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BEHAVIOUR OF THE FIRST EIGENVALUE OF THE p-LAPLACIAN
IN A DOMAIN WITH A HOLE

BY

M. SANGO (Vanderbijlpark)

Abstract.We investigate the behaviour of a sequence λs, s = 1, 2, . . . , of eigenvalues
of the Dirichlet problem for the p-Laplacian in the domains Ωs, s = 1, 2, . . . , obtained by
removing from a given domain Ω a set Es whose diameter vanishes when s → ∞. We
estimate the deviation of λs from the eigenvalue of the limit problem. For the derivation of
our results we construct an appropriate asymptotic expansion for the sequence of solutions
of the original eigenvalue problem.

1. Introduction. Let Ω ⊂ R
n be a sufficiently smooth bounded domain

with boundary Γ . We denote by B(x0, εs) the ball inside Ω, centered at the
point x0 with radius εs, where εs, s = 1, 2, . . . , is a sequence of positive
numbers which converges to zero as s → ∞. Let Es be a set inscribed in
B(x0, εs) and let Ωs = Ω \Es be the domain obtained by removing Es from
the domain Ω.

For m ∈ [2, n), we consider the eigenvalue problem for the p-Laplacian
in Ωs, s = 1, 2, . . .:

−

n
∑

i=1

∂

∂xi

(

|∇u|m−2
∂u

∂xi

)

= λ|u|m−2u in Ωs,(1)

u(x) = 0 on ∂Ωs,(2)

where x = (x1, . . . , xn), ∂· denotes the boundary of a set ·,∇u is the gradient
of u. We shall denote by W 1m(·) the standard Sobolev spaces in a domain ·,
and by W̊ 1m(·) the set of functions in W

1
m(·) which vanish on ∂·.

We shall call a number λs an eigenvalue of problem (1)–(2) if there exists
a function us ∈ W̊

1
m(Ωs), us 6≡ 0, such that us is a weak solution of (1)–(2),

i.e., \
Ωs

n
∑

i=1

|∇us|
m−2∂us

∂xi

∂ϕ

∂xi
dx = λs

\
Ωs

|us|
m−2usϕdx(3)
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whenever ϕ ∈ W̊ 1m(Ωs). The function us is then referred to as an eigenfunc-
tion of (1)–(2) corresponding to λs.

The aim of this paper is to investigate the asymptotic behaviour of the
sequence of first eigenvalues λs of (1)–(2) and the sequence of their corre-
sponding eigenfunctions us. In particular, we give an estimate of the devia-
tion λs − λ of λs from the first eigenvalue λ of the limit problem in terms
of the variational capacity of the ball Es. The problem under investigation
goes back to Samarskĭı [4], who considered the Dirichlet problem for the La-
place operator, i.e., when m = 2. He gave an optimal asymptotic estimate of
λs−λ in terms of the harmonic capacity of Es; Maz’ya et al. constructed in
[3] a complete asymptotic expansion for the first eigenvalue of the classical
boundary value problems for the Laplace operator in Ωs. We refer to the
bibliography in [3] for further references on the subject.

A nonlinear version of the theory elaborated in the above-mentioned
papers for the p-Laplacian in a domain with a hole is not known to us. We
note that when m is a natural number, the theory that we propose here
leads to a sharper error estimate which, when m = 2, coincides modulo a
multiplicative constant with the main term in the corresponding asymptotic
estimate obtained in [4].

The existence of the first eigenvalue and its corresponding eigenfunction
is well known. In this connection, we refer to P. Linqvist’s paper [2] and
the references therein. In particular, the first eigenvalue λs of (1)–(2) is
determined by the formula

λs = inf
v∈Xs

\
Ωs

|∇v|m dx, Xs = {v ∈ W̊
1
m(Ωs) : ‖v‖Lm(Ωs) = 1}.(4)

The infimum is attained if v is furthermore an eigenfunction of (1)–(2). By
its definition, it is clear that the sequence {λs}s>0 is bounded and positive.
Indeed, a simple verification shows that if λs = 0, then the corresponding
solution us of (1)–(2) is identically zero. Further, substituting ϕ(x) = us(x)
(an eigenfunction corresponding to λs) in (3), we readily see that there exists
a constant K independent of s such that

‖us‖W̊ 1
m
(Ωs)
≤ K.(5)

Extending the function us to Ω by setting us(x) = 0 in Ω \Ωs we obtain a
new function, again denoted by us, which belongs to W̊

1
m(Ω) and satisfies the

inequality (5). This implies that there exists a subsequence of us (denoted
by the same symbol) which converges weakly to a function u in W̊ 1m(Ω).
Since λs is bounded, there exists a subsequence (again denoted by the same
symbol) which converges to a number λ∗.

