian connection D, called the Hermitian curvature tensor field , is defined
by

H(X,Y ) = [DX , DY ]−D[X,Y ]
for all vector fields X,Y on M .

Lemma 2.1 (cf. [11]). The Hermitian curvature tensor field H satisfies
the following equations: For all vector fields X,Y, Z,W on M ,

g(H(X,Y )Z,W ) = −g(H(Y,X)Z,W ) = −g(H(X,Y )W,Z),
H(JX, JY )Z = H(X,Y )Z, H(X,Y )JZ = JH(X,Y )Z,

(first Bianchi’s identity)

CycX,Y,Z [H(X,Y )Z] = CycX,Y,Z [T (T (X,Y ), Z) + (DXT )(Y, Z)],

where CycX,Y,Z denotes the cyclic sum over X,Y, and Z.

A Hermitian manifold (M,J, g) is said to be Hermitian-flat if the Her-
mitian curvature tensor field H vanishes everywhere on M .

We define three tensor fields Si (i = 1, 2, 3) which are analogous to the
Ricci tensor field in Kähler geometry:

S1(X,Y ) =
1
2 trace[Z 7→ H(X, JY )JZ],

S2(X,Y ) =
1
2 g(traceH

∗(X), Y ),

S3(X,Y ) =
1
2 trace[Z 7→ H(Z,X)Y +H(Z, Y )X]
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for all vector fields X,Y on M , where H∗(X) : (Z,W ) → H(Z, JW )JX.
Then, by Lemma 2.1, we have

Lemma 2.2 (cf. [11]). The Ricci-type tensor fields Si (i = 1, 2, 3) defined
above are symmetric and compatible with J , i.e.,

Si(X,Y ) = Si(Y,X), Si(JX, JY ) = Si(X,Y )

for all vector fields X,Y on M .

We moreover define two scalar curvatures s and ŝ which are analogous
to the scalar curvature in Kähler geometry:

s = traceS1 = traceS2, ŝ = traceS3.

On a compact Hermitian manifold (M,J, g), it is well known (Gauduchon
[5]) that

s− ŝ = δτ + ‖τ‖2,(2.1)

where τ denotes the torsion 1-form defined by τ(X) = trace[Y 7→ T (X,Y )],
δ the codifferential, i.e., δ = − ∗ d ∗, and ‖τ‖ the g-norm of τ .

3. Proof of Theorem 1.1. We shall use the following real differential
operator dc (cf. [1]) to judge whether the manifolds are astheno-Kähler.
Extend the complex structure J to p-forms ϕ on M as follows:

Jϕ = ϕ for p = 0,

Jϕ(X1, . . . , Xp) = (−1)rϕ(JX1, . . . , JXp) for p > 0,

where X1, . . . , Xp are vector fields on M . Then the operator d
c is given by

dcϕ = −J−1dJϕ = (−1)pJdJϕ for any p-form ϕ on M .

It is well known that ddc = 2
√
−1 ∂∂. Therefore an astheno-Kähler manifold

may be defined as follows.

Definition 3.1. A complexm-dimensional Hermitian manifold (M,J,g)
endowed with the Kähler form Ω is called an astheno-Kähler manifold if
ddcΩm−2 = 0.

With the help of the Kähler form Ω, we have two linear operators L and
Λ acting on forms. L is defined by Lϕ = Ω ∧ ϕ for any form ϕ, and Λ is
the adjoint operator of L with respect to the global scalar product defined
on M by 〈ϕ, ψ〉 = p!

T
M
(ϕ, ψ) vg for any p-forms ϕ, ψ on M , where (ϕ, ψ) is

the pointwise g-scalar product, and vg is the volume element of g. Then Λ
can be locally written as follows: For any p-form ϕ on M ,

Λϕ =






0 for p = 0, 1,

p!

(p− 2)!

2m∑

α=1

i(eα)i(Jeα)ϕ for p ≥ 2,
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where i(X) denotes the interior product by X, and {eα}2mα=1 is a local
adapted g-orthonormal frame field of M such that em+j = Jej for j =
1, . . . ,m. For any p-form ϕ, we have

ΛLϕ = LΛϕ+ 4(m− p)ϕ.(3.1)

Moreover, we inductively obtain

ΛLkϕ = LkΛϕ+ 4k(m− p− k + 1)Lk−1ϕ.(3.2)

Lemma 3.1. Let r be a positive integer such that r ≤ k. Then, for any
p-form ϕ on M ,

ΛrLkϕ = LkΛrϕ+

r∑

i=1

4i(i!)2
(
k

i

)(
r

i

)(
m− p− k + r

i

)
Lk−iΛr−iϕ,

where
(
r
i

)
is a binomial coefficient.

Proof. This is easily proved by induction on r.

In particular, we have, from Lemma 3.1,

ΛkLkϕ = LkΛkϕ+

k∑

i=1

4i (i!)2
(
k

i

)(
k

i

)(
m− p
i

)
Lk−iΛk−iϕ.