We introduce the concept of m-capacity (variational capacity) of a set
(see e.g. Evans–Gariepy [1, Sect. 4.7]). We define the m-capacity of a set
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E ⊂ B(x0, 1/2) to be the number

Cm [E] = inf
{ \
B(x0,1)

|∇ϕ|m dx : ϕ ∈ C
∞

0 (B(x0, 1)), ϕ(x) = 1 in E
}

.

From the same reference, we have

measE ≤ CCm [E]
n/(n−m) ,(6)

where C is a constant depending only on m and n, meas stands for the
Lebesgue measure in R

n. Now we are in a position to formulate our main
result.

Theorem 1. Let λs, s = 1, 2, . . . , be the sequence of first eigenvalues of
problem (1)–(2) and us be eigenfunctions corresponding to λs. Assume that
us converges weakly to u in W̊

1
m(Ω) and let λs → λ∗ as s → ∞. Then us

strongly converges to u in W̊ 1m(Ω), λ
∗ is the first eigenvalue of the problem

−

n
∑

i=1

∂

∂xi

(

|∇u|m−2
∂u

∂xi

)

= λ∗|u|m−2u in Ω,(7)

u(x) = 0 on Γ,(8)

u is an eigenfunction corresponding to λ∗, and for s sufficiently large, the
following error estimate holds:

λs − λ
∗ ≤ C

[

Cm[B(x0, εs)]
L

B(x0,2εs)

|∇u|m dx
]1/m

for all m ≥ 2;(9)

if furthermore m is a natural number, then

λs − λ
∗ ≤ CCm[B(x0, εs)]

L
B(x0,2εs)

|∇u|m dx,(10)

with the constant C depending only on the data. Here
D
B ⋆ dx denotes the

mean value of a function ⋆ over the set B.

For the proof of the theorem we shall introduce an auxiliary model pro-
blem following Skrypnik [5, Chap. 9]. Let ψ ∈ C∞0 (B(x0, 1)) be equal to 1
in B(x0, 1/2). For εs < 1/2, let vs ∈W

1
m(B(x0, 1) \Es) be a solution of the

problem
n
∑

i=1

∂

∂xi

(

|∇v|m−2
∂v

∂xi

)

= 0 in Ds = B(x0, 1) \ Es,
(11)

v(x) = ψ(x− x0) on ∂Ds.

Furthermore, we extend vs to Ω by setting vs(x) = ψ(x− x0) in Ω \Ds.

Arguing as in Skrypnik [5, Chap. 9, Theorem 2.2], we readily show that
any solution vs of problem (11) satisfies the following inequalities:
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0 ≤ vs(x) ≤ 1,(12) \
B(x0,1)

∣

∣

∣

∣

∂vs
∂x

∣

∣

∣

∣

m

dx ≤ γCm[Es],(13)

where γ is a constant independent of s.

2. Proof of Theorem 1. Let us be a sequence of eigenfunctions of
(1)–(2) corresponding to the eigenvalues λs, such that us → u weakly in
W̊ 1m(Ω) and λs → λ∗. We look for a solution of (1)–(2) in the form

us(x) = u(x) + I
(s)
1 (x) +Rs(x)(14)

where I
(s)
1 = −vs(x)u(x) and Rs(x) is the remainder term.

In what follows we denote by C inessential constants depending only on
the data and independent of s. We divide the proof of Theorem 1 in several
steps.

Step 1. We start by showing that the function us as defined by (14)

strongly converges to u in W̊ 1m(Ω). For that, we show that I
(s)
1 and Rs

strongly converge to zero in W̊ 1m(Ω). We write

I
(s)
1 (x) = (u

(s) − u(x))vs(x)− u
(s)vs(x),

where u(s) stands for the mean value of the function u over the ball
B(x0, 2εs), i.e.,

u(s) =
1

measB(x0, 2εs)

\
B(x0,2εs)

u(x) dx.

We state the following inequality: for x ∈ B(x0, 2εs),

|u(s) − u|m ≤ C
L

B(x0,2εs)

|∇u|m dx.(15)

Indeed, by Hölder’s inequality and Poincaré’s inequality,

|u(s) − u(x)| ≤
L

B(x0,2εs)

|u(x)− u(y)| dy

≤ C
( L
B(x0,2εs)

|u(x)− u(y)|m dy
)1/m

≤ C
( L
B(x0,2εs)

|∇u|m dx
)1/m

.