Moreover, we obtain

(3.3) Λk+3Lkϕ

= LkΛk+3ϕ+

k−1∑

i=1

4i(i!)2
(
k

i

)(
k + 3

i

)(
m− p+ 3

i

)
Lk−iΛk+3−iϕ

+ 4k+3k!
(k + 3)!

3!

(
m− p+ 3

k

)
Λ3ϕ.

Now, if m > 3, then

ddcΩm−2 = (m− 2)d[dcΩ ∧Ωm−3](3.4)

= (m− 2)[ddcΩ ∧Ωm−3 − dcΩ ∧ dΩm−3]
= (m− 2)[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ] ∧Ωm−4

= (m− 2)Lm−4[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ].
By (3.3) and the fact that Λr[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ] = 0 for r > 3,
we then get

(3.5) Λm−1ddcΩm−2

= 4m−1
(m− 1)!
3!

(m− 2)Λ3[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ].

On the other hand, by the direct calculation using the Hermitian con-
nection D, we have the following lemma.
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Lemma 3.2. On a Hermitian manifold (M,J, g),

dΩ(X,Y, Z) = 13 CycX,Y,Z [Ω(T (X,Y ), Z)],(3.6)

dcΩ(X,Y, Z) = −13 CycX,Y,Z [g(T (X,Y ), Z)],(3.7)

ddcΩ(X,Y, Z,W ) = −16 CycX,Y,Z [g(T (X,Y ), T (Z,W ))(3.8)

+ g(H(X,Y )Z,W ) + g(H(Z,W )X,Y )]

for all vector fields X,Y, Z,W on M .

Then, by means of Lemmas 2.1, 2.2, 3.2, and (2.1), we obtain

Λ3(ddcΩ ∧Ω) = 96(m− 2) [2(δτ + ‖τ‖2)− ‖T‖2],
Λ3(dΩ ∧ dcΩ) = 96 [‖T‖2 − 2‖τ‖2].

Therefore, by (3.5), we conclude

Lemma 3.3. On a Hermitian manifold (M,J, g) of dimCM = m > 3,

Λm−1ddcΩm−2 = 4m−3(m− 1)!(m− 2)[2(m− 2)δτ + 2‖τ‖2 − ‖T‖2].
Similarly, we have

Lemma 3.4. On a Hermitian manifold (M,J, g) of dimCM = m = 3,

Λ2ddcΩm−2 = Λ2ddcΩ = 8[2(δτ + ‖τ‖2)− ‖T‖].
Let (M,J, g) be a compact Hermitian manifold of complex dimension

m ≥ 3. Integrate the equality in Lemma 3.3 or Lemma 3.4 under the condi-
tions τ = 0 and ddcΩm−2 = 0. Then we conclude that T = 0. This completes
the proof of Theorem 1.1.

4. Examples of compact astheno-Kähler manifolds. Let M be a
(2n+1)-dimensional almost contact manifold with the structure tensor fields
(φ, ξ, η), that is, φ is a (1, 1)-tensor field, η a 1-form, and ξ a vector field on
M such that

η(ξ) = 1, φ2 = −I + η ⊗ ξ,
where I denotes the identity transformation of the tangent spaces and
n ≥ 1. An almost contact structure (φ, ξ, η) is said to be normal (cf. [2])
if [φ, φ] + 2dη ⊗ ξ = 0, where [φ, φ] denotes the Nijenhuis tensor field of φ,
i.e., [φ, φ](X,Y ) = [φX, φY ] + φ2[X,Y ]− φ[X,φY ]− φ[φX, Y ] for all vector
fields X,Y on M . A Riemannian metric g on M is said to be compatible if

g(φX, φY ) = g(X,Y )− η(X)η(Y )
for any vector fields X,Y on M . An almost contact manifold M with a
compatible Riemannian metric g is said to have an almost contact metric
structure (φ, ξ, η, g). It is known that there always exists an almost contact
metric structure on an almost contact manifold. The fundamental 2-form Φ
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on an almost contact metric manifold M is defined by

Φ(X,Y ) = g(X,φY )

for all vector fields X,Y on M . Then we have η ∧ Φn 6= 0. If Φ = dη,
then M is, by definition, a contact manifold. Such an almost contact metric
structure is called a contact metric structure. Moreover, if a contact metric
structure is normal, then it is called a Sasakian structure. It is well known
(cf. [2]) that there is the standard Sasakian structure on the unit sphere
S2n+1 in C

n+1. On the other hand, if dΦ = 0 and dη = 0, then M is said to
have an almost cosymplectic structure. Moreover, if an almost cosymplectic
structure is normal, then it is called a cosymplectic structure. If N is a
compact Kähler manifold, then N × S1 is the trivial example of compact
cosymplectic manifolds. The non-trivial examples of compact cosymplectic
manifolds are found in [4] and [10].
Let Mi (i = 1, 2) be a (2mi + 1)-dimensional compact normal almost

contact metric manifold with the structure tensor fields (φi, ξi, ηi). On the
product manifold M =M1 ×M2, we consider an almost complex structure
J defined by

J = φ1 − η2 ⊗ ξ1 + φ2 + η1 ⊗ ξ2 (see [12]).

This almost complex structure J is integrable since each almost contact
structure is normal. ThusM endowed with J is a compact complex manifold
of complex dimension m = m1 +m2 + 1. Moreover, if gi is the compatible
Riemannian metric on Mi for each i = 1, 2, then the Riemannian product
metric g = g1 + g2 on M is compatible with J , that is, g is a Hermitian
metric on M . Then its Kähler form Ω is given by

Ω = Φ1 + Φ2 − 2η1 ∧ η2,(4.1)

where Φi denotes the fundamental 2-form on Mi for each i = 1, 2.
Now, in the case where M1 and M2 are more special, we investigate the

Hermitian structure (4.1) of M =M1 ×M2.
Theorem 4.1. Let (Mi, gi) be a 3-dimensional compact Sasakian man-

ifold for each i = 1, 2. Then the product manifold M = M1 ×M2 with the
Hermitian structure (4.1) is astheno-Kähler.

Proof. Since M1 and M2 are both Sasakian, we have

dΩ = −2(Φ1 ∧ η2 − Φ2 ∧ η1),
and

dcΩ = JdΩ = −2(JΦ1 ∧ Jη2 − JΦ2 ∧ Jη1) = 2(Φ1 ∧ η1 + Φ2 ∧ η2).
Here we used the fact that Ω and Φi are J-invariant, and Jη1=η2, Jη2=−η1.
Thus we get

ddcΩ = 2(Φ21 + Φ
2
2).
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Since dimCM = m = 3, i.e., dimMi = mi = 1 for each i = 1, 2, Φ
2
i = 0

on Mi, and hence we obtain

ddcΩm−2 = ddcΩ = 2(Φ21 + Φ
2
2) = 0 on M.

Therefore we conclude that the Hermitian structure (4.1) on M is astheno-
Kähler.

Remark 4.1. Let (Mi, gi) be a Sasakian manifold for each i = 1, 2. If
dimCM = m > 3, then

ddcΩm−2 = (m− 2)[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ] ∧Ωm−4

= 2(m− 2)(Φ21 + Φ22) ∧ [Φ1 + Φ2 + 2(m− 4)η1 ∧ η2] ∧Ωm−4

= 2(m− 2)(Φ21 + Φ22) ∧ (Φ1 + Φ2)m−3

= 2(m− 2)
m−1∑

k=0

C(m, k)Φ
(m−1)−k
1 ∧ Φk2,

where C(m, k) are given as follows:

C(m, 0) = C(m,m− 1) = 0, C(m, 1) = C(m,m− 2) = m− 3,

C(m, k) =

(
m− 3
k

)
+

(
m− 3
k − 2

)
for 2 ≤ k ≤ m− 3.

Since Φpi = 0 on Mi for p > mi, Φ
(m−1)−k
1 = 0 on M1 if 0 ≤ k < m2, and

Φk2 = 0 on M2 if m2 < k ≤ m− 1. Thus
Φ
(m−1)−k
1 ∧ Φk2 = 0 on M if k 6= m2,

and hence we obtain

ddcΩm−2 = 2(m− 2)C(m,m2)Φm11 ∧ Φm22 6= 0 on M.

Therefore if m > 3, then the Hermitian structure (4.1) onM is not astheno-
Kähler.

Theorem 4.2. Let (M1, g1) be a 3-dimensional compact Sasakian man-
ifold , and (M2, g2) a compact cosymplectic manifold of dimension ≥ 3. Then
the product manifold M = M1 ×M2 with the Hermitian structure (4.1) is
astheno-Kähler.

Proof. Since M1 is Sasakian and M2 cosymplectic, we have

dΩ = −2Φ1 ∧ η2 and dcΩ = 2Φ1 ∧ η1.
Thus we get

ddcΩ = 2Φ21.

Since m1 = 1, Φ
2
1 = 0 on M1, that is, dd

cΩ = 0 and dΩ ∧ dcΩ = 0 on M ,
and hence we obtain

ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ = 0.
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Therefore, by (3.4), we conclude that the Hermitian structure (4.1) on M is
astheno-Kähler.

Remark 4.2. Let (M1, g1) be a Sasakian manifold of dimension > 3,
and (M2, g2) a cosymplectic manifold. Then

ddcΩm−2 = 2(m− 2)Φ21 ∧ (Φ1 + Φ2)m−3

= 2(m− 2)
m−3∑

k=0

(
m− 3
k

)
Φ
(m−1)−k
1 ∧ Φk2 .

Since m− 3 ≥ m2, Φ(m−1)−k1 = 0 on M1 if 0 ≤ k < m2, and Φ
k
2 = 0 on M2

if m2 < k ≤ m− 3. Thus
Φ
(m−1)−k
1 ∧ Φk2 = 0 on M if k 6= m2,

and hence we obtain

ddcΩm−2 = 2(m− 2)
(
m− 3
m2

)
Φm11 ∧ Φm22 6= 0 on M.

Therefore ifm1 > 1, then the Hermitian structure (4.1) onM is not astheno-
Kähler.
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