This implies (15).
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We have

(16)
\
Ω

|∇I
(s)
1 |
m dx ≤ sup

x∈B(x0,2εs)
|u(s) − u(x)|m

\
B(x0,2εs)

|∇vs|
m dx

+
\

B(x0,2εs)

vms |∇u|
m dx+

\
B(x0,2εs)

|u(s)|m|∇vs|
m dx

≤ C(εns + Cm[Es])
L

B(x0,2εs)

|∇u|m dx,

where we have used the inequalities (12), (13), (15) and Hölder’s inequality.
It follows from (16) that

lim
s→∞

\
Ω

|∇I
(s)
1 |
m dx = 0,(16)

i.e., I
(s)
1 converges strongly to zero in W̊

1
m(Ω).

For the investigation of the behaviour of Rs, we note that by the expan-
sion (14) and the properties of the functions vs, we have Rs ∈ W̊

1
m(Ωs) and

Rs = 0 in Es. Furthermore, in view of the weak convergence of us to u in

W̊ 1m(Ω) and the strong convergence of I
(s)
1 to zero in W̊

1
m(Ω) it follows that

Rs weakly converges to zero in W̊
1
m(Ω), hence Rs strongly converges to zero

in Lm(Ω) by Sobolev’s embedding theorem. We substitute ϕ(x) = Rs(x) in
the integral identity (3) and get\

Ωs

n
∑

i=1

|∇us|
m−2∂us

∂xi

∂Rs
∂xi

dx = λs
\
Ωs

|us|
m−2usRs dx.(18)

By the strong convergence of Rs to zero in Lm(Ω) it readily follows that

lim
s→∞

λs
\
Ωs

|us|
m−2usRs dx = 0.(19)

Let us write the left-hand side of this equation as\
Ωs

n
∑

i=1

|∇us|
m−2∂us

∂xi

∂Rs
∂xi

dx = I1s + I2s,(20)

where

I1s =
\
Ω

n
∑

i=1

[

|∇us|
m−2∂us

∂xi
− |∇(us −Rs)|

m−2∂(us −Rs)

∂xi

]

∂Rs
∂xi

dx,

I2s =
\
Ω

n
∑

i=1

|∇I
(s)
1 |
m−2∂I

(s)
1

∂xi

∂Rs
∂xi

dx.
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We recall the following well-known inequality: For all p, q ∈ R
n with

components pi, qi (i = 1, . . . , n) respectively and m ≥ 2,
n
∑

i=1

[|p|m−2pi − |q|
m−2qi](pi − qi) ≥ C|p− q|

m,(21)

where C is a positive constant.
By (21), we have

C
\
Ω

|∇Rs|
m dx ≤ I1s.(22)

By Hölder’s inequality and (16) it readily follows that lims→∞ I2s = 0. Hence
from (18), (19), (20) and (22) we conclude that Rs strongly converges to zero
in W̊ 1m(Ω). Thus we have shown the first assertion of the theorem.

Step 2. Now we show that u and λ∗ satisfy (7)–(8). Let g ∈ C∞0 (Ω).
We consider the sequence of functions

gs(x) = g(x) + L1s(x), L1s(x) = −g(x)vs(x).(23)

It is clear that gs ∈ W̊
1
m(Ωs). Furthermore, analogous arguments to those

used in Step 1 show that L1s strongly converges to zero in W̊
1
m(Ω). Hence g

is the strong limit of gs in W̊
1
m(Ω). Substituting ϕ(x) = gs(x) in the integral

identity (3), and using the fact that us strongly converges to u in W̊
1
m(Ω),

we readily show that, as s→∞, for all g ∈ W̊ 1m(Ω),\
Ω

n
∑

i=1

|∇u|m−2
∂u

∂xi

∂g

∂xi
dx = λ∗

\
Ω

|u|m−2ug dx.

It is clear that if us is not identically zero then u fails to vanish identi-
cally. This means that λ∗ is an eigenvalue of problem (7)–(8) and u the
corresponding eigenfunction.

Step 3. Further, we need to show that λ∗ is indeed the first eigenvalue
of (7)–(8), i.e., λ∗ coincides with the number

λ = inf
X

\
Ω

|∇v|m dx, X = {v ∈ W̊ 1m(Ω) : ‖v‖Lm(Ω) = 1}.(24)

The infimum is attained if v is furthermore an eigenfunction of (7)–(8). By
the homogeneity of the equation (1), we can assume that ‖us‖Lm(Ωs) = 1,
and subsequently that ‖u‖Lm(Ω) = 1. From the definition of λ it is clear that
λ ≤ λ∗. We now prove the reverse inequality, that is,

λ∗ ≤ λ.(25)

Hence the needed claim will be established. We consider the sequence Us,
s = 1, 2, . . . , of functions

Us(x) = u(x) + I
(s)
1 (x),(26)
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obtained from (14) by dropping the remainder term Rs(x). Then u is a solu-
tion of (7)–(8) normalized as above. We introduce the sequence of functions

ϕs(x) =
Us(x)

‖Us‖Lm(Ωs)
.

It is clear that ϕs ∈ W̊
1
m(Ωs) and ‖ϕs‖Lm(Ωs) = 1, i.e., ϕs ∈ Xs. Thus from

the definition of λs, we have

λs ≤
\
Ωs

|∇ϕs|
m dx =

1

‖Us‖Lm(Ωs)

\
Ωs

|∇Us|
m dx.(27)

Now we estimate the integral on the right-hand side of (27). We have\
Ωs

|∇Us|
m dx ≤

\
Ω

|∇u|m dx+H1s,(28)

where

H1s =
\
Ω

[|∇Us|
m − |∇u|m] dx.

Next by Hölder’s inequality we get

H1s ≤ C
\
Ω

[|∇Us|
m−1 + |∇u|m−1]|∇(Us − u)| dx(29)

≤ C
{ \
Ω

[|∇Us|
m + |∇u|m] dx

}(m−1)/m{ \
Ω

|∇(Us − u)|
m dx
}1/m

.

The second factor in the last inequality approaches zero, since Us → u
strongly in W̊ 1m(Ω). Hence it follows that H1s → 0 as s→∞. Thus passing
to the limit in (27) we obtain

λ∗ ≤
\
Ω

|∇u|m dx = λ.

Hence the claim that λ∗ is the first eigenvalue of (7)–(8) is proved.

Step 4. Now we establish the error estimate (9). For that we continue
the estimation of H1s that was started in (29). In view of (16), for s suffi-
ciently large we have\

Ω

|∇(Us − u)|
m dx ≤

\
Ω

|∇I1s|
m dx(30)

≤ C
{

(εns + Cm[Es])
L

B(x0,2εs)

|∇u|m dx
}

≤ CCm[Es]
L

B(x0,2εs)

|∇u|m dx.
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This inequality and (29) imply that

H1s ≤ C
[[

Cm[Es]
L

B(x0,2εs)

|∇u|m dx
]1/m

(31)

+ Cm[Es]
L

B(x0,2εs)

|∇u|m dx
]

.

Here we have used the fact that measEs ∼ εns (since measEs 6= 0) and
relation (6). For s large enough,

‖Us‖Lm(Ωs) ≥ 1− ‖Us − u‖Lm(Ω) ≥ 1−K‖∇(Us − u)‖W̊ 1
m
(Ω),(32)

where we have used Poincaré’s inequality. Now by (27), (31) and (32), we
see that for s sufficiently large

λs ≤ λ+ C
{

Cm[Es]
L

B(x0,2εs)

|∇u|m dx
}1/m

.

This proves (9).
Next let us assume that m is a natural number ≥ 2. In this case we can

estimate the norm ‖Us‖W̊ 1
m
(Ωs)
as\

Ωs

|∇Us|
m dx ≤

\
Ω

|∇u|m dx+H2s,(33)

with

H2s =
\
Ω

|∇I1s|
m dx+

m−1
∑

k=1

(

m

k

) \
B(x0,2εs)

|∇u|k|∇I1s|
m−k dx,

where
(

m
k

)

= m!/(k!(m− k)!). Applying Young’s inequality to the terms in
the sum, we get

H2s ≤ C
{ \
B(x0,2εs)

|∇I1s|
m dx+

\
B(x0,2εs)

|∇u|m dx
}

≤ CCm[Es]
L

B(x0,2εs)

|∇u|m dx.

Thus in view of (33) and (32) and (27), we deduce that for large s,

λs − λ ≤ CCm[Es]
L

B(x0,2εs)

|∇u|m dx.

This is the error estimate (10). The proof of Theorem 1 is complete.

Remark. The estimate (10) is sharper than (9) and whenm = 2 it coin-
cides modulo a multiplicative constant with the main term in the asymptotic
estimate obtained by Samarskĭı [4] who showed that when a set of small ca-
pacity Es is removed from a domain Ω ⊂ R

3, the first eigenvalue λs of the
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Laplace operator admits the asymptotically sharp estimate

λs − λ0 ≤ 4πω
2
sc(Es;Ω) +O(c(Es, Ω)

2),

where ωs is the maximal value of the first normalized eigenfunction of the
Laplace operator inΩ over the set Es, λ0 is the first eigenvalue of the Laplace
operator in Ω, and c(Es, Ω) is the harmonic capacity of the set Es relative
to Ω.
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